Problems

Ted Eisenberg, Section Editor

This section of the Journal offers readers an opportunity to exchange interesting mathematical problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics, Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions can be sent e-mail to eisenbt@013.net. Solutions to previously stated problems can be seen at http://www.ssma.org/publications.

Solutions to the problems stated in this issue should be posted before January 15, 2020

- 5559: Proposed by Kenneth Korbin, New York, NY

For every positive integer N there are two Pythagorean triangles with area $(N)(N+1)(2 N+1)(2 N-1)(4 N+1)\left(4 N^{2}+2 N+1\right)$. Find the sides of the triangles if $N=4$.

- 5560: Proposed by Michael Brozinsky, Central Islip, NY

Square ABCD (in clockwise order) with all sides equal to x has point E as the midpoint of side $A B$. The right triangle $E B C$ is folded along segment $E C$ so that what was previously corner B is now at point B^{\prime} which is at a distance d from side $A D$. Find d and also the distance of B^{\prime} from $A B$.

- 5561: Proposed by Pedro Pantoja, Natal/RN, Brazil

Calculate the exact value of:

$$
\cos \frac{5 \pi}{28}+\cos \frac{13 \pi}{28}-\cos \frac{17 \pi}{28}
$$

- 5562: Proposed by Daniel Sitaru, National Economic College "Theodor Costescu," Mehedinti, Romania

Prove: If $a, b, c \geq 1$, then

$$
e^{a b}+e^{b c}+e^{c a}>3+\frac{c}{a}+\frac{b}{c}+\frac{a}{b} .
$$

- 5563: Proposed by José Luis Díaz-Barrero, Barcelona Tech, Barcelona, Spain

Without the aid of a computer, find the value of

$$
\sum_{n=1}^{+\infty} \frac{15}{25 n^{2}+45 n-36}
$$

- 5564: Proposed by Ovidiu Furdui and Alina Sîntămărian, Technical University of ClujNapoca, Cluj-Napoca, Romania

Let $a>0$ and let $f:[0, a] \rightarrow \Re$ be a Riemann integrable function. Calculate

$$
\lim _{n \rightarrow \infty} \int_{0}^{a} \frac{f(x)}{1+n x^{n}} \mathrm{~d} x
$$

Solutions

5541: Proposed by Kenneth Korbin, New York, NY
A convex cyclic quadrilateral has inradius r and circumradius R. The distance from the incenter to the circumcenter is 169 . Find positive integers r and R.

Solution 1 by Ioannis D. Sfikas, National and Kapodistrian University of Athens, Greece

Fuss' theorem gives a relation between the inradius r, the circumradius R, and the distance d between the incenter I and the circumcenter O, for any bicentric quadrilateral. The relation is:

$$
\begin{equation*}
\frac{1}{(R+d)^{2}}+\frac{1}{(R-d)^{2}}=\frac{1}{r^{2}}, \tag{1}
\end{equation*}
$$

or equivalently:

$$
2 r^{2}\left(R^{2}+d^{2}\right)=\left(R^{2}-d^{2}\right)^{2} .
$$

It was derived by Nicolaus Fuss (1755-1826) in 1792. Solving for d yields:

$$
d=\sqrt{R^{2}+h^{2}-r \sqrt{4 R^{2}+h^{2}}} .
$$

Since $d=169=13^{2}$, then we may assume the relation (1) as a Diophantine equation:

$$
\frac{1}{\left(R+13^{2}\right)^{2}}+\frac{1}{\left(R-13^{2}\right)^{2}}=\frac{1}{r^{2}}
$$

with $r, R>0$ or:

$$
r^{2}=\frac{\left(R^{2}-13^{4}\right)^{2}}{2\left(R^{2}+13^{4}\right)}
$$

We may assume the Diophantine equation:

$$
2\left(R^{2}+13^{4}\right)=y^{2}
$$

and:

$$
\begin{aligned}
R & =-\frac{169}{2}\left[(\sqrt{2}+1)(3-2 \sqrt{2})^{n}-(\sqrt{2}-1)(3+2 \sqrt{2})^{n}\right] \\
R & =\frac{169}{2}\left[(\sqrt{2}+2)(3-2 \sqrt{2})^{n}-(\sqrt{2}-2)(3+2 \sqrt{2})^{n}\right]
\end{aligned}
$$

for $n \geq 1$ and $n \in N$. So, we have: $r=r(n)$ which must be an integer. By calculations, we have:

$$
r=28560 \text { and } R=40391
$$

Solution 2 by Albert Stadler, Herrliberg, Switzerland

By Fuss' theorem (https://en.wikipedia.org/wiki/Bicentric-quadrilateral),

$$
\frac{1}{(R-x)^{2}}+\frac{1}{(R+x)^{2}}=\frac{1}{r^{2}},
$$

or equivalently

$$
r=\frac{R^{2}-x^{2}}{\sqrt{2\left(R^{2}+x^{2}\right)}},
$$

where r is the inradius, R the circumradius and x the distance between the incenter and the circumcenter of the bicentric quadrilateral.
By assumption, $x=169$ and r is an integer. Therefore $\sqrt{2\left(R^{2}+x^{2}\right)}$ is a (rational) integer. We note that

$$
2 r=\frac{2 R^{2}+2 x^{2}-4^{2}}{\sqrt{2\left(R^{2}+x^{2}\right)}}=\sqrt{2\left(R^{2}+x^{2}\right)}-\frac{4 x^{2}}{\sqrt{2\left(R^{2}+x^{2}\right)}}
$$

which implies that $\sqrt{2\left(R^{2}+x^{2}\right)}$ divides $2^{2} 13^{4}$. We conclude that $2\left(R^{2}+x^{2}\right) \in$ $\{4,16,676,2704,114244,456976,19307236,77228944,3262922884,13051691536\}$.
The only feasible value for R is $R=40391$ which leads to $r=28560$.

Solution 3 by Ed Gray of Highland Beach, FL

Editor's comment: I am taking the liberty of jumping into the middle of Ed's solution. Like those above, his solution started off using Fuss' Formula, and immediately substituted $d=169$ into it. After some algebra he obtained that

$$
R^{4}-\left(2 r^{2}+57122\right) R^{2}=815730721-57122 r^{2}
$$

that he solved as a quadratic in R^{2}. Solving this he obtained that $R^{2}=r^{2}+28561 \pm r \sqrt{r^{2}+114244}$. Letting $e^{2}=r^{2}+114244$, he continued on as follows: Then $114244=2 \cdot 2 \cdot 13^{4}=e^{2}-r^{2}=(e-r)(e+r)$. The sum of the factors $e-r$ and $e+r$ is even and equals $2 e$. Therefore the factors are both even or both odd. Since their product is even, they both must be even. There are only 2 possibilities:
(i) $e-r=2$ and $e+r=2 \cdot 28561=57122$. Then $2 e=57124, e=28562$, and $r=28560$. From the equation $R^{2}=r^{2}+28561 \pm-r \sqrt{\left.r^{2}+114244\right)}$,

$$
R^{2}=815673600+28561 \pm(28560)(28562)=815702161 \pm 815730720 .
$$

Clearly the negative sign is not viable.
So $R^{2}=815702161+815730720=1631432881$ and $R=40391$. The solution pair (r, R) is $(28560,40391)$, and they satisfy Fuss' Theorem.
(ii) $e-r=2 \cdot 13=26$ and $e+r=2 \cdot\left(13^{3}\right)=4394$. Then $2 e=4420, e=2210$, and $r=2184$. From the equation $R^{2}=r^{2}+28561 \pm-r \sqrt{\left.r^{2}+114244\right)}$ we see that $R^{2}=4769856+28561 \pm(2184)(2210)$. However, in this is the case, then R^{2} will end in 7 , and so R cannot be an integer.

