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School Science and Mathematics Association 
Founded in 1901 
 
 
 

 
The School Science and Mathematics Association [SSMA] is an inclusive professional community of 
researchers and teachers who promote research, scholarship, and practice that improves school science 
and mathematics and advances the integration of science and mathematics. 
SSMA began in 1901 but has undergone several name changes over the years. The Association, which 
began in Chicago, was first named the Central Association of Physics Teachers with C. H. Smith named as 
President. In 1902, the Association became the Central Association of Science and Mathematics Teachers 
(CASMT) and C. H. Smith continued as President. July 18, 1928 marked the formal incorporation of 
CASMT in the State of Illinois. On December 8, 1970, the Association changed its name to School 
Science and Mathematics Association. Now the organizational name aligned with the title of the journal 
and embraced the national and international status the organization had managed for many years. 
Throughout its entire history, the Association has served as a sounding board and enabler for numerous 
related organizations (e.g., Pennsylvania Science Teachers Association and the National Council of 
Teachers of Mathematics). 
SSMA focuses on promoting research-based innovations related to K-16 teacher preparation and 
continued professional enhancement in science and mathematics. Target audiences include higher 
education faculty members, K-16 school leaders and K-16 classroom teachers. 
Four goals define the activities and products of the School Science and Mathematics Association: 

• Building and sustaining a community of teachers, researchers, scientists, and 
mathematicians 

• Advancing knowledge through research in science and mathematics education and their 
integration 

• Informing practice through the dissemination of scholarly works in and across science and 
mathematics 

• Influencing policy in science and mathematics education at local, state, and national level 
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PREFACE 

 
These proceedings are a written record of some of the research and instructional innovations presented at 
the 117th Annual Meeting of the School Science and Mathematics Association held in Little Rock, 
Arkansas, October 18 – 20, 2018. The blinded, peer reviewed proceedings includes 7 papers regarding 
instructional innovations and research. The acceptance rate for the proceedings was 88%. We are pleased 
to present these Proceedings as an important resource for the mathematics, science, and STEM education 
community. 
 

Jonathan N. Thomas 
Margaret J. Mohr-Schroeder 

Co-Editor
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THE RELATIONSHIP OF MATHEMATICS ENJOYMENT AND CONFIDENCE TO INTEREST IN 
A STEM CAREER: THE IMPORTANCE OF THE “M” IN STEM 

Rhonda Christensen 
Rhonda.christensen@gmail.com 

Gerald Knezek 
gknezek@gmail.com 

Institute for the Integration of Technology into Teaching and Learning 
University of North Texas 

 

 Because mathematics functions as a gatekeeper content field for many science, technology and engineering career 

pursuits, it is critical that not only cognitive skill, but also affective attributes associated with mathematics are addressed. 

Negative mathematics feelings often begin at an early age and influence decisions students make in selecting upper level 

math and science courses. This paper presents a measure of mathematics enjoyment and confidence in school math and 

shows the relationship that these factors may have to interest in pursuing a STEM career. Gender differences in 

perceptions of mathematics are also addressed. 

 

Introduction 

 Despite the United States’ investment in science, technology, engineering and mathematics 

(STEM) education, there continues to be a growing shortage of STEM workers to fill the ever-

growing number of job positions. The number of STEM positions in the US is expected to grow to 

8.65 million by 2018 (Munce & Fraser, 2012). 

 Mathematics functions as a gatekeeper for many of the STEM content areas and students 

often report more negative attitudes toward mathematics, especially compared to the other STEM 

areas. Advanced mathematics courses are part of the degree plan for most engineering, computer 

science and science degrees. Many of the decisions to take advanced mathematics courses are 

decided by the time students reach high school. Student interest and attitudes regarding a STEM 

career are formed during their primary and middle school years (Meece, Wigfield, & Eccles, 1990). 

Math anxiety is often particularly high and the impact of that anxiety is significant in the decision 

making process of taking courses as well as pursuing degrees that include advanced mathematics 

courses. Researchers have demonstrated that math anxiety leads to avoidance behaviors that drive 

decisions to avoid advanced mathematics and science courses (Kier, Blanchard, Osborne, & Albert, 

2014). 
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Objectives 

 The purpose of this study was to explore the relationship between intentions to pursue a 

STEM career and mathematics measures including mathematics enjoyment and mathematics 

confidence. The research questions addressed in this paper are: 

1. To what extent does math enjoyment influence an intention to pursue a career in STEM? 

2. To what extent does math confidence influence an intention to pursue a career in STEM? 

3. What gender differences exist regarding mathematics enjoyment and confidence in the intention to 

pursue a STEM career? 

Related Literature 

 Attitudes toward mathematics have been studied for decades and have shown a strong 

relationship between attitudes (which include self-confidence, enjoyment, motivation) and 

mathematics achievement (Haciomeroglu, 2017). Neale (1969) referred to attitude towards 

mathematics as “liking or disliking of mathematics, a tendency to engage in or avoid mathematical 

activities, a belief that one is good or bad at mathematics, and a belief that mathematics is useful or 

useless” (p. 632). Positive attitudes improve student’s willingness to learn, while their negative 

attitudes may cause resistance (Duda & Garrett, 2008).  

 Math anxiety is often developed in adolescence and stays with people most of their lives 

(Beilock, Gunderson, Ramirez, & Levine, 2010). Math anxiety relates negatively to math 

achievement (Meece, Wigfield & Eccles, 1990) and leads to avoidance behaviors that are a barrier to 

enrollment in advanced mathematics and science courses (Keir, Blanchard, Obsorne & Albert, 

2014). Avoidance of mathematics courses restricts access to a career path in STEM fields. Student 

interest and confidence in mathematics are contributing factors in the participation of STEM 

activities (Jennings, McIntyre, & Butler, 2015). In a study on the impact of math anxiety and the 

pursuit of a STEM career, Smith (2016) found that high math anxiety predicted low interest in 

STEM fields. In particular, the impact was stronger on middle school females as they exhibited 

higher levels of math anxiety than their male peers (Smith, 2016). Attitudes toward mathematics are 

related to the level of confidence and interest in an ability to be successful. 

