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***************************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical prob-
lems and solutions. Please email them to Prof. Albert Natian at Department of Mathematics, Los
Angeles Valley College. Please make sure every proposed problem or proposed solution is pro-
vided in both LaTeX and pdf documents. Thank you!

To propose problems, email them to: problems4ssma@gmail.com

To propose solutions, email them to: solutions4ssma@gmail.com

Solutions to previously published problems can be seen at ăwww.ssma.org/publicationsą.

Solutions to the problems published in this issue should be submitted before August 1, 2025.

‚ 5805 Proposed by Ovidiu Furdui and Alina Sîntămărian, Technical University of Cluj-Napoca,
Cluj-Napoca, Romania.

Calculate

lim
nÑ8

1
?

n

ż n

0

sin2 x
1` n cos2pnxq

dx.

‚ 5806 Proposed by Paolo Perfetti, dipartimento di matematica Universit„a di “Tor Vergata", Rome,
Italy.

Calculate

aq
8
ÿ

n“1

«

1
2n´ 1

´

ˆ

1
n
´

1
n` 1

`
1

n` 2
´ ¨ ¨ ¨

˙

ff2

and

bq
8
ÿ

n“1

p´1qn
«

1
2n´ 1

´

ˆ

1
n
´

1
n` 1

`
1

n` 2
´ ¨ ¨ ¨

˙

ff2

.

‚ 5807 Proposed by Michael Brozinsky, Central Islip, New York.

Right triangle RST (labeled clockwise with right angle at S) is formed by three lines as follows:
line L1 containing RT , line L2 containing ST, and line L3 containing RS. Points P1, P2 and P3 are
such that the distances from each of P1, P2 and P3 to L1, L2 and L3 respectively are proportional
to 1:2:3. And there are no other points with these (preceding) three properties. Show that the area
of triangle 4P1P2P3 is half the area of triangle RST and determine angle R.

‚ 5808 Proposed by Mihaly Bencze, Braşov, Romania and Neculai Stanciu, Buzău, Romania.
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Solve the following equation for real x:

´

x2
` 1

¯

¨

„

4x{px2`1q ´ log4

´

x4
´ 4x` 5

¯



“ x6
` x4

´ 4x3
` 5x2

´ 5x` 5.

‚ 5809 Proposed by Toyesh Prakash Sharma (Student) St. C.F. Andrews School, Agra, India.

(a) If
ln b ln c

bc
`

ln a ln c
ac

`
ln b ln a

ba
ě 1 for a, b, c ą 0 and a, b, c , 1, then show that

ln2 b` ln2 c
bc ¨ pa´ a3q

`
ln2 a` ln2 c
ac ¨ pb´ b3q

`
ln2 b` ln2 a
ab ¨ pc´ c3q

ě 3
?

3.

(b) If 0 ă b ď a ă
π

2
, then show that

ln

˜

c

tan a
tan b

¸

ě a´ b.

Solutions
To Formerly Published Problems

‚ 5781 Proposed by Daniel Sitaru, National Economic College "Theodor Costescu"
Drobeta Turnu - Severin, Romania..

Let m, n, p, q, r, s P Nzt0u and define

Hpmq
n “

1
1m `

1
2m ` . . .`

1
nm .

Prove that
`

Hp2pq
n ` Hp2qq

n
˘`

Hp2rq
n ` Hp2sq

n
˘

ě
`

Hpp`rq
n ` Hpq`sq

n
˘2
.

Solution 1 by Michel Bataille, Rouen, France.

Let a j “
1
jp for j “ 1, 2, . . . , n and a j “

1
p j´ nqq

for j “ n ` 1, n ` 2, . . . , 2n. Similarly, let

b j “
1
jr for j “ 1, 2, . . . , n and b j “

1
p j´ nqs

for j “ n ` 1, n ` 2, . . . , 2n. Then the Cauchy-

Schwarz inequality gives
¨

˝

2n
ÿ

j“1

a2
j

˛

‚

¨

˝

2n
ÿ

j“1

b2
j

˛

‚ě

¨

˝

2n
ÿ

j“1

a jb j

˛

‚

2

,
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which is nothing else than

pHp2pq
n ` Hp2qq

n qpHp2rq
n ` Hp2sq

n q ě pHpp`rq
n ` Hpq`sq

n q
2.

Solution 2 by Perfetti Paolo, dipartimento di matematica Universit„a di “Tor Vergata", Roma,
Italy.

Cauchy–Schwarz yields

pHp2pq
n ` Hp2qq

n qpHp2rq
n ` Hp2sq

n q ě

ˆ
b

Hp2pq
n Hp2rq

n `

b

Hp2qq
n Hp2sq

n

˙2

hence we come to
b

Hp2pq
n Hp2rq

n `

b

Hp2qq
n Hp2sq

n ě Hpp`rq
n ` Hpq`sq

n p1q

By Cauchy–Schwarz again

Hp2pq
n Hp2rq

n “

n
ÿ

k“1

1
k2p

n
ÿ

k“1

1
k2r ě

˜

n
ÿ

k“1

1
kp

1
kr

¸2

“

˜

n
ÿ

k“1

1
kr`p

¸2

“ pHpr`pq
n q

2

Hp2qq
n Hp2sq

n “

n
ÿ

k“1

1
k2q

n
ÿ

k“1

1
k2s ě

˜

n
ÿ

k“1

1
kq

1
ks

¸2

“

˜

n
ÿ

k“1

1
kq`s

¸2

“ pHpq`sq
n q

2

and (1) clearly follows.

Also solved by Albert Stadler, Herrliberg, Switzerland and the problem proposer.

‚ 5782 Proposed by Toyesh Prakash Sharma and Etisha Sharma, Agra College, Agra, India..

If a, b, c ě 1, then prove that

a2

b` c
`

b2

c` a
`

c2

a` b
ě

a` b` c
2

˜

a2 ` b2 ` c2

ab` bc` ca

¸

.

Solution 1 by Henry Ricardo, Westchester Area Math Circle, Purchase, New York.

Noting that pa` b` cq3 “ pa` b` cqpa2
` b2

` c2
` 2pab` bc` caqq, we have

pa` b` cq3

2pab` bc` caq
“
pa` b` cqpa2 ` b2 ` c2q

2pab` bc` caq
` a` b` c.

3



This identity implies that

ÿ

cyclic

a2

b` c
ě

a` b` c
2

˜

a2 ` b2 ` c2

ab` bc` ca

¸

ðñ
ÿ

cyclic

˜

a2

b` c
` a

¸

ě
pa` b` cq3

2pab` bc` caq

ðñ
ÿ

cyclic

a
b` c

ě
pa` b` cq2

2pab` bc` caq
.