Also solved by Kee-Wai Lau, Hong Kong, China; David Stone and John
Hawkins, Georgia Southern University, Statesboro, GA, and the proposer.

5542: Proposed by Michel Bataille, Rouen, France
Evaluate in closed form: $\cos \frac{\pi}{13}+\cos \frac{3 \pi}{13}-\cos \frac{4 \pi}{13}$.
(Closed form means that the answer should not be expressed as a decimal equivalent.)

Solution 1 by David E. Manes, Oneonta, NY

We will show that $\cos \frac{\pi}{13}+\cos \frac{3 \pi}{13}-\cos \frac{4 \pi}{13}=\sqrt{\frac{7+\sqrt{13}}{8}}=\frac{1+\sqrt{13}}{4}$. To do so, we assume the following identities:

$$
\begin{gathered}
\cos ^{2}\left(\frac{\pi}{13}\right)+\cos ^{2}\left(\frac{3 \pi}{13}\right)+\cos ^{2}\left(\frac{4 \pi}{13}\right)=\frac{11+\sqrt{13}}{8} \\
\sum_{k=1}^{n} \cos \left(\frac{2 k \pi}{2 n+1}\right)=\cos \left(\frac{2 \pi}{2 n+1}\right)+\cos \left(\frac{4 \pi}{2 n+1}\right)+\cdots+\cos \left(\frac{2 n \pi}{2 n+1}\right)=-\frac{1}{2},
\end{gathered}
$$

where n is a positive integer. Let $C=\cos \frac{\pi}{13}+\cos \frac{3 \pi}{13}-\cos \frac{4 \pi}{13}$. Then

$$
\begin{aligned}
C^{2} & =\cos ^{2}\left(\frac{\pi}{13}\right)+\cos ^{2}\left(\frac{3 \pi}{13}\right)+\cos ^{2}\left(\frac{4 \pi}{13}\right)+2 \cos \frac{\pi}{13} \cos \frac{3 \pi}{13}-2 \cos \frac{\pi}{13} \cos \frac{4 \pi}{13}-2 \cos \frac{3 \pi}{13} \cos \frac{4 \pi}{13} \\
& =\frac{11+\sqrt{13}}{8}+2 \cos \frac{\pi}{13} \cos \frac{3 \pi}{13}-2 \cos \frac{\pi}{13} \cos \frac{4 \pi}{13}-2 \cos \frac{3 \pi}{13} \cos \frac{4 \pi}{13} .
\end{aligned}
$$

By the product-to-sum formulas, one finds

$$
\begin{aligned}
2 \cos \frac{\pi}{13} \cos \frac{3 \pi}{13} & =\cos \frac{4 \pi}{13}+\cos \frac{2 \pi}{13} \\
-2 \cos \frac{\pi}{13} \cos \frac{4 \pi}{13} & =-\cos \frac{5 \pi}{13}-\cos \frac{3 \pi}{13} \\
-2 \cos \frac{3 \pi}{13} \cos \frac{4 \pi}{13} & =-\cos \frac{7 \pi}{13}-\cos \frac{\pi}{13} .
\end{aligned}
$$

Using the addition formula for $\cos (\pi-x)=-\cos x$, we get

$$
\begin{aligned}
& -\cos \frac{5 \pi}{13}=\cos \left(\pi-\frac{5 \pi}{13}\right)=\cos \frac{8 \pi}{13},-\cos \frac{3 \pi}{13}=\cos \frac{10 \pi}{13} \\
& -\cos \frac{7 \pi}{13}=\cos \left(\pi-\frac{7 \pi}{13}\right)=\cos \frac{6 \pi}{13},-\cos \frac{\pi}{13}=\cos \frac{12 \pi}{13}
\end{aligned}
$$

Therefore, rearranging the terms, one obtains,

$$
2 \cos \frac{\pi}{13} \cos \frac{3 \pi}{13}-2 \cos \frac{\pi}{13} \cos \frac{4 \pi}{13}-2 \cos \frac{3 \pi}{13} \cos \frac{4 \pi}{13}=\sum_{k=1}^{6} \cos \left(\frac{2 k \pi}{13}\right)=-\frac{1}{2}
$$

Therefore,

$$
C^{2}=\frac{11+\sqrt{13}}{8}-\frac{1}{2}=\frac{7+\sqrt{13}}{8}, \text { whence } C=\sqrt{\frac{7+\sqrt{13}}{8}} .
$$

Note that $\sqrt{\frac{7+\sqrt{13}}{8}}=\frac{1+\sqrt{13}}{4}$ since $\left(\frac{1+\sqrt{13}}{4}\right)^{2}=\frac{7+\sqrt{13}}{8}$.

Solution 2 by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain

Let $x=\cos \frac{\pi}{13}+\cos \frac{3 \pi}{13}-\cos \frac{4 \pi}{13}, \theta=\frac{\pi}{13}$ and $c=\cos \theta$. If $c_{k}=\cos k \theta$, then $c_{2 k}=2 c_{k}^{2}-1,2 c_{p} c_{q}=c_{p+q}+c_{p-q}$, and $c_{13+k}=c_{13-k}$. Notice that $x>0$. Therefore

$$
\begin{aligned}
x^{2} & =c_{1}^{2}+c_{3}^{2}+c_{4}^{2}+2 c_{1} c_{3}-2 c_{1} c_{4}-2 c_{3} c_{4} \\
& =\frac{c_{2}+1}{2}+\frac{c_{6}+1}{2}+\frac{c_{8}+1}{2}+c_{4}+c_{2}-c_{5}-c_{3}-c_{7}-c_{1}, \\
x^{2}+x & =\frac{1}{2}\left(3+3 c_{2}-2 c_{5}+c_{6}-2 c_{7}+c_{8}\right) \\
& =\frac{1}{2}\left(3+3 c_{2}+3 c_{6}+3 c_{8}\right) .
\end{aligned}
$$

Now, if $y=c_{2}+c_{6}+c_{8}$, then

$$
\begin{aligned}
y^{2} & =\frac{c_{4}+1}{2}+\frac{c_{12}+1}{2}+\frac{c_{16}+1}{2}+c_{8}+c_{4}+c_{10}+c_{6}+c_{14}+c_{2} \\
2 y^{2} & =3 c_{4}+3 c_{10}+3 c_{12}+2 y+3 \\
2 y^{2} & =3\left(c_{4}+c_{10}+c_{12}\right)+2 y+3 .
\end{aligned}
$$

Now, since $c_{2}+c_{4}+c_{6}+c_{8}+c_{10}+c_{10}+c_{12}=-\frac{1}{2}$ because
$c_{2}+c_{4}+c_{6}+c_{8}+c_{10}+c_{10}+c_{12}=\Re\left(\sum_{k=1}^{6} e^{(2 k \pi i) / 13}\right)$ and applying the sum of a geometric series, we get $-\frac{1}{2}$. Then, $c_{4}+c_{10}+c_{12}=-\frac{1}{2}-\left(c_{2}+c_{6}+c_{8}\right)=-\frac{1}{2}-y$ and so, $2 y^{2}=3\left(-\frac{1}{2}-y\right)+2 y+3$ from where, since $y>0, y=\frac{-1+\sqrt{13}}{4}$.
Finally, by solving $x^{2}+x=\frac{1}{2}(3+3 y)$ and, since $x>0$ it is obtained $x=\frac{1+\sqrt{13}}{4}$.