 Self-efficacy (one’s beliefs in his/her capabilities) influences academic motivation, learning 

and achievement (Pajares, 1996). According to social cognitive career theory (Lent, Brown, & 

Hackett, 2002) interest in an area drives the choices people make and the actions they take in 

pursuing a career. Students will engage in activities or classes in which they feel confident and 
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competent in achieving while avoiding those in which they feel anxious or unsure of success 

(Pietsch, Walker, & Chapman, 2003).  

 While there is a concern for both males and females entering STEM careers, a study of 6,000 

students completed in 2012 indicated that by the end of high school the odds of being interested in 

a STEM career are 2.9 times higher for males than for females (Sadler, Sonnert, Hazari & Tai, 2012). 

Research shows that girls start losing interest in mathematics and science during middle school (U.S. 

Dept. of Ed., 2006) and prior research has shown that girls have lower interest in mathematics 

(Christensen, Knezek, & Tyler-Wood, 2014; Meelissen & Luyten, 2008; U.S. Dept. of Ed., 2006). 

Girls tend to prefer to learn in a more social context and need to see connections between school 

assignments and the real world (Christensen et al., 2014; Heemskerk, Brink, Volman & ten Dam, 

2005). 

Methods 

Participants 

 Data were gathered from middle school students participating in hands-on, project-based 

learning activities that involved studying energy and monitoring stand-by power in their homes. This 

data set includes end-of-year data from 915 students representing 19 different classrooms in 13 

different schools from six states in the U.S. 

Instrumentation 

 The Mathematics in School survey contains nine items adapted from the Trends in 

International Mathematics and Science Study (TIMSS) 2007 Student Questionnaire. The survey was 

created to include Likert-type items asking participants to select the level of agreement with each of 

the nine statements. The item choices ranged from 1 (Strongly Disagree) to 5 (Strongly Agree). 

Internal consistency reliability estimates for F1 Mathematics Enjoyment = .89 and for F2 

Mathematics Confidence Alpha = .82. Reliability for the total 9-item scale was Alpha = .89. These 

fall in the range "very good" to “excellent” according to guidelines provided by DeVellis (1991).  

  The STEM Semantics Survey is a second measurement instrument used to gather data for 

the analyses in this paper. The STEM Semantics Survey (Tyler-Wood, Knezek, & Christensen, 2010) 

has been used in many projects across the country over the past several years. It is an instrument 

used to assess general perceptions of STEM disciplines and careers using Semantic Differential 

adjective pairs. The STEM Semantics Survey is a 25-item semantic differential instrument that 

contains five scales assessing perceptions of Science, Technology, Engineering, and Mathematics, as 

well as STEM Careers. Each of five scales consists of a target statement such as “To me, science is:” 
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followed by five polar adjective pairs spanning a range of seven choices. For example, “To me, 

science is: exciting _ _ _ _ _ _ _ unexciting.” Internal consistency reliabilities for participant 

perceptions of science, math, engineering, technology, and STEM as a career ranged from alpha = 

.85 to alpha = .95 for recent subjects. These numbers are in the range of "very good" to “excellent” 

according to guidelines provided by DeVellis (1991). 

Analysis and Results 

 A factor analysis (Principal Components, Varimax Rotation) revealed two distinct factors 

were present in the nine-item Mathematics in School Survey. As shown in Table 1, items 2, 3, 5 and 

8R (R = reversed) are related to one factor while items 1, 4, 6R, 7R, and 9 are related to a different 

component. Reading the items by factor it appears that factor 1 items are related to mathematics 

enjoyment while factor 2 items are related to confidence or self-efficacy in mathematics.  

 

Table 1.  

Factor Component Matrix for the Mathematics in School Survey 

Item 
Component 

1 2 
3. I enjoy learning mathematics. .875 .272 
2. I would like to do more mathematics in school. .846 .161 
5. I like mathematics. .840 .322 
8. Mathematics is boring.*   .757 .191 
6. Mathematics is harder for me than for many of my classmates.* .169 .780 
7. I am just not good at mathematics.* .328 .740 
4. I learn things quickly in mathematics. .410 .726 
1. I usually do well in mathematics. .514 .650 
9. I work mathematics problems on my own.  .604 
Note: Rotation converged in 3 iterations. * Items are reversed for analysis. 

   

  In order to determine relationships between the two math factors (enjoyment and 

confidence) and the STEM Semantic scales, a Pearson product moment correlation analysis was 

conducted. As shown in Table 2, there is a moderately strong relationship (Cohen, 1988) between 

semantic perception of a career in the STEM field (STEM Career) and Math Enjoyment (r = .304, p 

< .0005), and also an equally strong relationship between perception of a career in the STEM field 

and Math Confidence (r = .309, p < .0005). This is especially noteworthy because it implies both 

enjoyment of mathematics, and confidence in one’s ability in mathematics, are important among 

those who have a higher interest in STEM as a career. 
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Table 2.  

Relationships Between Mathematics Enjoyment and Confidence and STEM Semantics Scales 

 
Math 

Enjoy-ment 

Math 
Confi-
dence 

STEM 
Math 
Scale 

STEM 
Sci 

Scale 

STEM 
Tech 
Scale 

STEM 
Career 
Scale 

STEM 
Eng 
Scale 

Math Enjoyment Pearson 
Correlation 1 .618** .783** .114** .149** .304** .170** 

Sig. (2-tailed)  <.001 <.001 .001 <.001 <.001 <.001 
N 915 915 909 913 910 914 903 

Math 
Confidence 

Pearson 
Correlation .618** 1 .545** .199** .204** .309** .181** 

Sig. (2-tailed) <.001  <.001 <.001 <.001 <.001 <.001 
N 915 915 909 913 910 914 903 

STEM Math 
Scale 

Pearson 
Correlation .783** .545** 1 .183** .167** .332** .229** 

Sig. (2-tailed) <.001 <.001  <.001 <.001 <.001 <.001 
N 909 909 909 908 905 909 898 

STEM Science 
Scale 

Pearson 
Correlation .114** .199** .183** 1 .387** .539** .391** 

Sig. (2-tailed) .001 <.001 <.001  <.001 <.001 <.001 
N 913 913 908 914 909 913 902 

STEM 
Technology 
Scale 

Pearson 
Correlation .149** .204** .167** .387** 1 .433** .371** 

Sig. (2-tailed) <.001 <.001 <.001 <.001  <.001 <.001 
N 910 910 905 909 910 910 901 

STEM Career 
Scale 

Pearson 
Correlation .304** .309** .332** .539** .433** 1 .479** 

Sig. (2-tailed) <.001 <.001 <.001 <.001 <.001  <.001 
N 914 914 909 913 910 914 903 

STEM 
Engineering 
Scale 

Pearson 
Correlation .170** .181** .229** .391** .371** .479** 1 

Sig. (2-tailed) <.001 <.001 <.001 <.001 <.001 <.001  
N 903 903 898 902 901 903 903 

Note: ** Correlation is significant at the 0.01 level (2-tailed). 
 