But the Cauchy-Schwarz inequality gives us

ÿ

cyclic

a
b` c

“
ÿ

cyclic

a2

apb` cq
ě

pa` b` cq2

2pab` bc` caq
.

Note that this inequality is true for a, b, c positive. Equality holds if and only if a “ b “ c.

Solution 2 by Perfetti Paolo, dipartimento di matematica Universit„a di “Tor Vergata", Roma,
Italy.

The inequality is

1
pa` bqpb` cqpc` aq

ÿ

cyc

a2
pa` bqpa` cq ě

a` b` c
2

a2 ` b2 ` c2

ab` bc` ca

or
1

pa` bqpb` cqpc` aq

ÿ

cyc

pa4
` a2

pab` bc` caqq ě
a` b` c

2
a2 ` b2 ` c2

ab` bc` ca

Let’s introduce the new variables a` b` c “ 3u, ab` bc` ca “ 3v2, abc “ w3. We have

ab` bc` ca “ 9u2
´ 6v2, pa` bqpb` cqpc` aq “ 9uv2

´ w3,

a4
` b4

` c4
“ 81u4

´ 108u2v2
` 18v4

` 12uw3

In terms of the new variables the inequality is

81u4 ´ 108u2v2 ` 18v4 ` 12uw3 ` p9u2 ´ 6v2q3v2

9uv2 ´ w3 ´
3u
2

9u2 ´ 6v2

3v3 ě

which after trivial simplifications becomes

9u
2

2v2w3 ` u2w3 ` 9v2u3 ´ 12v4u
p´w3 ` 9uv2qv2 ě 0

Form the AGM we have u ě v ě w thus 9uv2
´ w3

ě 0 hence we need to prove

2v2w3
` u2w3

` 9v2u3
´ 12v4u ě 0
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This is an increasing function of w3 hence we must check it for the minimum values of w3 once
fixed the values of u and v. We know that the minimum value occurs when abc “ 0 or when c “ b
(or cyclic).

First case abc “ 0 hence c “ 0. The inequality becomes

a3 ` b3 ´ ab2 ´ ba2

2ab
ě 0

which is clearly true by the AGM pa3
` a3

` b3
q{3 ě a2b and pa3

` b3
` b3

q{3 ě ab2.

Second case b “ c. The inequality becomes

apa3 ´ 3ab2 ` 2b3q

2bpa` bqp2a` bq

which follows by
b3
` b3

` a3
ě 3ab2

and this concludes the proof making non necessary the condition a, b.c ě 1.

Solution 3 by Michel Bataille, Rouen, France.

We prove that the inequality even holds for any a, b, c ą 0.
Assume that a, b, c ą 0. Then, by homogeneity, we can suppose that a` b` c “ 1; the inequality
to be proved becomes

a2

1´ a
`

b2

1´ b
`

c2

1´ c
ě

a2 ` b2 ` c2

2pab` bc` caq
.

Since the function f pxq “
1

1´ x
is convex on p0, 1q, we have

a2

a2 ` b2 ` c2 ¨ f paq `
b2

a2 ` b2 ` c2 ¨ f pbq `
c2

a2 ` b2 ` c2 ¨ f pcq ě f

˜

a3 ` b3 ` c3

a2 ` b2 ` c2

¸

,

which writes as

a2

1´ a
`

b2

1´ b
`

c2

1´ c
ě

pa2 ` b2 ` c2q2

pa2 ` b2 ` c2q ´ pa3 ` b3 ` c3q
.

It follows that it is sufficient to prove that

a2 ` b2 ` c2

pa2 ` b2 ` c2q ´ pa3 ` b3 ` c3q
ě

1
2pab` bc` caq

.

This inequality is successively equivalent to

a3
` b3

` c3
ě pa2

` b2
` c2

q

´

pa` b` cq2 ´ 2pab` bc` caq
¯
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pa3
` b3

` c3
qpa` b` cq ě pa2

` b2
` c2

q
2

pa3b` ab3
q ` pb3c` bc3

q ` pc3a` ca3
q ě 2pa2b2

` b2c2
` c2a2

q.

We are done because the last inequality obviously holds (since x3y ` xy3
ě 2

a

x3y ¨ xy3 “ 2x2y2

for all positive x, y).

Solution 4 by Devis Alvarado, UNAH and UPNFM, Tegucigalpa, Honduras.

We observe that
1
s
¨

a2

b` c
“

a
s
¨

a
s´ a

“
a
s
¨

a
s

1´ a
s

and f pxq “
x

1´ x
is convex @x P p0, 1q, given that f 1pxq “

1
p1´ xq2

and f 2pxq “
2

p1´ xq3
ą 0.

Applying Jensen’s inequality

f
ˆ

a
s
¨

a
s
`

b
s
¨

b
s
`

c
s
¨

c
s

˙

ď
a
s

f
ˆ

a
s

˙

`
b
s

f
ˆ

b
s

˙

`
c
s

f
ˆ

c
s

˙

ñ f

˜

a2 ` b2 ` c2

s2

¸

ď
a
s

f
ˆ

a
s

˙

`
b
s

f
ˆ

b
s

˙

``
c
s

f
ˆ

c
s

˙

ñ

a2`b2`c2

s2

1´ a2`b2`c2

s2

ď
a
s
¨

a
s

1´ a
s

`
b
s
¨

a
s

1´ a
s

`
c
s

c
s

1´ c
s

ñ
a2 ` b2 ` c2

s2 ´ pa2 ` b2 ` c2q
ď

1
s

˜

a2

b` c
`

b2

c` a
`

c2

a` b

¸

ñ pa` b` cq

˜

a2 ` b2 ` c2

2pab` bc` caq

¸

ď
a2

b` c
`

b2

c` a
`

c2

a` b

ñ
a2

b` c
`

b2

c` a
`

c2

a` b
ě

a` b` c
2

˜

a2 ` b2 ` c2

ab` bc` ca

¸

.

Comments: As
a

a` b` c
,

b
a` b` c

,
c

a` b` c
P p0, 1q, for all a, b, c ą 0. The inequality is satis-

fied for all a, b, c ą 0.

Solution 5 by David A. Huckaby, Angelo State University, San Angelo, TX.