Solution 3 by Andrea Fanchini, Cantú, Italy

Let p be an odd prime number. Then we know that

$$
g_{p}=\sum_{k=0}^{p-1} \exp \left(2 \pi k^{2} / p\right)
$$

is a quadratic Gaussian sum, where $g_{p}=\sqrt{p}$ or $i \sqrt{p}$ according to whether $p \equiv 1$ or $p \equiv 3$ $(\bmod 4)$. So $g_{13}=\sqrt{13}$. Therefore,

$$
\begin{aligned}
\sqrt{13}=1+e^{2 \pi i / 13} & +e^{8 \pi i / 13}+e^{-8 \pi i / 13}+e^{6 \pi i / 13}+e^{-2 \pi i / 13}+e^{-6 \pi i / 13} \\
& +e^{-6 \pi i / 13}+e^{-2 \pi i / 13}+e^{6 \pi i / 13}+e^{-8 \pi i / 13}+e^{8 \pi i / 13}+e^{2 \pi i / 13}
\end{aligned}
$$

Recalling that $e^{i x}+e^{-i x}=2 \cos x$ we then have:

$$
\begin{equation*}
\cos \frac{2 \pi}{13}+\cos \frac{6 \pi}{13}+\cos \frac{8 \pi}{13}=\frac{\sqrt{13}-1}{4}, \tag{1}
\end{equation*}
$$

Now we consider the sum of cosines with arguments in arithmetic progression.

$$
\sum_{k=0}^{n-1} \cos (a+k d)=\frac{\sin (n d / 2)}{\sin (d / 2)} \cos \left(a+\frac{(n-1) d}{2}\right)
$$

where $a, d \in R, d \neq 0$, and that n is a positive integer.
In our case, we set $a=d=\frac{2 \pi}{13}$ and $n=6$, then

$$
\begin{aligned}
\cos \frac{2 \pi}{13}+\cos \frac{4 \pi}{13}+\cos \frac{6 \pi}{13}+\cos \frac{8 \pi}{13}+\cos \frac{10 \pi}{13}+\cos \frac{12 \pi}{13} & =\frac{\sin \frac{6 \pi}{13} \cos \frac{7 \pi}{13}}{\sin \frac{\pi}{13}} \\
& =\frac{-2 \sin \frac{6 \pi}{13} \cos \frac{6 \pi}{13}}{2 \sin \frac{\pi}{13}} \\
& =-\frac{\sin \frac{12 \pi}{13}}{2 \sin \frac{\pi}{13}} \\
& =-\frac{\sin \frac{\pi}{13}}{2 \sin \frac{\pi}{13}} \\
& =-\frac{1}{2}
\end{aligned}
$$

Substituting the sum in (1) into this last expression we obtain;

$$
\cos \frac{4 \pi}{13}+\cos \frac{10 \pi}{13}+\cos \frac{12 \pi}{13}=-\frac{1}{2}-\frac{\sqrt{13}-1}{4}=-\frac{\sqrt{13}+1}{4}
$$

So finally we have:

$$
-\cos \frac{12 \pi}{13}-\cos \frac{10 \pi}{13}-\cos \frac{4 \pi}{13}=\cos \frac{\pi}{13}+\cos \frac{3 \pi}{13}-\cos \frac{4 \pi}{13}=\frac{\sqrt{13}+1}{4}
$$

Solution 4 by Kee-Wai Lau, Hong Kong, China

We show that

$$
\begin{equation*}
\cos \frac{\pi}{13}+\cos \frac{3 \pi}{13}-\cos \frac{3 \pi}{13}=\frac{1+\sqrt{13}}{4} \tag{1}
\end{equation*}
$$

Denote the left side of (1) by x, which is clearly positive. So (1) will follow from

$$
\begin{equation*}
4 x^{2}-2 x-3=0 \tag{2}
\end{equation*}
$$

Let $\theta=\frac{\pi}{13}$ and $i=\sqrt{-1}$. Since $\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2}, \cos ^{2} 3 \theta=\frac{1+\cos 6 \theta}{2}$, $\cos ^{2} 4 \theta=\frac{1-\cos 5 \theta}{2}, \quad 2 \cos \theta \cos 3 \theta=\cos 2 \theta+\cos 4 \theta, \quad 2 \cos \theta \cos 4 \theta=\cos 3 \theta+\cos 5 \theta$, and $2 \cos 3 \theta \cos 4 \theta=\cos \theta-\cos 6 \theta$, so

$$
\begin{gathered}
4 x^{2}-2 x-3=3+6 \sum_{k=1}^{6}(-1)^{k} \cos (k \theta)=3 \sum_{k=0}^{12}(-1)^{k} \cos (k \theta) \\
=3 R e \sum_{k=0}^{12}(-1)^{k} e^{i k \theta}=3 R e\left(\frac{1+e^{13 i \theta}}{1+e^{i \theta}}\right)=0
\end{gathered}
$$

This proves (2) and completes the solution.

Solution 5 by Brian D. Beasley, Presbyterian College, Clinton, SC

We show that the given expression equals $\frac{1+\sqrt{13}}{4}$.
Let $a=\cos (\pi / 13), b=\cos (3 \pi / 13)$, and $c=\cos (4 \pi / 13)$. Using the multiple-angle formulas for cosine, we have $b=4 a^{3}-3 a$ and $c=8 a^{4}-8 a^{2}+1$. Then $a+b-c=(1+\sqrt{13}) / 4$ if and only if

$$
\left[4\left(-8 a^{4}+4 a^{3}+8 a^{2}-2 a-1\right)-1\right]^{2}=13
$$

This in turn holds if and only if $f(a)\left(16 a^{2}-8 a-12\right)=0$, where

$$
f(x)=64 x^{6}-32 x^{5}-80 x^{4}+32 x^{3}+24 x^{2}-6 x-1 .
$$

Using another multiple-angle formula for cosine, namely $\cos (13 \theta)=4096 r^{13}-13312 r^{11}+16640 r^{9}-9984 r^{7}+2912 r^{5}-364 r^{3}+13 r=(r+1)[f(r)]^{2}-1$ with $r=\cos \theta$, we have

$$
(a+1)[f(a)]^{2}=0 .
$$

Since $a \neq-1$, we conclude $f(a)=0$, completing the proof.
Also solved by Brian Bradie, Christopher Newport University, Newport News,VA; Ed Gray, Highland Beach, FL; Ioannis D. Sfikas, National and Kapodistrian University of Athens, Greece; Albert Stadler, Herrliberg, Switzerland, and the proposer.

5543: Proposed by Titu Zvonaru, Comănesti, Romania
Let $A B D C$ be a convex quadrilateral such that $\angle A B C=\angle B C A=25^{\circ}, \angle C B D=\angle A D C=45^{\circ}$. Compute the value of $\angle D A C$. (Note the order of the vertices.)

Solution 1 by David A. Huckaby, Angelo State University, San Angelo, TX

From the given facts $\angle A B C=\angle B C A=25^{\circ}$ and $\angle C B D=45^{\circ}$, we know that $\angle C A B=130^{\circ}$ and that D lies on the ray emanating from point B at a 45° angle from $B C$, as shown in the figure below.

From the additional given fact $\angle A D C=45^{\circ}$, by inspection one solution is the kite shown in the figure below, in which $\angle D A C=65^{\circ}$.

It is clear that if D is farther from B (on the ray emanating from point B at a 45° angle from $B C$), then $\angle A D C<45^{\circ}$, and that as D moves closer to B that $\angle A D C>45^{\circ}$ and increases, reaches a maximum, and then decreases to approach $\angle A B C=25^{\circ}$ as D approaches B. This implies that there is one more location for point D such that $\angle A D C=45^{\circ}$.

To find it, let us place the points on a coordinate grid. See the figure below.