  A regression analysis predicting scores for the two scales derived from the TIMSS math 

instrument revealed that the two scales together are quite good predictors of the semantic 

perception of math (STEM math) from the STEM Semantics Survey. As shown in Table 3, the two 

scales in combination can predict 62% (R2 = .619) of a student’s semantic perception. This level of 

association would be extremely rare by chance (p < .0005) and the magnitude of the correlation (r = 

.783 in Table 2) is very large according to guidelines by Cohen (1988) of .1 = small, .3 = moderate, 

and .5 or greater = large. As shown in Table 3, the regression analysis predicting semantic 

perception of math (STEM Math) from the two Likert scales of math enjoyment (F1) and math 
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confidence (F2) revealed that the enjoyment portion of the TIMSS scale items are more closely 

aligned with semantic perception of math than the confidence items. The standardized regression 

coefficient (beta) for F1 math enjoyment is β = .723 (t = 27.6) while it is weaker (β = .10) for F2 

math confidence (t = 3.7). Both variables are highly significant contributors (p < .0005) but math 

enjoyment is much stronger than math confidence as a predictor of semantic perception of math. 

This is a form of cross-validation for the STEM Semantic Survey mathematics scale based on the 

TIMSS school mathematics scale, the latter of which has been validated internationally in countries 

such as The Netherlands (Meelissen & Luyten, 2008).  

 

Table 3.  

Predicting STEM Semantic Math Scale by Mathematics in School Factors 
 B SE B β t Sig. 

(Constant) .452 .129  3.491 .001 
Math 

Enjoyment 
1.028 .037 .723 27.638 .000 

Math 
Confidence 

.166 .045 .096 3.679 .000 

Notes. R2 = .619 (p < .001). Dependent variable: STEMMathScale 
 

A regression analysis predicting STEM career as a function of math enjoyment and math 

confidence revealed that both enjoyment and confidence in mathematics are strong predictors of 

interest in STEM as a career (R2=.116, p <.001), although confidence is slightly higher (β = .196) than 

enjoyment (β =.183). A linear combination of these two variables together is able to explain about 

12% of interest in STEM as a career (R2=.116). 

 

Table 4.  

Predicting STEM Career Scale by Two Mathematics in School Factors (Enjoyment and Confidence) 
 B SE B β t Sig. 

(Constant) 3.147 .182  17.264 .000 
Math Enjoyment .242 .052 .183 4.626 .000 
Math Confidence .313 .063 .196 4.944 .000 

Note. R2 = .116 (p < .001). Dependent variable: STEMCareerScale 
 

  Regression analyses predicting the STEM math scale from math enjoyment and math 

confidence showed similar trends for males and females. However, with respect to predicting STEM 

career from math enjoyment and math confidence there were gender differences. As shown in Table 
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5, for males math confidence is a stronger predictor of STEM career (R2 = .113, β =.250). However, 

as shown in Table 6, for females math enjoyment is a stronger predictor of STEM career (R2 = .127, 

β = .263). 

 

Table 5. 

Predicting STEM Career Scale by Two Mathematics in School Factors (Enjoyment and Confidence) 
for Males 

 B SE B β t Sig. 
(Constant) 3.163 .259  12.191 .000 

Math Enjoyment .161 .074 .119 2.172 .030 
Math Confidence .405 .089 .250 4.552 .000 

Note. R2 = .113 (p < .001). Dependent variable: STEMCareerScale 

 

Table 6. 

Predicting STEM Career Scale by Two Mathematics in School Factors (Enjoyment and Confidence) 
for Females 

 B SE B β t Sig. 
(Constant) 3.128 .255  12.247 .000 

Math Enjoyment .339 .074 .263 4.573 .000 
Math Confidence .200 .091 .127 2.206 .028 

Note. R2 = .127 (p < .001). Dependent variable: STEMCareerScale 

 

Conclusions and Implications 

  The findings from this study regarding attitudes toward mathematics by gender are 

consistent with those from the Netherlands (Meelissen & Luyten, 2008) and Taiwan (Louis & 

Mistele, 2012) that were also based on the TIMSS mathematics scale. In general, boys have a more 

positive attitude than girls toward mathematics at the middle school level. However, for both 

genders, attitudes toward mathematics are low. The current study provides additional detail that 

should be useful for encouraging more girls and boys to consider STEM employment that relies on 

mathematics as a career. In particular, for boys, feeling that they are good at math is more strongly 

associated with interest in pursuing STEM as a career, while for girls enjoying math is more strongly 

associated with interest in pursuing STEM as a career. Findings imply that parents and educators in 

should concentrate on conveying math attitudes and experiences that will encourage students to 

enjoy mathematics (which will also build confidence). This appears to be essential for combatting 

the current trends toward low semantic perceptions toward math across middle school students in 

many parts of the U.S..  
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The role that algorithms should play in mathematics teaching and learning has been a contentious topic of debate in 

mathematics education (NCTM, 2000; Schoenfeld, 2007; Fan and Bokhov, 2014). The current paper addresses the 

role that student-invented algorithms play in building a conceptual foundation for formal patterns through problem 

solving (Cai, Moyer, and Laughlin, 1998). Since most studies of student-invented algorithms have focused on 

elementary and middle students’ reasoning, the current paper examines examples of student-invented algorithms at the 

secondary and postsecondary levels.  