The Cauchy-Schwarz inequality applied to the vectors

C

c

a2

ab` ac
,

c

b2

bc` ba
,

c

c2

ca` cb

G

and x
?

ab` ac,
?

bc` ba,
?

ca` cby gives

˜

a2

ab` ac
`

b2

bc` ba
`

c2

ca` cb

¸

pab` ac` bc` ba` ca` cbq ě pa` b` cq2,
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that is,
a

b` c
`

b
c` a

`
c

a` b
ě

pa` b` cq2

2pab` bc` caq
. (1)

Note that

pa` b` cq
ˆ

a
b` c

`
b

c` a
`

c
a` b

˙

“
a2

b` c
`

ab
c` a

`
ac

a` b

`
ba

b` c
`

b2

c` a
`

bc
a` b

`
ca

b` c
`

cb
c` a

`
c2

a` b

“
a2

b` c
`

b2

c` a
`

c2

a` b
`

ba` ca
b` c

`
ab` cb
c` a

`
ac` bc
a` b

“
a2

b` c
`

b2

c` a
`

c2

a` b
` a` b` c.

So
a2

b` c
`

b2

c` a
`

c2

a` b
“ pa` b` cq

ˆ

a
b` c

`
b

c` a
`

c
a` b

˙

´ pa` b` cq

“ pa` b` cq
ˆ

a
b` c

`
b

c` a
`

c
a` b

´ 1
˙

ě pa` b` cq

˜

pa` b` cq2

2pab` bc` caq
´ 1

¸

“ pa` b` cq

˜

a2 ` b2 ` c2 ` 2ab` 2bc` 2ca
2pab` bc` caq

´ 1

¸

“ pa` b` cq

˜

a2 ` b2 ` c2

2pab` bc` caq
` 1´ 1

¸

“
a` b` c

2

˜

a2 ` b2 ` c2

ab` bc` ca

¸

,

where the inequality on line 3 follows from (1). (Note that Nesbitt’s inequality,
a

b` c
`

b
c` a

`

c
a` b

ě
3
2

for a, b, c ą 0, ensures that the second factor on line 2 is positive.)

Solution 6 by Albert Stadler, Herrliberg, Switzerland.

The equation holds true even if a, b, c ą 0. We note that

a2

b` c
`

b2

c` a
`

c2

a` b
“
pa` b` cq

`

a3 ` b3 ` c3 ` abc
˘

pa` bq pa` cq pb` cq
.

Hence we need to prove that

2
`

a3 ` b3 ` c3 ` abc
˘

pa` bq pa` cq pb` cq
ě

a2 ` b2 ` c2

ab` bc` ca

7



which after clearing denominators is seen to be equivalent to

a4b` ab4
` b4c` bc4

` c4a` ca4
ě a3b2

` a2b3
` b3c2

` b2c3
` c3a2

` c2a3.

Note that if x, y ą 0 then by the AM-GM inequality,

x4y` xy4
“

ˆ

2
3

x4y`
1
3

xy4

˙

`

ˆ

1
3

x4y`
2
3

xy4

˙

ě x3y2
` x2y3.

Above inequality then follows by replacing (x,y) by (a,b), (b,c), (c,a), respectively and then adding
the resulting inequalities.

Also solved by and the problem proposer.

‚ 5783 Proposed by Goran Conar, Varaždin, Croatia.

Let x1, . . . , xn ą 0 be real numbers and set s “
n
ÿ

i“1

xi. Prove

n
ź

i“1

xxi
i ě

ˆ

s
n` s

˙s n
ź

i“1

p1` xiq
xi .

When does equality occur?

Editor’s note: Problem #5783 was formerly published as problem #5753. The editor regrets this
repetition. Solutions to problem #5753 from Albert Stadler, Perfetti Paolo, Prakash Pant, Toyesh
Prakash Sharma, Henry Ricardo were published or acknowledged in a previous issue of the P&S
(Problems and Solutions).

Also solved by Devis Alvarado, UNAH and UPNFM, Tegucigalpa, Honduras and the problem
proposer.

‚ 5784 Proposed by Ivan Hadinata, Senior High School 1 Jember, Jember, Indonesia.

Find all postive integers n for which there exist n pairwise-distinct positive integers x1, x2, ....., xn

satisfying the equation:

ln x1 ` ln x2 ` ¨ ¨ ¨ ` ln xn “ lnpx1 ` x2 ` ¨ ¨ ¨ ` xnq.

where ln denotes natural logarithm.

Solution 1 by Ulrich Abel, Technische Hochschule Mittelhessen, Friedberg, Germany.

Since ln : p0,8q Ñ R is a bijective function, the equation is equivalent to

x1x2 ¨ ¨ ¨ xn “ x1 ` x2 ` ¨ ¨ ¨ ` xn.
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In the case n “ 1 this equation is obviously valid for each integer x1 ě 1. For fixed n ě 2, define
x0 “ max tx1, x2, . . . , xnu. Since the numbers are pairwise-distinct positive integers it follows that

1 ¨ 2 ¨ ¨ ¨ pn´ 1q x0 ď x1x2 ¨ ¨ ¨ xn “ x1 ` x2 ` ¨ ¨ ¨ ` xn ď pn´ 1q px0 ´ 1q ` x0 ă nx0,

which implies that 1 ¨ 2 ¨ ¨ ¨ pn´ 1q ă n. This inequality is not satisfied for all n ě 4.

In the case n “ 2 there is no solution px1, x2q. If x1 “ 1 we see that x2 “ x1x2 “ x1 ` x2 “ 1` x2

has no solution. If x1 ě 2 and x2 “ 3` k with an integer k ě 0, we infer that x1 p3` kq “ x1x2 “

x1 ` x2 “ x1 ` 3` k which implies

x1 “
x1

3` k
` 1 ď

x1

3
` 1 ùñ 1 ě

2
3

x1 ě
4
3
,

a contradiction.

In the case n “ 3 we have the admissible solution px1, x2, x3q “ p1, 2, 3q.

Summarizing, the equation has admissible solutions if and only if n “ 1 or n “ 3.

Solution 2 by Paul Flesher, Fort Hays State University, Hays, KS.

We first note that this problem reduces to finding all positive integers n for which there exist n

pairwise-distinct positive integers where
n
ź

i“1

xi “

n
ÿ

i“1

xi because the sum of logarithms is the loga-

rithm of the products and the natural logarithm is injective.

Without loss of generality, we may relabel any list of finitely many pairewise-distinct positive
integers so that xi ă x j when i ă j.

When n “ 1, the problem is of no interest. Suppose n ě 2 and x1, x2, . . . , xn form a solution.

So, we have that
n
ź

i“1

xi “

n
ÿ

i“1

xi. Given our labeling, we know that xn is the largest of the positive

integers. Replacing each xi in our sum with xn, we have that
n
ÿ

i“1

xi ă xn ` xn ` . . . ` xn “ n ¨ xn.