Consider $\angle A D C=45^{\circ}$ to be an inscribed angle of the circle passing through the points A, C, and the first location for D, namely $\left(\frac{1}{2}, \frac{1}{2}\right)$. The other point where this circle intersects the line $y=x$ is the second location for D.

If the circle has center (h, k) and radius r, we have $(0-h)^{2}+(1-k)^{2}=\left(\frac{1}{2}-h\right)^{2}+\left(1+\frac{1}{2} \tan 25^{\circ}-k\right)^{2}=\left(\frac{1}{2}-h\right)^{2}+\left(\frac{1}{2}-k\right)^{2}$. The second equation gives $1+\frac{1}{2} \tan 25^{\circ}-k=k-\frac{1}{2}$, whence $k=\frac{1}{4}\left(3+\tan 25^{\circ}\right)$. Using this value for k in the first equation gives
$(0-h)^{2}+\left(1-\frac{1}{4}\left[3+\tan 25^{\circ}\right]\right)^{2}=\left(\frac{1}{2}-h\right)^{2}+\left(1+\frac{1}{2} \tan 25^{\circ}-\frac{1}{4}\left[3+\tan 25^{\circ}\right]\right)^{2}$. Expanding terms and solving for h yields $h=\frac{1}{4}\left(1+\tan 25^{\circ}\right)$.

To find r^{2}, we substitute the point $C(0,1)$ into the equation of the circle
$\left(x-\frac{1}{4}\left[1+\tan 25^{\circ}\right]\right)^{2}+\left(y-\frac{1}{4}\left[3+\tan 25^{\circ}\right]\right)^{2}=r^{2}$. Doing this and expanding terms yields $r^{2}=\frac{1}{8}\left(1+\tan ^{2} 25^{\circ}\right)$. So the equation of the circle is
$\left(x-\frac{1}{4}\left[1+\tan 25^{\circ}\right]\right)^{2}+\left(y-\frac{1}{4}\left[3+\tan 25^{\circ}\right]\right)^{2}=\frac{1}{8}\left(1+\tan ^{2} 25^{\circ}\right)$.
The circle intersects the line $y=x$ when $\left(x-\frac{1}{4}\left[1+\tan 25^{\circ}\right]\right)^{2}+\left(x-\frac{1}{4}\left[3+\tan 25^{\circ}\right]\right)^{2}=\frac{1}{8}\left(1+\tan ^{2} 25^{\circ}\right)$. Expanding this yields the quadratic equation $2 x^{2}-\left(2+\tan 25^{\circ}\right) x+\frac{1}{2}\left(1+\tan ^{\circ}\right)=0$. The quadratic formula yields the two solutions $x=\frac{1}{2}$, which we already know, and $x=\frac{1}{2}\left(1+\tan 25^{\circ}\right)$.

Referring to the figure below, we see that
$\tan \angle A D E=\frac{A E}{D E}=\frac{\frac{1}{2}\left(1+\tan 25^{\circ}\right)-\frac{1}{2}}{1+\frac{1}{2} \tan 25^{\circ}-\frac{1}{2}\left(1+\tan 25^{\circ}\right)}=\tan 25^{\circ}$ so that $\angle A D E=25^{\circ}$. So $\angle A D B=25^{\circ}+45^{\circ}=70^{\circ}$, whence $\angle D A B=180^{\circ}-70^{\circ}-70^{\circ}=40^{\circ}$, so that $\angle D A C=130^{\circ}-40^{\circ}=90^{\circ}$.

So the two possible values of $\angle D A C$ are 65° and 90°.

Solution 2 by Ioannis D. Sfikas, National and Kapodistrian University of Athens, Greece

The triangle $A B C$ is isosceles and $B C D$ is right isosceles, making $A D$ the angle bisector of $\angle B A C$. So $\angle D C A=65^{\circ}$. Furthermore, there are two possible answers since there are two positions for D.

Let F lie on $B D$, such that $C F$ and $B D$ are perpendicular. Let the circumcircle of $A C F$ intersect $B D$ at E. Now, $\angle E A C=90^{\circ}$, or $\angle B A E=40^{\circ}$, or $\angle A E B=\angle A B E$. So, $A B=A E$. But $A B=A C$. So, $A E=A C$ and $\angle \mathrm{AEC}=\angle \mathrm{AFC}=45^{\circ}$. So, E and F both satisfy the conditions imposed on D and in each case, we have $\angle D A C=90^{\circ}, 65^{\circ}$, respectively (as $\mathrm{D}=\mathrm{E}, \mathrm{F}$).

Solution 3 by Ed Gray, Highland Beach, FL

From the information given, triangle $A B C$ is isosceles, with $A B=A C$. To enhance the lucidity of the calculations, we assign the value of 2.0 to each of these sides. We define $\angle D A C=x, \angle B A D=a, \angle B C D=c$, and $\angle B D A=b$.
(1) In triangle $A B C$, by the Law of Sines, $\frac{B C}{\sin \left(130^{\circ}\right)}=\frac{2}{\sin (c)} ; B C=3.625231148$
(2) In triangle $C B D, c+45^{\circ}+b+45^{\circ}=180^{\circ}$, so $b+c=90^{\circ}$.
(3) In triangle $C B D$, by the Law of Sines, $\frac{B C}{\sin \left(b+45^{\circ}\right)}=\frac{B D}{\sin (c)}$, or
(4) $\frac{B C}{\sin \left(b+45^{\circ}\right)}=\frac{B D}{\cos (b)}$.
(5) In triangle $A B D, \frac{B D}{\sin (a)}=\frac{2}{\sin (b)}, B D=\frac{2 \sin (a)}{\sin (b)}$
(6) In triangle $A B D, a+70^{\circ}+b=180^{\circ}, a+b=110^{\circ}, a=110^{\circ}-b$.

From Equation (4),
(7) $\frac{B C}{\sin \left(b+45^{\circ}\right)}=\frac{2 \cdot \sin (a)}{\sin (b) \cdot \cos (b)}$,
(8) $\frac{B C}{\sin \left(b+45^{\circ}\right)}=\frac{2 \cdot \sin \left(110^{\circ}-b\right)}{\sin (b) \cdot \cos (b)}$

Substituting $B C$ from Equation (1), we have a trigonometric equation for b.
(9) $1.812615574 \cdot \sin (b) \cdot \cos (b)=$
$\left[\sin \left(110^{\circ}\right) \cdot \cos (b)-\cos \left(110^{\circ}\right) \cdot \sin (b)\right] \cdot\left[\sin (b) \cdot \cos \left(45^{\circ}\right)+\cos (b) \cdot \sin \left(45^{\circ}\right)\right]$.
Since $\cos \left(45^{\circ}\right)=\sin \left(45^{\circ}\right)=\frac{\sqrt{2}}{2}$, we divide both sides by 0.707106781
(10) $2.563425529 \cdot \sin (b) \cdot \cos (b)=$
$\sin (110) \cdot \sin (b) \cdot \cos (b)+\sin \left(110^{\circ}\right) \cdot \cos ^{2}(b)-\cos \left(110^{\circ}\right) \cdot \sin ^{2}(b)-\cos \left(110^{\circ}\right) \cdot \sin (b) \cdot \cos (b)$
(11) $2.563425529 \cdot \sin (b) \cdot \cos (b)=0.939692621 \cdot \sin (b) \cdot \cos (b)+0.939692621 \cdot \cos ^{2}(b)+$ $0.342020143 \cdot \sin ^{2}(b)+0.342020143 \cdot \sin (b) \cdot \cos (b)$
(12) $1.281712765 \cdot \sin (b) \cdot \cos (b)=0.342020143 \cdot \sin ^{2}(b)+0.939692621 \cdot \cos ^{2}(b)$.