 
Introduction 

The role that algorithms should play in mathematics teaching and learning has been a 

contentious topic of debate in mathematics education (NCTM, 2000; Schoenfeld, 2007; Fan and 

Bokhov, 2014). For example, in summarizing the various arguments, Fan and Bokhov (2014) 

concluded that the current perceptions of many mathematics educators with regard to the learning 

and teaching of algorithms at the K-12 level are overly negative. In particular, Givvin, Jacobs, 

Hollingsworth and Hiebert (2009) described some mathematics lessons, which they viewed 

negatively, by using phrases such as “very algorithmic,” “rule-orientated,” and “too focused on 

procedures and rules, with not enough attention to mathematical concepts and reasoning” (p. 42). 

According to Fan and Bokhov (2014), these kinds of negative comments are indicative of a 

dichotomy between the learning of formal procedures and the development of conceptual 

understanding.  

Student-invented algorithms often demonstrate sound reasoning patterns that students 

generate through informal strategies. This paper takes the position that while the students’ initial 

reasoning patterns may lack efficiency and generalizability, they can nonetheless serve as a 

conceptual foundation for the development of more formal action patterns and algorithms. Hence, 

the analysis presented in this paper is consistent with Campbell, Rowan and Suarez’ (1998) findings 

that student-invented algorithms are most useful when they are based on procedures that are 

mathematically sound, address issues of efficiency, and are generalizable. 
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Research Questions 

While the relevant research contains many examples of student-invented algorithms at the 

elementary and middle grade levels (see for example the work of Clarke, 2005), few studies involve 

older students in the secondary grades and beyond. Our research questions are: 

1. What are some examples of student-invented algorithms in secondary and post-

secondary mathematics classes? 

2. What roles do the students’ invented algorithms play in their problem solving?  

Theoretical Framework and Related Literature 

We incorporate a constructivist view of learning (Piaget, 1970, Glasersfeld 1991, Wheatley, 2004), 

which views mathematics learning as a problem-based process of building up one’s mathematical 

knowledge; and we draw from the work of Steffe (2002) in developing our theoretical 

interpretations. Specifically, we are interested in goal-directed action patterns of learners, and in our 

analyses, we look to explain how goal-directed sensorimotor actions are transformed (or interiorized) 

into mental action patterns, or operations. We believe that the learners’ development of formal 

algorithms has its source within these mental action patterns. 

Methodology 

This paper presents data from a study of problem solving of older students, conducted by 

the first researcher in collaboration with a former doctoral student (Cifarelli and Sevim, 2015). The 

data provide examples of how students sometimes employ informal reasoning when they engage in 

problem solving. For the purpose of the current study, we focus on the gradual introduction of 

formalization into the solvers’ actions and show how these phases of problem solving can lead 

solvers to develop their own algorithms.  
The two examples discussed here provide an answer to the first research question. The first 

example reports a classroom episode of high school geometry students finding a formula for the 

number of diagonals in an n-sided convex polygon. This example highlights how different solution 

approaches by students can lead to different yet equivalent formal algorithms. The second example 

reports the actions of a Mathematics Education graduate student as she solves an open-ended 

problem. This example highlights how a student with more sophisticated mathematical knowledge 

than a younger student can transform an idiosyncratic solution method into a formal algorithm. 

In our discussion of these examples, we identify the particular roles played by the student-invented 

algorithms and thus provide an answer to the second research question.  
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Results and Discussion 

A Student-Invented Algorithm in A High School Geometry Class 
The first example we present comes from a high school geometry classroom (N=25) in 

which the first author worked. The class had completed an introductory lesson on properties of 

polygons and was assigned a homework problem that required them to find a formula for the 

number of diagonals in an n-sided convex polygon. The rationale for assigning the problem was to 

provide opportunities for students to explore the problem for particular cases of n-sided polygons 

with the ultimate goal of having them generate the formula, . This particular 

problem proved quite challenging for these geometry students even though they had completed a 

year of Algebra I and thus were experienced at generating patterns.  

Students worked on the problem at home and came to class with their solutions. Most 

students had made progress on the problem, iterating the total number of diagonals for several 

specific cases and then trying to develop a pattern from their actions. About half of the students 

were able to get the formula using a strategy summarized as follows.  

1. There are n vertices; 

2. From each vertex you can draw diagonals; 

3. So, there are  diagonals; 

4. To eliminate repetitions, the total in step 3 must be divided by 2. So, the  

total number of diagonals is  

The teacher, Mr. Davis (pseudonym) was an experienced teacher with more than 15 years teaching 

experience. After acknowledging the result as a possible solution, he looked to engage other students 

in discussion, with particular emphasis on illuminating the individual steps students carried out. So, 

for example, seeing the need to account for repetitions when iterating the diagonals (step 4), Mr. 

Davis was able to promote discussion where all students could see and appreciate the reasoning 

involved and thereby convince themselves that the solution did indeed work.  

The teacher then asked if anyone used a different strategy to solve the problem. One 

student, Jared (pseudonym) stated that he came up with a different formula for the problem. The 

teacher asked Jared to show his approach on the blackboard. Jared wrote the following formula on 

the board:  
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Jared: So, in finding the answer, you keep going until you get to the number of sides and 

then you stop! So for , you get  diagonals. 

Therefore, for  sides, you keep going in the numbers until you get up to , so

. 

Jared could provide few additional details concerning how he came up with the solution 

other than he had checked that the formula worked for several simple cases (Table 1). (He did 

however admit that he got help on the problem from his slightly older cousin, Stephen!) 

 
Table 1:  
Jared’s Solution Applied to Several Cases 

Number of Sides Total as Sum of Diagonals from Each Vertex 

   

  

  

  

 

Jared’s solution appeared to involve a strategy where he first counted the number of 

diagonals from a particular vertex and expressed the total as a function of the number of sides. 

However, where the more popular solution of other students treated every vertex equally in the 

sense that it included repetitions in the count and corrected by dividing the total by 2, Jared’s 

approach appeared to take into account repetitions by counting only those diagonals that were 

distinct as he moved from vertex to vertex. For example, in considering the case of a 4-sided 

polygon, ABCD, he started at vertex A and found that there is exactly one diagonal from A and 

expressing the total as 1=4-3. Moving to Vertex B, there is exactly one diagonal (distinct from the 

diagonal already found from vertex A) and 1=4-3. At vertex C, he found that there were zero 

diagonals distinct from those already found and 0=4-4. So for n=4 in polygon ABCD, he would 

express the total as  diagonals. 