This subsequently leads to the conclusion that
n
ź

i“1

xi ă n ¨ xn. Since xn is a positive integer, we can

cancel the xn on each side of the inequality which produces
n´1
ź

i“1

xi ă n

Note that this product is minimized when xi “ i meaning pn ´ 1q! ď
n´1
ź

i“1

xi. So we deduce the

necessary condition on n that pn´ 1q! ă n. Such a condition is only true for n “ 2, 3.

9



Suppose x1 and x2 form a solution, then x1 ` x2 “ x1 ¨ x2 and x1 ă 2. So x1 “ 1 as it is a
positive integer. Meaning 1 ` x2 “ 1 ¨ x2. This cannot happen. So, there is no set of positive inte-
gers that form a solution for n “ 2. When n “ 3, the pairwise-distinct positive integers 1, 2, 3 form
a solution. Hence, the only positive integer n that admits a meaningful solution to the proposed
problem is n “ 3.

Solution 3 by Michel Bataille, Rouen, France.

We show that the solutions for n are n “ 1 and n “ 3.

First, n “ 1 is an obvious solution and n “ 3 is a solution because 1 ¨ 2 ¨ 3 “ 1` 2` 3.
Conversely, suppose that n ą 1 and that the equation x1 ¨ x2 ¨ ¨ ¨ xn “ x1 ` x2 ` ¨ ¨ ¨ ` xn (equivalent
to the given equation) holds for some pairwise-distinct positive integers x1, x2, . . . , xn. Without loss
of generality, we suppose that x1 ă x2 ă ¨ ¨ ¨ ă xn. Note that in consequence x j ě j ( j “ 1, . . . , n).
Let p “ x1 ¨ x2 ¨ ¨ ¨ xn. Then p “ x1 ` x2 ` ¨ ¨ ¨ ` xn,

x1

p
ă

x2

p
ă ¨ ¨ ¨ ă

xn

p
and

x1

p
`

x2

p
` ¨ ¨ ¨ `

xn

p
“ 1. (1)

It follows that
1

x1 ¨ x2 ¨ ¨ ¨ xn´1
“

xn

p
ě

1
n

(otherwise the left side of p1q would be less than 1).
Therefore we have n ě x1 ¨ x2 ¨ ¨ ¨ xn´1 ě pn ´ 1q!, which calls for n ă 4; indeed, if n ě 4, then
pn ´ 1q! ą pn ´ 1qpn ´ 2q ą n (since n2

´ 4n ` 2 “ npn ´ 4q ` 2 ě 2 ą 0). Thus, besides 1, the
only possible solutions for n are 2 and 3. However, 2 is not a solution: x1x2 “ x1 ` x2 writes as
px1 ´ 1qpx2 ´ 1q “ 1 implying x1 “ x2 “ 2 and contradicting x1 , x2.
Thus, a solution for n satisfies n “ 1 or n “ 3 and the proof is complete.

Solution 4 by Henry Ricardo, Westchester Area Math Circle, Purchase, NY.

We have the trivial solution n “ 1. Now suppose that n ą 1 and the positive integers x1, x2, . . . , xn

are pairwise-distinct. Then

ln x1 ` ln x2 ` ¨ ¨ ¨ ` ln xn “ lnpx1 ` x2 ` ¨ ¨ ¨ ` xnq ðñ x1x2 ¨ ¨ ¨ xn “ x1 ` x2 ` ¨ ¨ ¨ ` xn.

But it is known that the sum of n ą 1 distinct positive integers equals their product only when the
integers are 1, 2, and 3, so that n “ 3 is the only nontrivial solution. (See, for example, p. 694 of
Dickson’s History of the Theory of Numbers, Volume II, where this result is attributed to Housel.)

ln x1 ` ln x2 ` ¨ ¨ ¨ ` ln xn “ lnpx1 ` x2 ` ¨ ¨ ¨ ` xnq.

A second solution: We have the trivial solution n “ 1. Without loss of generality, suppose
0 ă x1 ă x2 ă ¨ ¨ ¨ ă xn with n ą 1 and x1x2 ¨ ¨ ¨ xn “ x1 ` x2 ` ¨ ¨ ¨ ` xn. Since the xi are distinct
integers, we have xn ě n. It follows that x1 ` x2 ` ¨ ¨ ¨ ` xn ă nxn and x1x2 ¨ ¨ ¨ xn ě pn ´ 1q!xn,
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implying that nxn ą pn´ 1q!xn, or n ą pn´ 1q!. This, in turn, means that n ď 3. If n “ 2, we have
x1 ` x2 “ x1x2, or 1{x1 ` 1{x2 “ 1, which is easily seen to have only the solution p2, 2q, which
doesn’t satisfy our hypothesis that the xi are distinct. When n “ 3, we have the obvious solution
x1 “ 1, x2 “ 2, x3 “ 3. Thus the only nontrivial solution is n “ 3.

Solution 5 by the Eagle Problem Solvers, Georgia Southern University, Savannah, GA and
Statesboro, GA.

The only such positive integers are n “ 1 and n “ 3.

If n “ 1, then the equation is trivially satisfied for any positive integer x1. For n ą 1, the left
side of the equation is equal to ln px1x2 ¨ ¨ ¨ xnq by the product rule for logarithms. Since the natural
logarithm function is one-to-one, the problem is equivalent to finding solutions of the equation

x1x2 ¨ ¨ ¨ xn “ x1 ` x2 ` ¨ ¨ ¨ ` xn,

which we may rewrite as

1 “
1
x̂1
`

1
x̂2
` ¨ ¨ ¨ `

1
x̂n
, (2)

where x̂k “
x1x2 ¨ ¨ ¨ xn

xk
.

Without loss of generality, we may assume that 1 ď x1 ă x2 ă ¨ ¨ ¨ ă xn. Because the xk are
distinct positive integers, then xk ě k for each positive integer k ď n.

If n “ 2, then Equation (2) becomes

1 “
1
x1
`

1
x2
.

If x1 “ 1, then
1
x1
`

1
x2
“ 1`

1
x2
ą 1. Meanwhile, if x1 ą 1, then

1
x1
`

1
x2
ď

1
2
`

1
3
“

5
6
ă 1.

Thus, there are no solutions if n “ 2.

If n “ 3, then Equation (2) is

1 “
1

x1x2
`

1
x1x3

`
1

x2x3
.