Squaring,
(13) $1.6427876 \cdot \sin ^{2}(b) \cdot \cos ^{2}(b)=$
$0.116977778 \cdot \sin ^{4}(b)+0.642787609 \cdot \sin ^{2}(b) \cdot \cos ^{2}(b)+0.8883022222 \cdot \cos ^{4}(b)$,
(14) $\cos ^{2}(b)=1-\sin ^{2}(b)$
(15) $\cos ^{4}(b)=1-2 \cdot \sin ^{2}(b)+\sin ^{4}(b)$
(16) $0.116977778 \cdot \sin ^{4}(b)-\sin ^{2}(b) \cdot \cos ^{2}(b)+0.883022222\left(1-2 \cdot \sin ^{2}(b)+\sin ^{4}(b)\right)=0$
(17) $0.116977778 \cdot \sin ^{4}(b)-\sin ^{2}(b)\left(1-\sin ^{2}(b)\right)+0.883022222-1.766044444 \cdot \sin ^{2}(b)+$ $0.883022222 \cdot \sin ^{4}(b)=0$
(18) $2 \cdot \sin ^{4}(b)-2.766044444 \cdot \sin ^{2}(b)+0.883022222=0$

This is a quadratic equation in $\sin ^{2}(b)$, with solutions:
$(\mathbf{1 9}) 4 \cdot \sin ^{2}(b)=2.766044444 \pm \sqrt{7.651001866-7.064177776)}$, or
$(20) 4 \cdot \sin ^{2}(b)=2.766044444 \pm 7.66044444$
(21) So $\sin ^{2}\left(b_{1}\right)=\frac{2}{4}, \sin \left(b_{1}\right)=0.707106781, b_{1}=45^{\circ}$.
$(22) \sin ^{2}\left(b_{2}\right)=\frac{3.532088888}{4}=0.883022222, \sin \left(b_{2}\right)=0.939692621, b_{2}=70^{\circ}$.
When $b=45^{\circ}, a=65^{\circ}, x=65^{\circ}$.
When $b=70^{\circ}, a=40^{\circ}, x=90^{\circ}$.
Editor's comment: The following remark followed this solution: "I must admit having 2 answers is a surprise,..., however both solutions satisfy Equation (12), which is a good sign, because that is the fundamental equation and no extraneous root was introduced by squaring."

Solution 4 by Michel Bataille, Rouen, France

We consider $\triangle A B C$, which we suppose positively oriented, and let M be the midpoint of $B C$ (see figure). Since $\angle A B C=\angle B C A, A M$ is the perpendicular bisector of $B C$.

First, let D_{1} be the image of B under the rotation with centre M and angle $+90^{\circ}$. Then, $A B D_{1} C$ is a convex quadrilateral and $\angle C B D_{1}=\angle A D_{1} C=45^{\circ}$.
Second, let D_{2} on $B D_{1}$ be such that $\angle C A D_{2}=90^{\circ}$. Since $\angle B A C=130^{\circ}$, we have $\angle B A D_{2}=40^{\circ}$. Also, $\angle A B D_{2}=25^{\circ}+45^{\circ}=70^{\circ}$ and so
$\angle A D_{2} B=180^{\circ}-40^{\circ}-70^{\circ}=70^{\circ}=\angle A B D_{2}$. It follows that $A D_{2}=A B=A C$ and the triangle $C A D_{2}$ is right-angled at A and isosceles. As a result the quadrilateral $A B D_{2} C$ is convex with $\angle A D_{2} C=45^{\circ}=\angle C B D_{2}$.

Thus, we have found two candidates D_{1}, D_{2} for the vertex D. There cannot be more: indeed, because of the convexity of $A B D C, D$ must be on the ray $B D_{1}$ (to ensure that $\angle C B D=45^{\circ}$) and on the arc of circle, locus of the points P such that $\angle(\overrightarrow{P C}, \overrightarrow{P A})=+45^{\circ}$ (to ensure that $\angle A D C=45^{\circ}$). We conclude that the answer to the problem is twofold: if $D=D_{1}$, then $\angle D A C=\frac{1}{2} \angle B A C=65^{\circ}$; if $D=D_{2}$, then $\angle D A C=90^{\circ}$.

Also solved by Andrea Fanchini, Cantú, Italy; Kee-Wai Lau, Hong Kong, China; Raquel Rosado, Hallie Kaiser, Mitch DeJong, and Caleb Edington, students at Taylor University, Upland, IN; David Stone and John Hawkins, Georgia Southern University, Statesboro, GA, and the proposer.

5544: Proposed by Seyran Brahimov, Baku State University, Masalli, Azerbaijan
Solve in \Re :

$$
\left\{\begin{array}{l}
\tan ^{-1} x=\tan y+\tan z \\
\tan ^{-1} y=\tan x+\tan z \\
\tan ^{-1} z=\tan x+\tan y
\end{array}\right.
$$

Solution by Ioannis D. Sfikas, National and Kapodistrian University of Athens, Greece

Adding the equations we have:

$$
\sum_{c y c}\left(2 \tan x-\tan ^{-1} x\right)=0 .
$$

Let $f(x)=\left|2 \tan x-\tan ^{-1} x\right|$, for ever $\left\{x \in \Re: k \pi-\frac{\pi}{2}<x<k \pi+\frac{\pi}{2}\right.$ and $\left.k \in Z\right\}$.

Then $f^{\prime}(x)=\frac{2}{\cos ^{2} x}-\frac{1}{x^{2}+1}>0$ for every $x \in \Re$. So, $f(x)$ is an increasing monotonic function and $f(x) \geq f(0)=0$, since equality holds if $x=0$.

Similarly, $f(y) \geq f(0)=0$ and $f(z) \geq f(0)=0$, since equality holds if $y=z=0$.
Then, the only real solution is $x=y=z=0$.

Also solved by Ed Gray, Highland Beach, FL and the proposer.

5545: Proposed by José Luis Díaz-Barrero, Barcelona Tech, Barcelona, Spain
Let p, q be two twin primes. Show that

$$
1+4\left(\sum_{j=1}^{\frac{p-1}{2}}\left\lfloor\frac{j q}{p}\right\rfloor+\sum_{k=1}^{\frac{q-1}{2}}\left\lfloor\frac{k p}{q}\right\rfloor\right)
$$

is a perfect square and determine it. (Here $\lfloor x\rfloor$ represents the integer part of x).

Solution 1 by Albert Stadler, Herrliberg, Switzerland

The integers p and q are odd (since they are twin primes) and so their difference is two. Let $x=(p+q) / 2$. Then $\min (p, q)=x-1, \max (p, q)=x+1$.
We consider the rectangle R with vertices $A(0,0), B(p / 2,0), C(p / 2, q / 2), D(0, q / 2)$ in the Euclidean plane. The number of lattice points that are strictly inside R equals

$$
L=\frac{p-1}{2} \cdot \frac{q-1}{2} .
$$

There are no lattice points on the diagonal $A C$, since p and q are relatively prime.
Clearly L equals the number of lattice points strictly inside the triangle $A B C$ plus the number of lattice points strictly inside the triangle $C D A$. Therefore

$$
L=\sum_{j=1}^{\frac{p-1}{2}}\left\lfloor\frac{j q}{p}\right\rfloor+\sum_{k=1}^{\frac{q-1}{2}}\left\lfloor\frac{k q}{p}\right\rfloor .
$$

We conclude that

$$
\begin{aligned}
1+4\left(\sum_{j=1}^{\frac{p-1}{2}}\left\lfloor\frac{j q}{p}\right\rfloor+\sum_{k=1}^{\frac{q-1}{2}}\left\lfloor\frac{k q}{p}\right\rfloor\right) & =1+4 L=1+(p-1)(q-1)=1+(x-2) x=(x-1)^{2}= \\
& =(\min (p, q))^{2} .
\end{aligned}
$$