In summary, compared to the more popular solution D(n) = n(n-3)/2, Jared’s solution was 

more of a ‘counting up’ strategy to get the number of diagonals. The teacher looked to use this 

different solution to orchestrate a discussion with the class. He first asked if others agreed with this 

4=n 2)44()34()34()4( =-+-+-=D

n n
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solution and, if so, to comment on its usefulness as compared with the first solution. After some 

lively discussion, the class reached consensus that: 1. the method appears to work; and 2. the 

method would involve iterating lengthy sequences for polygons having a large number of sides, and 

so may not be as effective or efficient as the first method. The teacher proceeded to lead students in 

a discussion of how one might show that the two solutions were equivalent, specifically that: 

. 

The resulting derivation summarized as follows: 
1. In the sum, , observe that there are  

terms of .  

2. So it can be shown that:  

 

3. Since , we have that: 

 
4. Simplifying, we have that: 

 
5. And: 

 
 

A Student-invented Algorithm by a Mathematics Education Graduate Student  

Sarah (pseudonym) was a student in our mathematics education doctoral program. We 

present episodes of her work in solving a Number Array task (Figure 1). Our purpose in discussing 

her actions in this paper is to illustrate how a student with more sophisticated mathematical 

knowledge than a younger student can transform an idiosyncratic solution method into a formal 

method. 

After an initial exploration of the array from which she stated some basic relationships, 

Sarah focused on the left-to-right diagonal entries of the array (i.e., 1, 4, 9, …, 100) and developed 

an informal method to find the sums of the entries of each NxN block that contained these 

numbers (Figure 2). (As an aid to the reader, a bracket notation is used that lists the top-to-bottom 

rows of the block being considered. For example, the top-left 2x2 block is indicated by [1, 2 : 2, 4]) 
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Find as many relationships as possible among the numbers 

 
Figure 1: The Number Array task 

 
Sarah: So, for a 1x1, I get a sum of 1 (points to the sequence of square numbers on the diagonal, Figure 

2). For a 2x2 (points to block [1, 2 : 2, 4]), I get a sum of 9 … but what happened to 4? It has 

been skipped! Okay, let me try this, I will write down the sequence of squares of all numbers, 

all in a row (writes the following sequence of square numbers: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 

144, 169, 196, 225). So, the first number, 1, tells the sum of the very first matrix, a 1x1. And 

the first 2x2 has a sum of 9. So, I skipped over 4 to get the next sum (crosses out the 4 in the 

sequence), going from 1x1 to a 2x2, a sum of 9. The 4 gets skipped? Interesting! 

 
Figure 2: Sarah’s informal method of ‘skipping’ 

 
Sarah had posed a new problem to explore. She thinks there may be a relationship between the 

sequence of square numbers on the diagonal of the array and the successive sums of the entries of 

NxN blocks. Sarah was able to generalize her ‘skip’ method to generate the sequence of sums of the 

entries of all NxN blocks.  

Sarah: So, for the first 3x3 (points to block [1, 2, 3 : 2, 4, 6 : 3, 6, 9]), I already did this 

over here, so it is 36. So, in going from the 1x1 to the 2x2 to the 3x3, we go from 1, 

to 9, to 36 – so we skipped over the 16 and the 25, a skip of 2 in this sequence!! So, if 

this is true, then it looks like we will skip over the next 3 square numbers, and then 
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the sum for a 4x4 should be 100 (crosses out the 49, 64, 81 in the square number sequence). 

Cool! So, for a 5x5, we skip over the next 4 numbers in the sequence, (points to the 

sequence 121, 144, 169, 196) and get 225.  

Sarah then looked to make sense of her informal method with some further exploration of the 

blocks. 

Sarah: I wonder why this skipping works. Let’s see it another way, for the 6x6, we 

add the entries in the rows to get 21+42+…+126 = 21(1+2+3+4+5+6) = 21x21 = 

441. Do we get 441 by skipping the next 5 in the square sequence? (Sarah extended her 

original sequence beyond 225, crossed out the corresponding ‘skips,’ and got a result of 441 as the 

next number in the sequence). (Figure 3). But I also notice that 21 over here (points to the 

factored form 21• (1+2+3+4+5+6)) is the sum of the first 6 numbers in that first row. 

Yes! 

 
Figure 3: Sarah’s computation of sums in a 6x6 block 

 
Sarah: So to find the sum of these NxN blocks, I bet you just need to look at the 

sum of 1 to N and then square that total to get the sum. Let’s try an 8x8. It would be 

1+2+…+8 = 36, I don’t know why I am adding these individual numbers since I 

know the sum is (8x9)/2, and then I take 362? That comes out to be 1296. Does it 

check with my skipping over here? Let’s see, I first skip 6 over 21 to get 282 for 7x7, 

and then skip 7 more to get the one for 8x8, so 7 more is 35, and the next one is 36! 

My algorithm works! The algorithm is efficient for large numbers beyond all these – 

how about a 100x100 grid! – But I thought that the skipping relationship was cool! 

With her idiosyncratic actions, Sarah progressed from the original problem of finding relationships 

in the array to the problem of finding the sum of entries in an NxN block via a process of ‘skipping’ 

or traversing through a sequence of square numbers. In this way, she had developed an informal 
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method. She further developed her initial idea of ‘skipping’ by checking its applicability with simple 

cases and then drew upon the metaphor into her subsequent investigations. She was able to 

generalize her method from skipping within a simple sequence to a formal algorithm that was more 

efficient for finding the sums of entries in any NxN block beyond the 10x10 array. This finding is 

consistent with research that identifies informal methods as playing a prominent role in the 

development of formal algorithms (Cai, Moyer, & McLaughlin, 1998; Saenz-Ludlow, 1995).  