Since xk ě k for each positive integer k, then

1
x1x2

`
1

x1x3
`

1
x2x3

ď
1
2
`

1
3
`

1
6
“ 1,

with equality if and only if px1, x2, x3q “ p1, 2, 3q. Thus, there is a unique solution (up to permuta-
tion) if n “ 3.

11



Finally, suppose that n ě 4. If 1 ď k ă n, then either k , 2 or k , 3, so x̂k ě x2xn ě 2n ą n and
1
x̂k
ă

1
n

. In addition, for n ě 4,

pn´ 1q! ě pn´ 1qpn´ 2q “ n2
´ 3n` 2 ą npn´ 3q ě n,

so that pn´ 1q! ą n. Thus,

1
x̂n
“

1
x1x2 ¨ ¨ ¨ xn´1

ď
1

pn´ 1q!
ă

1
n
,

and
n
ÿ

k“1

1
x̂k
ă

n
n
“ 1,

so there are no solutions to the given equation when n ě 4.

Solution 6 by Devis Alvarado, UNAH and UPNFM, Tegucigalpa, Honduras.

The equation is equivalent to

x1x2 ¨ ¨ ¨ xn “ x1 ` x2 ` ¨ ¨ ¨ ` xn

Since the equation is symmetric, we can assume without loss of generality that x1 ă x2 ă ¨ ¨ ¨ ă xn.
Like x1 ě 1 then xi ě i for i “ 1, 2, ¨ ¨ ¨ , n. Thus for n “ 1 it is true for every non-negative integer
x1, now let’s analyze if n ą 1

x1x2 ¨ ¨ ¨ xn “ x1 ` x2 ` ¨ ¨ ¨ ` xn

ñ pn´ 1q!xn ď x1x2 ¨ ¨ ¨ xn´1xn “ x1 ` x2 ` ¨ ¨ ¨ ` xn ă nxn

ñ pn´ 1q! ă n

From the last inequality we have that n “ 2, 3, which means that pn´1q! ą n for all n ě 4. For the
cases n “ 2, the equation x1x2 “ x1 ` x2 does not have different positive integer solutions, while
for the case n “ 3 the numbers x1 “ 1, x2 “ 2, x3 “ 3 satisfy the equation. In conclusion, the only
n that satisfy the conditions are n “ 1, 3.

Solution 7 by Daniel Văcaru, “Maria Teiuleanu” National Economic College, Pites, ti, Ro-
mania.

For n “ 2,one obtain
ln x1 ` ln x2 “ ln px1 ` x2q (3)

It follows that
x1x2 “ x1 ` x2 ô px1 ´ 1q px2 ´ 1q “ 0

12



It follows x1 “ 1 or x2 “ 1, and one obtain

ln x “ ln p1` xq , (4)

which is a contradiction.

If n ě 3, consider equation

r

k“ 1sn´ 1
ÿ

ln k ` ln xn “ ln

˜

r

k“ 1sn´ 1
ÿ

k ` xn

¸

, (5)

which is equivalent to

pn´ 1q! ¨ xn “
pn´ 1q n

2
` xn, (6)

which is equivalent to
“

pn´ 1q!´ 1
‰

¨ xn “
n pn´ 1q

2
, (7)

and one obtain

xn “
n pn´ 1q

2
“

pn´ 1q!´ 1
‰ .

Solution 8 by Albert Stadler, Herrliberg, Switzerland.

The given equation is equivalent to

x1x2 ¨ ¨ ¨ xn “ x1 ` x2 ` ¨ ¨ ¨ ` xn.

We claim that the set of feasible n is t1, 3u. We have 1=1 and 1 2 3=1+2+3. We note that
x1x2 “ x1 ` x2 is equivalent to px1 ´ 1q px2 ´ 1q “ 1 implying x1 “ x2 “ 2, and x1, x2 are not
pairwise distinct. We may therefore assume that ně4.

Lemma: Let ně1. Then

x1x2 ¨ ¨ ¨ xn ě x1 ` x2 ` ¨ ¨ ¨ ` xn ` n!´
n pn` 1q

2
,

if x1, x2, . . . , xn are pairwise-distinct positive integers.

Proof of the Lemma: By symmetry we may assume that

1 ď x1 ă x2 ă ¨ ¨ ¨ ă xn.

In particular xkěk. The claim is true for n=1 (trivial), for n=2, noting that

x1x2 ´ x1 ´ x2 ` 1 “ px1 ´ 1q px2 ´ 1q ě 0,
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and for n=3, noting that
x1x2x3 ´ x1 ´ x2 ´ x3 “

“ px1 ´ 1q px2 ´ 2q px3 ´ 3q ` 3 px1 ´ 1q px2 ´ 2q ` 2 px1 ´ 1q px3 ´ 3q`

` px2 ´ 2q px3 ´ 3q ` 5px1 ´ 1q ` 2px2 ´ 2q ` x3 ´ 3 ě 0.

Then, if ně4,

x1x2 ¨ ¨ ¨ xn ě

ˆ

x1 ` x2 ` ¨ ¨ ¨ ` xn´1 ` pn´ 1q!´
pn´ 1q n

2

˙

xn “

“

n´1
ÿ

k“1

`

pxk ´ 1q pxn ´ 1q ` xk ` xn ´ 1
˘

`

ˆ

pn´ 1q!´
pn´ 1q n

2

˙

xn ě

“

n´1
ÿ

k“1

`

pk ´ 1q pn´ 1q ` xk ` xn ´ 1
˘

`

ˆ

pn´ 1q!´
pn´ 1q n

2

˙

n “

“ pn´ 1q xn `

n´1
ÿ

k“1

xk ` n!´
3
2
pn´ 1q n ě pn´ 2q n`

n
ÿ

k“1

xk ` n!´
3
2
pn´ 1q n “

“ x1 ` x2 ` ¨ ¨ ¨ ` xn ` n!´
n pn` 1q

2
,

and the proof by induction is complete.

We solve the equation x1x2 ¨ ¨ ¨ xn “ x1 ` x2 ` ¨ ¨ ¨ ` xn for xn and get

xn “
x1 ` ¨ ¨ ¨ ` xn´1

x1 ¨ ¨ ¨ xn´1 ´ 1
ď

x1 ` ¨ ¨ ¨ ` xn´1

x1 ` x2 ` ¨ ¨ ¨ ` xn´1 ` pn´ 1q!´ pn´1qn
2 ´ 1

ă 2

for ně4, which contradicts xněn. So the set of feasible n is t1, 3u.

Also solved by the problem proposer.

‚ 5785 Proposed by Vasile Cirtoaje, Petroleum-Gas University of Ploiesti, Romania.