Solution 2 by Charles Diminnie and Simon Pfeil, Angelo State University, San Angelo, TX

We will assume only that p is odd, $p \geq 3$, and $q=p+2$. It is unnecessary to restrict p and/or q to be prime. To begin, if $j=1,2, \ldots, \frac{p-1}{2}$, then

$$
\begin{aligned}
j & <\frac{j q}{p} \\
& =\frac{j(p+2)}{p} \\
& =j+\frac{2 j}{p} \\
& \leq j+\left(\frac{2}{p}\right)\left(\frac{p-1}{2}\right) \\
& =j+\frac{p-1}{p} \\
& <j+1 .
\end{aligned}
$$

Hence, $\left\lfloor\frac{j q}{p}\right\rfloor=j$ for $j=1,2, \ldots, \frac{p-1}{2}$.
Further, for $k=1,2, \ldots, \frac{q-1}{2}$,

$$
\begin{aligned}
k & >\frac{k p}{q} \\
& =\frac{k(q-2)}{q} \\
& =k-\frac{2 k}{q} \\
& \geq k-\left(\frac{2}{q}\right)\left(\frac{q-1}{2}\right) \\
& =k-\frac{q-1}{q} \\
& >k-1
\end{aligned}
$$

Therefore, $\left\lfloor\frac{k p}{q}\right\rfloor=k-1$ for $k=1,2, \ldots, \frac{q-1}{2}=\frac{p+1}{2}$.
Using the known result that

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}
$$

for $n \geq 1$, we obtain

$$
\begin{aligned}
\sum_{j=1}^{\frac{p-1}{2}}\left\lfloor\frac{j q}{p}\right\rfloor & =\sum_{j=1}^{\frac{p-1}{2}} j \\
& =\left(\frac{1}{2}\right)\left(\frac{p-1}{2}\right)\left(\frac{p+1}{2}\right) \\
& =\frac{p^{2}-1}{8}
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{k=1}^{\frac{q-1}{2}}\left\lfloor\frac{k p}{q}\right\rfloor & =\sum_{k=1}^{\frac{p+1}{2}}(k-1) \\
& =\sum_{k=2}^{\frac{p+1}{2}}(k-1) \\
& =\sum_{i=1}^{\frac{p-1}{2}} i \\
& =\frac{p^{2}-1}{8},
\end{aligned}
$$

(substituting $i=k-1$ in the last sum.)
As a result,

$$
\begin{aligned}
& 1+4\left(\sum_{j=1}^{\frac{p-1}{2}}\left\lfloor\frac{j q}{p}\right\rfloor+\sum_{k=1}^{\frac{q-1}{2}}\left\lfloor\frac{k p}{q}\right\rfloor\right) \\
& =1+4\left(\frac{p^{2}-1}{8}+\frac{p^{2}-1}{8}\right) \\
& =1+\left(p^{2}-1\right) \\
& =p^{2} .
\end{aligned}
$$

Solution 3 by Anthony J. Bevelacqua, University of North Dakota, Grand Forks, ND

For any relatively prime odd integers $p, q \geq 3$ we have

$$
\left(\sum_{j=1}^{\frac{p-1}{2}}\left\lfloor\frac{j q}{p}\right\rfloor+\sum_{k=1}^{\frac{q-1}{2}}\left\lfloor\frac{k p}{q}\right\rfloor\right)=\frac{p-1}{2} \cdot \frac{q-1}{2}
$$

by, for example, Theorem 86 of Nagell's Number Theory. (The proof is standard and elementary: Consider the set of integer points (j, k) with $1 \leq j \leq(p-1) / 2$ and $1 \leq k \leq(q-1) / 2$. There are $\frac{p-1}{2} \frac{q-1}{2}$ such points. None of these are on the line $p y=q x$.
 $\sum_{k=1}^{\frac{q-1}{2}}\left\lfloor\frac{k p}{q}\right\rfloor$.)
Now suppose p and q are twin primes with $p<q$. Then p and q are relatively prime odd integers ≥ 3 with $q=p+2$. So

$$
\begin{aligned}
1+4\left(\sum_{j=1}^{\frac{p-1}{2}}\left\lfloor\frac{j q}{p}\right\rfloor+\sum_{k=1}^{\frac{q-1}{2}}\left\lfloor\frac{k p}{q}\right\rfloor\right) & =1+4 \cdot \frac{p-1}{2} \cdot \frac{q-1}{2} \\
& =1+4 \cdot \frac{p-1}{2} \cdot \frac{p+1}{2} \\
& =p^{2} .
\end{aligned}
$$

(Note that we only need p and q to be consecutive odd integers ≥ 3 in this argument.)
Solution 4 by Brian Bradie, Christopher Newport University, Newport News,VA

Without loss of generality, suppose p is the smaller of the two primes. Then $p \geq 3$, and $p+2=q$. Therefore,

$$
\begin{aligned}
\sum_{j=1}^{\frac{p-1}{2}}\left\lfloor\frac{j q}{p}\right\rfloor & =\sum_{j=1}^{\frac{p-1}{2}}\left\lfloor j\left(1+\frac{2}{p}\right)\right\rfloor=\sum_{j=1}^{\frac{p-1}{2}} j \\
& =\frac{\frac{p-1}{2} \cdot \frac{p+1}{2}}{2}=\frac{p^{2}-1}{8} \\
\sum_{k=1}^{\frac{q-1}{2}}\left\lfloor\frac{k p}{q}\right\rfloor & =\sum_{k=1}^{\frac{q-1}{2}}\left\lfloor k\left(1-\frac{2}{q}\right)\right\rfloor=\sum_{k=1}^{\frac{q-1}{2}}(k-1) \\
& =\frac{\frac{q-3}{2} \cdot \frac{q-1}{2}}{2}=\frac{\frac{p-1}{2} \cdot \frac{p+1}{2}}{2}=\frac{p^{2}-1}{8}
\end{aligned}
$$

and

$$
\begin{aligned}
1+4\left(\sum_{j=1}^{\frac{p-1}{2}}\left\lfloor\frac{j q}{p}\right\rfloor+\sum_{k=1}^{\frac{q-1}{2}}\left\lfloor\frac{k p}{q}\right\rfloor\right) & =1+4\left(\frac{p^{2}-1}{8}+\frac{p^{2}-1}{8}\right) \\
& =p^{2}
\end{aligned}
$$

Solution 5 by Moti Levy, Rehovot, Israel

Without loss of generality, suppose p is the smaller of the two primes. Then $p \geq 3$, and $p+2=q$. Therefore,

$$
\begin{aligned}
\sum_{j=1}^{\frac{p-1}{2}}\left\lfloor\frac{j q}{p}\right\rfloor & =\sum_{j=1}^{\frac{p-1}{2}}\left\lfloor j\left(1+\frac{2}{p}\right)\right\rfloor=\sum_{j=1}^{\frac{p-1}{2}} j \\
& =\frac{\frac{p-1}{2} \cdot \frac{p+1}{2}}{2}=\frac{p^{2}-1}{8} \\
\sum_{k=1}^{\frac{q-1}{2}}\left\lfloor\frac{k p}{q}\right\rfloor & =\sum_{k=1}^{\frac{q-1}{2}}\left\lfloor k\left(1-\frac{2}{q}\right)\right\rfloor=\sum_{k=1}^{\frac{q-1}{2}}(k-1) \\
& =\frac{\frac{q-3}{2} \cdot \frac{q-1}{2}}{2}=\frac{\frac{p-1}{2} \cdot \frac{p+1}{2}}{2}=\frac{p^{2}-1}{8},
\end{aligned}
$$

and

$$
\begin{aligned}
1+4\left(\sum_{j=1}^{\frac{p-1}{2}}\left\lfloor\frac{j q}{p}\right\rfloor+\sum_{k=1}^{\frac{q-1}{2}}\left\lfloor\frac{k p}{q}\right\rfloor\right) & =1+4\left(\frac{p^{2}-1}{8}+\frac{p^{2}-1}{8}\right) \\
& =p^{2}
\end{aligned}
$$