Implications 

We must be careful not to infer too much from the actions of these students for two 

reasons. First, the different contexts of the situations emphasize different aspects of mathematics 

teaching and learning. Jared’s solution was introduced within a classroom setting and the role of the 

teacher in addressing how it might be best utilized to enhance the classroom discussion was 

highlighted. While Jared’s formula for finding the number of diagonals in an n-sided convex polygon 

was an interesting and different approach for solving the problem, it is difficult to conclude that it 

added appreciably to the other students’ overall understanding of the algorithm. However, the 

teacher’s decision to conduct a discussion of whether or not the two solutions were equivalent is 

certainly consistent with reform-based recommendations for teaching geometry (NCTM, 2000) that 

call for students to explore relationships (including congruence and similarity) among classes of two- 

and three-dimensional geometric objects, make and test conjectures about the relationships, and 

solve problems involving them.  

In contrast, Sarah’s problem solving within the open-ended Number Array task had more of 

an evolutionary arc to her conceptual development. She developed an interesting informal solution 

method based on her ‘skipping’ metaphor and then transformed the results to a more sophisticated 

algorithm based on sound mathematical principles. This more sophisticated algorithm was clearly 

more efficient for solving problems than her ‘skipping’ method. In terms of algorithm development, 

Sarah demonstrated persuasive evidence that if given the opportunity, students inventing their own 

algorithms can have substantial conceptual benefits.  
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A mathematics professor and a chemistry professor became responsible for providing professional development 
workshops for K-12 teachers. Neither professor had much knowledge of K-12 education practices. Relationships with 
state department of education personnel, university department of educational studies faculty, teachers, and 
administrators informed decisions to include pedagogy topics with STEM content in the workshops. Inclusion of these 
topics led to improved satisfaction among workshop participants.  

 

Introduction 

In 2016 two college faculty members, a mathematician and a chemist, became co-directors 

of a STEM Center for teaching and learning. They were charged with conducting professional 

development (PD) workshops focused on mathematics and science content knowledge for K-12 

teachers. Neither had formal training or experience with K-12 education. Nonetheless, they 

managed to design and conduct workshops that achieved high levels of satisfaction among 

participating teachers. 

Recognizing their own lack of expertise, the STEM Center directors built relationships to 

understand the needs of K-12 mathematics and science teachers attending PD. They reached out to 

state department of education staff, colleagues in the department of educational studies at their 

university, school administrators and K-12 teachers themselves. In addition, they extended their 

membership in professional organizations. Already members of the Mathematical Association of 

America and the American Chemical Society, they joined organizations such as their state affiliates 

of the National Council of Teachers of Mathematics and the National Science Teachers Association 

as well as the School Science and Mathematics Association. The various publications and meetings 

of these organizations helped the directors understand the needs of teachers and the requirements 

for effective PD.  

Purpose of the Paper 

The purpose of this paper is to encourage collaborations among K-12 teachers, teacher 

educators, mathematicians, and scientists. This paper describes how a chemist and a mathematician 

learned to work effectively with K-12 teachers. Through relationships and experience they learned 

many of the lessons which they now realize are well established in the literature on effective PD. 
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Most mathematicians and scientists do not know how to contribute directly to K-12 education, but 

they can learn. The depth of content expertise that mathematicians and scientists can provide is 

worth the effort to have them as partners in K-12 education.  

Significance and Related Literature 

Calls for collaborations among K-12 educators and scientists and mathematicians have 

existed for at least two decades, and these calls persist (Druger & Allen, 1998; Conference Board of 

the Mathematical Sciences, 2012). The collaboration is not necessarily a natural one. Doctoral 

programs in mathematics or the sciences typically include no pedagogical training even at the college 

level (Sunal, 2001). These programs certainly do not prepare college faculty to deal with the issues 

faced in K-12 classrooms. A scientist wishing to work with K-12 teachers may have little idea of 

what will be useful. 

Teachers need a deep knowledge of the subjects that they teach, and focused PD can help 

them achieve this depth (Borko, 2004). Workshops that involve active learning and encourage 

participants to adapt activities for their particular students can be a useful part of PD (Guskey & 

Yoon, 2009). For PD to measurably improve student achievement, it needs to occur over a 

significant amount of time, perhaps many days over the course of months (Darling-Hammond, 

Chung Wei, Andree, Richardson, & Orphanos, 2009). The publication dates of the citations here 

indicate that these ideas were known to education researchers long before the STEM Center 

directors began their work in 2016. These ideas were not known to the STEM center directors.  

Practice or Innovation 

The STEM Center sponsored short-term workshops in June during the years 2016 through 

2018. Workshops in even numbered years focused on mathematics content, while the 2017 

workshops focused on science. Participants were K-12 teachers from West Tennessee. The number 

of participants was 77 in 2016, 97 in 2018, and 86 in 2018. The STEM Center directors recruited 

university faculty with a variety of expertise to conduct the workshops. Faculty leading workshops 

included number theorists, graph theorists, a topologist, a physicist, a geologist, and an astronomer. 

The variety of experts provided a depth of content knowledge that no one person could offer.  

For each summer, the directors tried to determine particular content areas for which 

teachers needed PD. The directors would describe these needs in terms of K-12 education standards 

to the recruited faculty and ask these workshop leaders to design approximately 10 lessons. The 

directors translated these lesson ideas into lesson plans suitable for classrooms at the targeted grade 

level. College faculty presented the lessons to the participating teachers. In each workshop 
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participants received electronic copies of the lesson plans to modify for their own classrooms. In the 

second two summers, workshop leaders made a point of having teachers discuss each lesson. After 

completing an activity, teachers would discuss how it related to standards, how effective they 

thought the activity would be for their students, and how they might modify the lesson or activity 

for their students. Several different groups of people helped the directors learn how to design PD 

workshops.  

The Northwest Center of Regional Excellence (CORE) is a regional office of the Tennessee 

Department of Education and is located on the same campus as the STEM Center. Staff at the 

CORE office were helpful in many ways, but two were significant. First, the director was 

instrumental in getting teachers to respond to a survey about the topics on which they needed PD. 