Prove that 3 is the largest positive value of the constant k such that

1
a
`

1
b
`

1
c
`

1
d
´ 4 ě kpa` b` c` d ´ 4q

for any positive real numbers a, b, c, d with a ě b ě c ě 1 ě d and ab` bc` cd ` da “ 4.

Solution 1 by Albert Stadler, Herrliberg, Switzerland.

We note that ab+bc+cd+da=(a+c)(b+d). Let ką3, b=c=1. Then a+1+d+da=(1+a)(1+d)=4 and

1
a
`

1
b
`

1
c
`

1
d
´ 4´ k pa` b` c` d ´ 4q “

1
a
`

1
d
´ 2´ k pa` d ´ 2q “
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“
1
a
`

1
4

1`a ´ 1
´ 2´ k

ˆ

a`
4

1` a
´ 3

˙

“
pa´ 1q2

`

3` 3a´ p3´ aq ak
˘

p3´ aq a p1` aq
.

Note that aă3, since dą0 and (1+a)(1+d)=4. Furthermore

lim
aÑ1

`

3` 3a´ p3´ aq ak
˘

“ 6´ 2k ă 0.

So if a is sufficiently close to 1 and b=c=1 then

1
a
`

1
b
`

1
c
`

1
d
´ 4´ k pa` b` c` d ´ 4q ă 0.

Let 0ăkď3. (a+c)(b+d)=4 implies d “
4

a` c
´ b, and dą0 implies b(a+c)ă4. We need to prove

that
1
a
`

1
b
`

1
c
`

1
d
´ 4´ k pa` b` c` d ´ 4q “

“
1
a
`

1
b
`

1
c
`

a` c
4´ b pa` cq

´ 4´ k
ˆ

a` c`
4

a` c
´ 4

˙

ě 0

for aěběcě1, b(a+c)ă4. We note that a` c`
4

a` c
´ 4 ě 2

c

pa` cq
4

a` c
´ 4 ě 0.

So we need to prove that for aěběcě1, b(a+c)ă4

1
a
`

1
b
`

1
c
`

a` c
4´ b pa` cq

´ 4´ 3
ˆ

a` c`
4

a` c
´ 4

˙

ě 0. p˚q

Let 0ďεďa-c. Then

1
a
`

1
c
´

1
a´ ε

´
1

c` ε
“
pa` cq pa´ c´ εq ε

ac pa´ εq pc` εq
ě 0.

So if we replace (a,c) by (a-ε,c+ε) in (*) then a+c stays constant, while
1
a
`

1
c
ě

1
a´ ε

`
1

c` ε
.

As aěběc we may assume that either a=b (case I) or b=c (case II).

Case I: a=b.

Then a=běcě1, a(a+c)ă4, and

2
a
`

1
c
`

a` c
4´ a pa` cq

´ 4´ 3
ˆ

a` c`
4

a` c
´ 4

˙

“
f pa, cq

ac pa` cq p4´ a2 ´ acq
,

where
f pa, cq “ 4a2

´ a4
´ 36ac` 32a2c´ 3a3c´ 8a4c` 3a5c` 8c2

`

`32ac2
´ 15a2c2

´ 16a3c2
` 9a4c2

´ 13ac3
´ 8a2c3

` 9a3c3
` 3a2c4

“

“

´

16pa´ 1q2 ` 20pa´ 1q3 ` 15pa´ 1q4 ` 3pa´ 1q5
¯

`

`

´

56pa´ 1q2 ` 62pa´ 1q3 ` 25pa´ 1q4 ` 3pa´ 1q5
¯

pc´ 1q`
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`

´

20 pa´ 1q ` 66pa´ 1q2 ` 47pa´ 1q3 ` 9pa´ 1q4
¯

pc´ 1q2`

`

´

22 pa´ 1q ` 31pa´ 1q2 ` 9pa´ 1q3
¯

pc´ 1q3`

`

´

3` 6 pa´ 1q ` 3pa´ 1q2
¯

pc´ 1q4 ě 0.

Case II: b=c.

Then aěb=cě1, c(a+c)ă4, and

1
a
`

2
c
`

a` c
4´ c pa` cq

´ 4´ 3
ˆ

a` c`
4

a` c
´ 4

˙

“
g pa, cq

ac pa` cq p4´ c2 ´ acq
,

where
g pa, cq “ 8a2

´ 36ac` 32a2c´ 13a3c`

`4c2
` 32ac2

´ 15a2c2
´ 8a3c2

` 3a4c2
´ 3ac3

´ 16a2c3
`

`9a3c3
´ c4

´ 8ac4
` 9a2c4

` 3ac5
“

“

´

3pa´ 1q4
¯

`

´

20pa´ 1q2 ` 22pa´ 1q3 ` 6pa´ 1q4
¯

pc´ 1q`

`

´

16` 56 pa´ 1q ` 66pa´ 1q2 ` 31pa´ 1q3 ` 3pa´ 1q4
¯

pc´ 1q2`

`

´

20` 62 pa´ 1q ` 47pa´ 1q2 ` 9pa´ 1q3
¯

qpc´ 1q3`

`

´

15` 25 pa´ 1q ` 9pa´ 1q2
¯

pc´ 1q4`
`

3` 3 pa´ 1q
˘

pc´ 1q5 ě 0.

Hence 3 is the largest positive value of the constant k such that

1
a
`

1
b
`

1
c
`

1
d
´ 4 ě k pa` b` c` d ´ 4q

for any positive real numbers a,b,c,d with aěběcě1ěd and ab+bc+cd+da=4.

Also solved by the problem proposer.

‚ 5786 Proposed by Ovidiu Furdui and Alina Sîntămărian, Technical University of Cluj-Napoca,
Cluj-Napoca, Romania.

Find all continuous functions f : RÑ R such that for all x P R:

f p´xq “ 1´ 2
ż x

0
e´t f px´ tqdt.
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Solution 1 by Paul Flesher and Jonathan Rehmert, Fort Hays State University, Hays, KS.

Note that f p0q “ 1. Using the u-substitution u “ x ´ t, we have an alternative formulation of
the problem.

f p´xq “ 1´ 2
ż x

0
e´t f px´ tq dt “ 1´ 2e´x

ż x

0
et f ptq dt

Note that et f ptq is continuous on R. As such,
ż x

0
et f ptq dt is differentiable on R by the Fundamental

Theorem of Calculus. And hence, the right hand side is a differentiable function onR indicating that
f is differentiable. We, therefore, differentiate both sides and substitute to arrive at the following.