Solution 6 by Ulrich Abel, Technische Hochschule Mittelhessen, Germany
We show the slightly more general formula

$$
1+4\left(\sum_{j=1}^{(n-1) / 2}\left\lfloor j \frac{n+2}{n}\right\rfloor+\sum_{k=1}^{(n+1) / 2}\left\lfloor k \frac{n}{n+2}\right\rfloor\right)=n^{2} \quad(n=3,5,7,9, \ldots)
$$

Proof: Let $n \geq 3$ be an odd integer. Since $j<j \frac{n+2}{n}=j+\frac{2 j}{n}<j+1$, for $1 \leq j \leq(n-1) / 2$, and $k-1<k-\frac{2 k}{n+2}=k \frac{n}{n+2}<k$, for $1 \leq k \leq(n+1) / 2$, we conclude that

$$
\begin{aligned}
& 1+4\left(\sum_{j=1}^{(n-1) / 2}\left\lfloor j \frac{n+2}{n}\right\rfloor+\sum_{k=1}^{(n+1) / 2}\left\lfloor k \frac{n}{n+2}\right\rfloor\right) \\
= & 1+4\left(\sum_{j=1}^{(n-1) / 2} j+\sum_{k=1}^{(n+1) / 2}(k-1)\right) \\
= & 1+4 \frac{n-1}{2} \frac{n+1}{2}=n^{2} .
\end{aligned}
$$

Also solved by Michel Bataille, Rouen, France; Brian D. Beasley, Presbyterian College, Clinton, SC; Ed Gray, Highland Beach, FL; Kee-Wai Lau, Hong Kong, China; David E. Manes, Oneonta, NY; Ángel Plaza, University of Las Palmas de Gran Canaria, Spain; Henry Ricardo, Westchester Area Math Circle, Purchase, NY; Ioannis D. Sfikas, National and Kapodistrian University of Athens, Greece; David Stone and John Hawkins, Georgia Southern University, Statesboro, GA; Nicusor Zlota, "Traian Vuia" Technical College, Focsani, Romania, and the proposer.

5546: Proposed by Ovidiu Furdui and Alina Sintămărian, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

Calculate

$$
\sum_{n=1}^{\infty}(-1)^{\left\lfloor\frac{n}{2}\right\rfloor}\left(\mathrm{e}^{x}-1-\frac{x}{1!}-\frac{x^{2}}{2!}-\cdots-\frac{x^{n}}{n!}\right)
$$

Solution 1 by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain
Since $e^{x}-1-\frac{x}{1!}-\frac{x^{2}}{2!}-\ldots-\frac{x^{n}}{n!}=\sum_{k=n+1}^{\infty} \frac{x^{k}}{k!}$, the proposed series, say S, is absolutely
convergent, and

$$
\begin{aligned}
S & =\sum_{n=1}^{\infty}(-1)^{\left\lfloor\frac{n}{2}\right\rfloor} \sum_{k=n+1}^{\infty} \frac{x^{k}}{k!} \\
& =\sum_{k=2}^{\infty} \frac{x^{k}}{k!} \sum_{n=1}^{k-1}(-1)^{\left\lfloor\frac{n}{2}\right\rfloor} \\
& =\sum_{k=1}^{\infty} \frac{x^{k}}{k!} \cos \left(\frac{(k-2) \pi}{2}\right) \\
& =\sum_{k=1}^{\infty}(-1)^{n+1} \frac{x^{2 k}}{(2 k)!} \\
& =1-\cos x .
\end{aligned}
$$

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

$$
\begin{aligned}
& \sum_{n=1}^{\infty}(-1)^{\left\lfloor\frac{n}{2}\right\rfloor}\left(e^{x}-1-\frac{x}{1!}-\frac{x^{2}}{2!}-\ldots-\frac{x^{n}}{n!}\right)=\sum_{n=1}^{\infty}\left((-1)^{\left\lfloor\frac{n}{2}\right\rfloor}\left(\sum_{k=1}^{\infty} \frac{x^{k}}{k!}-1-\frac{x}{1!}-\frac{x^{2}}{2!}-\ldots-\frac{x^{n}}{n!}\right)\right. \\
& \quad=\sum_{n=1}^{\infty}(-1)^{\left\lfloor\frac{n}{2}\right\rfloor}\left(\sum_{k=n+1}^{\infty} \frac{x^{k}}{k!}\right)=\sum_{n=1}^{\infty}\left(\sum_{k=n+1}^{\infty}(-1)^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{x^{k}}{k!}\right)=\sum_{k=2}^{\infty}\left(\sum_{n=1}^{k-1}(-1)^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{x^{k}}{k!}\right) \\
& =1 \frac{x^{2}}{2!}+0 \frac{x^{3}}{3!}-1 \frac{x^{4}}{4!}+0 \frac{x^{5}}{5!}+1 \frac{x^{6}}{6!}+\ldots=-\sum_{i=1}^{\infty}(-1)^{i} \frac{x^{2 i}}{i!}=1-\sum_{i=0}^{\infty}(-1)^{i} \frac{x^{2 i}}{i!}=1-\cos x .
\end{aligned}
$$

Solution 3 by Kee-Wai Lau, Hong Kong, China

We show that the given sum equals $1-\cos x$.
Let $f(x)=\sin x+\cos x$, so that

$$
f^{(n)}(x)=\left\{\begin{array}{cl}
\sin x+\cos x & n \equiv 0(\bmod 4) \\
\cos x-\sin x & n \equiv 1(\bmod 4) \\
-\sin x-\cos x & n \equiv 2(\bmod 4) \\
-\cos x+\sin x & n \equiv 3(\bmod 4)
\end{array}\right.
$$

It follows that the given sum $\sum_{n=1}^{\infty} f^{(n)}(0)\left(e^{x}-1-\frac{x}{1!}-\frac{x^{2}}{2!}-\cdots-\frac{x^{n}}{n!}\right)$.
According to entry 3.89 (a) on pp. 154, 227 of [1], we have

$$
\sum_{n=1}^{\infty} f^{(n)}(0)\left(e^{x}-1-\frac{x}{1!}-\frac{x^{2}}{2!}-\cdots-\frac{x^{n}}{n!}\right)=\int_{0}^{x} e^{x-t} f(t) d t
$$

which equals $1-\cos x$, by standard integration. Our claimed result now follows easily.
Reference:

1. O. Furdui: Limits, Series, and Fractional Part Integrals, Springer, 2013.

Solution 4 by Michel Bataille, Rouen, France

For every nonnegative integer n and any real number x, let
$R_{n}(x)=e^{x}-1-\frac{x}{1!}-\frac{x^{2}}{2!}-\cdots-\frac{x^{n}}{n!}=\sum_{k=n+1}^{\infty} \frac{x^{k}}{k!}$ and let $f(x)=\sum_{n=1}^{\infty}(-1)^{\left\lfloor\frac{n}{2}\right\rfloor} R_{n}(x)$ be the required sum. We show that $f(x)=1-\cos x$.
Let $A>0$ and $x \in[-A, A]$. Since $e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\frac{x^{n+1} e^{c}}{(n+1)!}$ for some c beteween 0 and x (Taylor-Lagrange relation), we see that

$$
\left|R_{n}(x)\right| \leq \frac{A^{n+1}}{(n+1)!} \cdot e^{A}
$$

It follows that the series $\sum_{n=1}^{\infty}(-1)^{\left\lfloor\frac{n}{2}\right\rfloor} R_{n}(x)$ is uniformly convergent on any interval $[-A, A](A>0)$. Since the derivative $R_{n}^{\prime}(x)$ is equal to $R_{n-1}(n \in N)$, the same is true of the series $\sum_{n=1}^{\infty}(-1)^{\left\lfloor\frac{n}{2}\right\rfloor} R_{n}^{\prime}(x)=\sum_{n=1}^{\infty}(-1)^{\left\lfloor\frac{n}{2}\right\rfloor} R_{n-1}(x)$. As a result, we have

$$
f^{\prime}(x)=\sum_{n=1}^{\infty}(-1)^{\left\lfloor\frac{n}{2}\right\rfloor} R_{n-1}(x)=e^{x}-1+\sum_{n=2}^{\infty}(-1)^{\left\lfloor\frac{n}{2}\right\rfloor} R_{n-1}(x)
$$

for any $x \in R$.
Likewise, f^{\prime} is differentiable on R and for any real number x,

$$
\begin{aligned}
f^{\prime \prime}(x) & =e^{x}+\sum_{n=2}^{\infty}(-1)^{\left\lfloor\frac{n}{2}\right\rfloor} R_{n-2}(x) \\
& =e^{x}-R_{0}(x)+\sum_{n=3}^{\infty}(-1)^{\left\lfloor\frac{n}{2}\right\rfloor} R_{n-2}(x) \\
& =1+\sum_{n=1}^{\infty}(-1)^{\left\lfloor\frac{n+2}{2}\right\rfloor} R_{n}(x) \\
& =1+\sum_{n=1}^{\infty}(-1)^{1+\left\lfloor\frac{n}{2}\right\rfloor} R_{n}(x)=1-f(x) .
\end{aligned}
$$

Thus, f is the solution to the differential equation $y^{\prime \prime}+y=1$ satisfying $f(0)=0=f^{\prime}(0)$. Solving is classical and we readily obtain $f(x)=1-\cos x$.

Solution 5 by David Stone and John Hawkins, Georgia Southern University, Statesboro, GA

The sum of the series is $1-\cos (x)$.
Recall the Maclaurin series for $\cos (x): \cos (x)=\sum_{n=0}^{\infty}(-1)^{2 n} \frac{x^{2 n}}{(2 n)!}=1+\sum_{n=1}^{\infty}(-1)^{2 n} \frac{x^{2 n}}{(2 n)!}$.
As expected, we'll also use the Maclaurin series representation for the exponential function:
$e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=E_{k}+R_{k}$, for any $k \geq 1$,
where $E_{k}=\sum_{n=0}^{k} \frac{x^{n}}{n!}$ is the $k^{t h}$ partial sum and $R_{k}=\sum_{n=k+1}^{\infty} \frac{x^{n}}{n!}$ is the remainder.
Because the series converges, we know that the sequence $\left\{R_{i}\right\}_{k \geq 1}$ has limit 0 .
Note also that $e^{x}-E_{k}=R_{k}$, and $E_{k+1}-E_{k}=\frac{x^{k+1}}{(k+1)!}$.
Consider the partial sums of our given series:
let $S_{m}=\sum_{n=1}^{m}(-1)^{\left\lfloor\frac{n}{2}\right\rfloor}\left(e^{x}-1=\frac{x}{1!}-\frac{x^{2}}{2!}-\frac{x^{3}}{3!}-\ldots-\frac{x^{n}}{n!}\right)=\sum_{n=1}^{m}(-1)^{\left\lfloor\frac{n}{2}\right\rfloor}\left(e^{x}-E_{n}\right)$.
We compute the first few partial sums.
To simplify the calculations, we first handle the sign term:
its pattern is $1,-1,-1,1,1,-1,-1,1,1,-1, \ldots$
This "block of four" pattern suggests that it will be productive to consider pairing consecutive terms (although we cannot be content with just carrying out a regrouping of a series without a guarantee of convergence).
$S_{1}=e^{x}-E_{1}=e^{x}-1-\frac{x}{1!}$
$S_{2}=\left(e^{x}-E_{1}\right)-\left(e^{x}-E_{2}\right)=E_{2}-E_{1}=\frac{x^{2}}{2!}$
$S_{3}=\left(e^{x}-E_{1}\right)-\left(e^{x}-E_{2}\right)-\left(e^{x}-E_{3}\right)=E_{2}-E_{1}=S_{2}-R_{2}$
$S_{4}=\left(e^{x}-E_{1}\right)-\left(e^{x}-E_{2}\right)-\left(e^{x}-E_{3}\right)+\left(e^{x}-E_{4}\right)=S_{2}-\left(E_{4}-E_{3}\right)=\frac{x^{2}}{2!}-\frac{x^{4}}{4!}$
$S_{5}=S_{4}+\left(e^{x}-E_{5}\right)=S_{4}+R_{5}$
$S_{6}=S_{4}+\left(e^{x}-E_{5}\right)-\left(e^{x}-E_{6}\right)=S_{4}+\left(E_{6}-E_{5}\right)=\frac{x^{2}}{2!}-\frac{x^{4}}{4!}+\frac{x^{6}}{6!}$
$S_{7}=S_{6}+\left(e^{x}-E_{7}\right)=S_{6}+R_{7}$
$S_{8}=S_{6}+\left(e^{x}-E_{7}\right)-\left(e^{x}-E_{8}\right)=S_{6}+\left(E_{8}-E_{7}\right)=\frac{x^{2}}{2!}-\frac{x^{4}}{4!}+\frac{x^{6}}{6!}-\frac{x^{8}}{8!}$.
Inductively, we can show that, for even subscripts
$S_{4 k}=\frac{x^{2}}{2!}-\frac{x^{4}}{4!}+\frac{x^{6}}{6!}-\ldots \frac{x^{4 k}}{(4 k)!}$
$S_{4 k+2}=\frac{x^{2}}{2!}-\frac{x^{4}}{4!}+\frac{x^{6}}{6!}-\ldots+\frac{x^{4 k-2}}{(4 k-2)!}$
and for odd subscripts
$S_{4 k+1}=S_{4 k}+R_{4 k+1}$
$S_{4 k+3}=S_{4 k+2}-R_{4 k+3}$.
We see that the subsequence $\left\{S_{2 k}\right\}_{k \geq 1}$ has as its limit the Maclaurin series for $1-\cos (x)$.
If we had a priori knowledge that our given series is convergent, this would guarantee that our series has sum $1-\cos (x)$.
However, looking at the odd-subscript partial sums will give us enough information to draw that conclusion. The subsequence $\left\{S_{2 k+1}\right\}_{k \geq 1}$ has as the same limit as $\left\{S_{2 k}\right\}_{k \geq 1}$ because the sequence $R_{n} \longrightarrow 0$.
Therefore, the limit of the sequence of partial sums, i.e. the sum of the given series, is $1-\cos (x)$.

Also solved by Ulrich Abel, Technische Hochschule Mittelhessen, Germany; Brian Bradie, Christopher Newport University, Newport News, VA; Ed Gray, Highland Beach, FL; G. C. Greubel, Newport News, VA; Moti Levy, Rehovot, Israel; Ioannis D. Sfikas, National and Kapodistrian University of Athens, Greece; Albert Stadler, Herrliberg, Switzerland, and the proposer.