Her request appeared more compulsory to the teachers and their principals than a similar request 

from the directors of the STEM Center. With survey results STEM Center directors were able to 

design, for example, a workshop specifically focused on just four middle school mathematics 

standards. Second, CORE office staff secured an invitation for the STEM Center directors to attend 

state training sessions. When the state introduced new science standards, the STEM Center directors 

were able to attend training in the same room with principals and K-12 teachers. That event was 

helpful in understanding their needs for the upcoming year’s workshop. 

One of the first relationships that the STEM Center directors sought was with faculty in 

their university’s department of educational studies. These colleagues provided the directors with a 

format for lesson plans and introduced them to the idea of differentiated instruction. These 

colleagues also encouraged the directors to become Classroom Organization and Management 

Program (COMP) leaders (Evertson & Harris, 1995). By participating in and then leading COMP 

training, the directors became aware of many issues facing K-12 teachers that they had not 

previously considered. Leading COMP training sessions exposed them to a greater number of 

teachers and allowed even more collaboration.  

Teachers provided two critical types of information. First, they could identify their 

equipment needs better than anyone else. The STEM Center directors were fortunate to have grant 

funding to purchase such equipment. Workshop attendees practiced using the equipment and then 

could keep it to use with their own students. Second, teachers were also best at identifying the 

mathematics and science topics on which they needed training. While teachers could best answer 

these questions, principals were helpful in getting questions to teachers and answers to the directors. 

Both teachers and administrators were important partners.  
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Ultimately, a larger pool of collaborators came from participation in a wider array of 

professional organizations. Annual conferences of the Tennessee Science Teachers Association and 

The Tennessee Mathematics Teachers Association provided opportunities to gauge the mood of the 

community as the state introduced new education standards in mathematics and science. One of the 

directors first learned of the research findings on the lack of effectiveness of short-term PD during 

the 2017 convention of The School Science and Mathematics Association. Subsequent reading of 

that organization’s journal and some of the references cited therein began to give the directors a 

theoretical framework for their activities two years into the project.  

Classroom Examples 

In the absence of a research-based theoretical framework, the STEM Center directors 

attempted to assess the quality of PD through participant satisfaction surveys. In addition, the 

directors sent a query by email to participants six months after each workshop. The message asked 

teachers how many workshop lessons they had used with their students and invited them to provide 

whatever feedback they wanted.  

The satisfaction survey called for teachers to express a level of agreement with each of 17 

statements using a 5-point Likert scale with 1 representing “strongly disagree” and 5 representing 

“strongly agree.” Figure 1 shows the mean response to each statement in each year and reflects a 

high degree of satisfaction with the workshops. As examples, Statement 2 was “The workshop was 

interactive and hands-on,” and Statement 7 was “The topics covered in this workshop were 

appropriate for the advertised grade band.” Written comments about these issues in 2016 led to 

revisions for the 2017 and 2018 workshops. The directors encouraged workshop leaders to include 

hands-on activities. In 2016, there were just three “advertised grade bands,” elementary, middle, and 

high school. In 2018, after poling teachers for their needs, the directors designed more focused 

workshops such as one on real-world problems tied to just four Grade 6 and Grade 7 expressions 

and equations standards. Teachers appreciated this increased level of specificity.  
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Figure 1 

 The response rate to the email survey at the six-month follow-up point was disappointing. 

In each of 2016 and 2017, only 29 teachers replied. The respondents had implemented an average of 

one workshop lesson or activity in their classrooms. The low response rate itself indicated to the 

directors that they would need to design more formal follow-up in future PD plans. The low rate of 

implementation indicated the need for long-term encouragement for teachers to convert their initial 

high levels of satisfaction into action in the classroom.  

Implications 

In the absence of formal training or familiarity with the extensive literature on teacher PD, 

the STEM Center directors built and relied on relationships to conduct PD. Their workshops were 

short-term and thus failed to meet a requirement for effective PD as described in the literature. In 

hindsight, the directors recognized the need for long-term follow-up from the low response rates to 

their surveys of teachers after the workshops. On the other hand, by working with education studies 

faculty and listening to workshop participants, the directors’ workshop design gradually came to 

include several practices that are supported by research. In particular, workshops after the first year 

were focused on specific content knowledge and involved active learning where teachers had to plan 

how to use workshop lessons with their students. Ultimately, through the dissemination provided by 

professional organizations, the directors became aware of some of the research that supported their 

anecdotal discoveries.  

Mathematicians and scientists can make meaningful contributions to K-12 education. 

Getting their involvement often requires recruiting, and they will often need help. However, help is 
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available. Mathematicians, scientists, and professionals involved in K-12 teaching or the preparation 

of K-12 teachers can build rewarding relationships when they work together.  
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Recently, some researchers have suggested that the best way to enhance and strengthen the STEM education pipeline is 
through fostering early interest and helping students develop an identity that is centered around science. Additional 
research has indicated that interest and identity can be enhanced through field experiences that allow students to “do 
science” or to “be scientists,” and that these can serve as important complements to traditional classroom instruction. In 
this paper, we describe results from a program where researchers from a local university partnered with faculty and 
students from a middle school to participate in day-long experiential education sessions.  
 
 

Introduction 

 An increased focus on the promotion of student interest in science, technology, engineering, 

and mathematics (STEM) fields, especially at the middle school and high school levels, has resulted 

in the development of experiential learning programs where students “conduct science” outside of a 

classroom lab setting. There has been some evidence that these programs have positive results with 

regards to achievement and STEM-related career goals. Hiller and Kitsantas (2014), for example, 

found that 8th graders’ participation in a horseshoe crab citizen science program (Blue STEM 

Camp), conducted at a national park facility with a naturalist center and a private beach, positively 

impacted science achievement as compared to students only receiving classroom instruction. 

Additional findings showed that student science self-efficacy significantly increased after 

participation in the program, which positively influenced science-related career goals. 