´ f 1p´xq “ 2e´x
ż x

0
et f ptq dt ´ 2e´xex f pxq “ 2e´x

ż x

0
et f ptq dt ´ 2 f pxq

f 1p´xq “ ´1` f p´xq ` 2 f pxq

f 1pxq “ ´1` f pxq ` 2 f p´xq

Note that f 1p0q “ 2. Given such a relation, we have that f 1 is also differentiable.

f 2pxq “ f 1pxq ´ 2 f 1p´xq “ ´1` f pxq ` 2 f p´xq ´ 2p´1` f p´xq ` 2 f pxqq “ 1´ 3 f pxq

The problem thus reduces to the second order autonomous differential equation with initial condi-
tions.

f 2 “ 1´ 3 f f p0q “ 1 f 1p0q “ 2

As a second order, constant coefficient, linear initial value problem, a solution exists and is unique.
It can be easily verified that

f pxq “
2
3

cosp
?

3xq `
2
?

3
sinp

?
3xq `

1
3

is a solution, and is hence the only solution to the proposed problem.

Solution 2 by Brian Bradie, Department of Mathematics, Christopher Newport University,
Newport News, VA.

Within the integral, make the change of variables t Ñ x´ t. This yields

f p´xq “ 1´ 2
ż x

0
e´px´tq f ptq dt. (8)

Because f is continuous, the function e´px´tq f ptq is integrable. This implies, by equation (8) and
the Fundamental Theorem of Calculus, that f is differentiable. Differentiating (8), we obtain

´ f 1p´xq “ ´2 f pxq ` 2
ż x

0
e´px´tq f ptq dt

“ ´2 f pxq ` 1´ f p´xq. (9)
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Next, replace x by ´x and multiply through by ´1 to obtain

f 1pxq “ 2 f p´xq ´ 1` f pxq. (10)

Differentiating (10) then yields

f 2pxq “ ´2 f 1p´xq ` f 1pxq;

but twice equation (9) added to equation (10) yields

´2 f 1p´xq ` f 1pxq “ ´3 f pxq ` 1,

so
f 2pxq ` 3 f pxq “ 1.

From equation (8), we find f p0q “ 1, while (9) gives f 1p0q “ 2. The solution of the initial value
problem

f 2pxq ` 3 f pxq “ 1, f p0q “ 1, f 1p0q “ 2

is
f pxq “

1
3
`

2
3

cos
?

3x`
2
?

3
sin
?

3x.

Solution 3 by Michel Bataille, Rouen, France.

We show that the function f0 defined by f0pxq “
1
3

´

1` 2 cospx
?

3q ` 2
?

3 sinpx
?

3q
¯

is the
unique solution.
First, note that for any continuous function f , we have

ż x

0
e´t f px´ tq dt “

ż x

0
eu´x f puq du “ e´xFpxq

where F is the differentiable function defined by Fpxq “
ż x

0
eu f puq du (so that F 1pxq “ ex f pxq). In

particular, we obtain

F0pxq :“
ż x

0
eu f0puq du “

ex ´ 1
3

`
2
3

ż x

0
Re

´

eup1`i
?

3q
¯

du`
2
?

3
3

ż x

0
Im

´

eup1`i
?

3q
¯

du

The calculation of
ż x

0
eup1`i

?
3q du is straightforward and leads to

F0pxq “
ex ´ 1

3
`

ex

6
cospx

?
3q ´

1
6
`

?
3ex

6
sinpx

?
3q `

?
3ex

6
sinpx

?
3q ´

ex

2
cospx

?
3q `

1
2

“
ex

3
´

ex

3
cospx

?
3q `

?
3ex

3
sinpx

?
3q
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so that

1´ 2e´xF0pxq “
1
3
`

2
3

cospx
?

3q ´
2
?

3
3

sinpx
?

3q “ f0p´xq,

showing that f0 is a solution.
Conversely, let f be any solution. Then, for all x, we have f pxq “ 1 ´ 2exFp´xq, hence f is
differentiable on R (as F is) and

f 1pxq “ ´2exFp´xq ` 2exF 1p´xq “ f pxq ´ 1` 2 f p´xq. (1)

Therefore f 1 is differentiable and for all x,

f 2pxq “ f 1pxq´2 f 1p´xq “ f 1pxq´2
`

f p´xq ´ 1` 2 f pxq
˘

“ f 1pxq`2´4 f pxq´
`

f 1pxq ´ f pxq ` 1
˘

,

that is, f 2pxq “ 1´ 3 f pxq. Thus, f is a solution to the differentiable equation y2 ` 3y “ 1 and

f pxq “
1
3
` A cospx

?
3q ` B sinpx

?
3q

for some constant A, B. Since Fp0q “ 0, we have f p0q “ 1, hence A “
2
3

. From p1q we have

f 1p0q “ 2, which leads to B “
2
?

3
3

. We see that we must have f “ f0, and the proof is complete.

Solution 4 by Perfetti Paolo, dipartimento di matematica Universit„a di “Tor Vergata", Roma,
Italy.

Clearly f p0q “ 1. x´ t “ u yields

f p´xq “ 1´ 2
ż x

0
eu´x f puqdu.

The r.h.s. is differentiable via the continuity of the integrand and the Torricelli–Barrow theorem
then

f 1p´xqp´1q “ ´2 f pxq ` 2
ż x

0
eu´x f puqdu “ ´2 f pxq ` 1´ f p´xq p1q

hence
f 1pxq “ 2 f p´xq ´ 1` f pxq ùñ f 2pxq “ ´2 f 1p´xq ` f 1pxq p2q

f 2pxq ´ f 1pxq “ ´2 f 1p´xq.

From (1) we get

f 2pxq ´ f 1pxq “ ´2p2 f pxq ´ 1` f p´xqq “ ´4 f pxq ` 2´ 2 f p´xq

and from the l.h.s. of (2) we get

f 2pxq ´ f 1pxq “ ´4 f pxq ` 2´ f 1pxq ´ 1` f pxq ðñ f 2pxq ` 3 f pxq “ 1.
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From the l.h.s. of (2) we get f 1p0q “ 2 hence we need to solve

f 2pxq ` 3 f pxq “ 1, f p0q “ 1, f 1p0q “ 2

whose solution is
f pxq “

2
?

3
sinp

?
3xq `

2
3

cosp
?

3xq `
1
3
.

Solution 5 by Ulrich Abel, Technische Hochschule Mittelhessen, Friedberg, Germany.

The equation can be rewritten in the form

ex
´ ex f p´xq “ 2

ż x

0
et f ptq dt.

Since the right-hand side is differentiable, we can differentiate both sides:

ex
` ex f 1 p´xq ´ ex f p´xq “ 2ex f pxq .

Replacing x with ´x and substituting f p´xq we infer that

1` f 1 pxq ´ f pxq “ 2 f p´xq “ 2´ 4e´x
ż x

0
et f ptq dt.

Differentiating the equivalent formula

ex f 1 pxq ´ ex f pxq ´ ex
“ ´4

ż x

0
et f ptq dt

leads to
ex f 2 pxq ´ ex f pxq ´ ex

“ ´4ex f pxq ,

which is equivalent to
f 2 pxq ` 3 f pxq “ 1.

This differential equation has the general solution

f pxq “
1
3
` A cos

´?
3x
¯

` B sin
´?

3x
¯

.

Obviously, the above equation reveals that f p0q “ 1, which implies that A “ 2{3. Inserting into
the above equation shows that the equation is satisfied if and only if B “ 2{

?
3. Therefore, it has

the unique continuous solution

f pxq “
1
3
`

2
3

cos
´?

3x
¯

`
2
?

3
sin

´?
3x
¯

.

Remark: The slightly more general equation

f p´xq “ 1´ c
ż x

0
e´t f px´ tq dt,
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for c2 , 1, has the unique continuous solution

f pxq “
c

c` 1
cos

´

a

c2 ´ 1x
¯

`
c

?
c2 ´ 1

sin
´

a

c2 ´ 1x
¯

`
1

c` 1
.

Passing to the limit c Ñ 1 shows that, for c “ 1, the unique continuous solution is given by
f pxq “ x` 1. Passing to the limit c Ñ ´1 shows that, for c “ ´1, the unique continuous solution
is given by f pxq “ 1´ x´ x2.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Akash Chaudhary, Pulchowk Cam-
pus, Kapilvastu, Nepal; Albert Stadler, Herrliberg, Switzerland and the problem proposer.

Editor’s Statement: It goes without saying that the problem proposers, as well as the solution
proposers, are the élan vital of the Problems/Solutions Section of SSMJ. As the editor of this Sec-
tion of the Journal, I consider myself fortunate to be in a position to receive, compile and organize
a wealth of proposed ingenious problems and solutions intended for online publication. My un-
wavering gratitude goes to all the amazingly creative contributors. We come together from across
continents because we find intellectual value, joy and satisfaction in mathematical problems, both
in their creation as well as their solution. So that our collective efforts serve us well, I kindly ask
all contributors to adhere to the following guidelines. As you peruse below, you may construe that
the guidelines amount to a lot of work. But, as the samples show, there’s not much to do. Your
cooperation is much appreciated!

Keep in mind that the examples given below are your best guide!

Formats, Styles and Requirements

When submitting proposed problem(s) or solution(s), please send both LaTeX document and pdf
document of your proposed problem(s) or solution(s). There are ways (discoverable from the in-
ternet) to convert from Word to proper LaTeX code. Porposals without a proper LaTeX document
will not be published regrettably.

Regarding Proposed Solutions:

Below is the FILENAME format for all the documents of your proposed solution(s).

#ProblemNumber_FirstName_LastName_Solution_SSMJ

‚ FirstName stands for YOUR first name.

‚ LastName stands for YOUR last name.
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Examples:
#1234_Max_Planck_Solution_SSMJ

#9876_Charles_Darwin_Solution_SSMJ

Please note that every problem number is preceded by the sign # .

All you have to do is copy the FILENAME format (or an example below it), paste it and then
modify portions of it to your specs.

Please adopt the following structure, in the order shown, for the presentation of your solution:

1. On top of the first page of your solution, begin with the phrase:

“Proposed Solution to #**** SSMJ”

where the string of four astrisks represents the problem number.

2. On the second line, write

“Solution proposed by [your First Name, your Last Name]”,

followed by your affiliation, city, country, all on the same linear string of words. Please see the
example below. Make sure you do the same for your collaborator(s).

3. On a new line, state the problem proposer’s name, affiliation, city and country, just as it ap-
pears published in the Problems/Solutions section.

4. On a new line below the above, write in bold type: “Statement of the Problem”.

5. Below the latter, state the problem. Please make sure the statement of your problem (unlike
the preceding item) is not in bold type.

6. Below the statement of the problem, write in bold type: “Solution of the Problem”.

7. Below the latter, show the entire solution of the problem.

Here is a sample for the above-stated format for proposed solutions:

Proposed solution to #1234 SSMJ

Solution proposed by Emmy Noether, University of Göttingen, Lower Saxony, Ger-
many.
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Problem proposed by Isaac Newton, Trinity College, Cambridge, England.

Statement of the problem:

Compute
n
ÿ

k“0

ˆ

n
k

˙

xkyn´k.

Solution of the problem: . . . . . .

Regarding Proposed Problems:

For all your proposed problems, please adopt for all documents the following FILENAME for-
mat:

FirstName_LastName_ProposedProblem_SSMJ_YourGivenNumber_ProblemTitle

If you do not have a ProblemTitle, then leave that component as it already is (i.e., ProblemTitle).

The component YourGivenNumber is any UNIQUE 3-digit (or longer) number you like to give
to your problem.

Examples:

Max_Planck_ProposedProblem_SSMJ_314_HarmonicPatterns

Charles_Darwin_ProposedProblem_SSMJ_358_ProblemTitle

Please adopt the following structure, in the order shown, for the presentation of your pro-
posal:

1. On the top of first page of your proposal, begin with the phrase:

“Problem proposed to SSMJ”

2. On the second line, write

“Problem proposed by [your First Name, your Last Name]”,

followed by your affiliation, city, country all on the same linear string of words. Please see the
example below. Make sure you do the same for your collaborator(s) if any.

3. On a new line state the title of the problem, if any.
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4. On a new line below the above, write in bold type: “Statement of the Problem”.

5. Below the latter, state the problem. Please make sure the statement of your problem (unlike
the preceding item) is not in bold type.

6. Below the statement of the problem, write in bold type: “Solution of the Problem”.

7. Below the latter, show the entire solution of your problem.

Here is a sample for the above-stated format for proposed problems:

Problem proposed to SSMJ

Problem proposed by Isaac Newton, Trinity College, Cambridge, England.

Principia Mathematica (ÐÝ You may choose to not include a title.)

Statement of the problem:

Compute
n
ÿ

k“0

ˆ

n
k

˙

xkyn´k.

Solution of the problem: . . . . . .

♣ ♣ ♣ Thank You! ♣ ♣ ♣
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