Objectives of the Study 

The purpose of this study was to evaluate the effectiveness of an outdoor, experiential 

environmental science program conducted at a university extension station using the Social-

Cognitive Career Theory framework.  
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Theoretical Framework 

 Increasingly, as the nation continues to struggle with maintaining its competitive place 

among developed countries in the STEM fields, and as racial and ethnic diversity increase in the 

United States, educators and researchers alike are exploring high impact ways to attract and retain 

traditionally underserved and under-examined student populations along the STEM-education 

pipeline. Fortunately, there exists a well-established framework for examining the factors that impact 

STEM-related student interest, attitudes, and achievement; that of Social-Cognitive Career Theory 

(SCCT) (Lent, Brown, & Hackett, 1994, 2000). SCCT utilizes an adapted version of Bandura’s 

(1986) social-cognitive theory to examine career development and career-related choices among 

many student populations, including ethnically diverse middle and high school populations (e.g., 

Navarro, Flores, & Worthington, 2007). Primarily, the focus in SCCT is on examining how career 

interests (and subsequent choices) are impacted by student beliefs (efficacy and outcome 

expectancy), previous experiences, and perceived external barriers and supports (see Figure 1). 

 In the present study, we utilized SCCT to examine the impact that participation in an 

experiential learning program had on sixth-grade student attitudes and achievement in science. The 

program, which was developed in partnership with two local schools, an environmental non-profit 

agency, and a local university all located in the mid-South, focused on delivering experientially-based 

science education at a university-owned research station in a local state forest. The study was 

conducted and funded as part of a university engaged scholarship award. 

 

 
Figure 1. Social Cognitive Career Theory Model, adapted from Lent et al. (1994) 
 
 

Methodology 

The Program 

 The Mid-South Outdoor Recreation & Education (MORE) Program is an environmental 

education pilot developed by the Mississippi River Corridor – Tennessee (MRCT), a 501(C)(3) non-

profit organization, to expand early learning opportunities for students through an experiential 
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education curriculum. The MORE Program at the Meeman Biological Station was developed around 

the Project Learning Tree Program (PLT) curriculum, an award-winning environmental education 

program for students in grades pre-K through 12. Three enhanced lessons were developed by a 

university staff member, who is a certified PLT trainer, and a university faculty member. The lessons 

covered the topics of trees/biomes, watersheds, and soils. Each lesson plan included a short lecture 

that tied into the state 6th grade science standards, walks through the forest to illustrate key points in 

the lecture, and hands-on outdoor activities. The pilot implementation of the program was run 

during the Spring 2016 semester.  

Participants  

 Two urban that had previously worked with MORE Program were chosen for the pilot 

program at Meeman Biological Station. One school is a charter school, while the other is part of a 

special school district serving the lowest performing 5% of schools in the state. All students that 

attended the charter school are minority and approximately 81% of students are considered 

economically disadvantaged. Approximately 95% of the students at the other school are minority 

students and 95% are receiving free/reduced lunch. In total, 45 6th graders across the two schools 

participated in the treatment group (attended the outdoor learning days) and 82 students served as 

the control group for the study.  

Participant Selection  

 The study involved a “treatment” group of 6th graders who participated in 3 lessons at the 

Biological Station and a “control” group who did not attend the program. A two-step process was 

used to select students in the 6th grade to attend the program dates at the research station in order 

to ensure that both high and low performing students were part of the “treatment” group. Students 

at each school were stratified by the quartiles of their scores from an administration of the Measures 

of Academic Progress assessment. Random samples of students were drawn within each quartile to 

identify approximately 30 students to attend each trip (the “treatment” group students). Attrition 

from the initial treatment group at each school occurred during the study due to student transition 

(to another school or district), loss of off-campus privilege as part of school disciplinary action, and 

student absence. This attrition resulted in the groups being treated as “existing groups” instead of 

randomized groups in the analysis. IRB approval for this study was obtained from the university 

prior to the actual stratification and selection of students.  
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Measures 

 The 6th grade science teachers at both schools administered a knowledge measure and a 

science attitudes/interest/beliefs survey to all 6th graders, prior to the first trip date and after the last 

trip was completed. The 19 item, multiple-choice knowledge measure was written by the certified 

PLT trainer, based on both the lesson plans for the program, sample assessments from a 

participating 6th grade science teacher, and the 6th grade science standards. The survey contained 42 

self-report items that measured students’ outcome expectations, goal intentions, interest in math and 

science related activities, and feelings towards science and science careers. Scale scores were 

obtained by averaging across a student’s responses for each scale. 

Outcome Expectations. O utcome expectations were measured using 7 items (alpha = .81) 

from the Middle School Self-Efficacy Scale (Fouad, Smith & Enochs, 1997). These items address 

students’ beliefs “Regarding the consequences of their potential mathematics and science-related 

course activities and achievements” (Navarro et al., 2007, p. 325). Students indicate their level of 

agreement, such as “If I do well in science classes in middle school, then I will do well in high school 

science classes”, using a 5 point scale from “strongly disagree” to “strongly agree”. 

Goal Intentions. Goal intentions were measured using 6 items (alpha = .73) from the 

Middle School Self-Efficacy Scale (Fouad, Smith & Enochs, 1997). These items address students’ 

intentions towards science-related opportunities in the future. Students indicate their level of 

agreement, such as “I intend to pursue a career that will use science”, using a 5 point scale from 

“strongly disagree” to “strongly agree”.  

Science Interest. Science interest was measured using 20 items (alpha = .84) from the 

Math/Science Interests Scale (MSIS; Fouad & Smith, 1996). These items address students’ interest 

in science and math-related activities. Only science interest items were used in the present study. 

Students indicate how much they enjoy specific activities, such as “visiting a science museum” and 

“watching a science program on TV”, using a 3 point scale from “dislike” to “like”.  

Semantics. Students’ attitudes about science and careers in science were measured using 

two of the five item semantic differential subscales from the STEM Semantic Survey (Tyler-Wood, 

Knezek, and Christensen, 2010). Each of the five items in the subscales consists of a pair of 

adjectives. Students are instructed to “Choose one circle between each adjective pair to indicate how 

you feel about the object.”, with the circles containing values from 1 to 7. For this study, the stems 

for the subscales used were “To me, science is:” and “To me, a CAREER in science, technology, 
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engineering, or mathematics (is)”. An example of an adjective pair is “boring” and “interesting”. 

Separate scores were given for each semantic subscale.  

Analysis 

 Repeated measures analysis of variance was used to determine if a difference existed in any 

outcome measure across treatment groups and administration time.  

Results and Discussion 

 Table 1 reports descriptive statistics for the pre- and post-test scale scores for treatment and 

control groups for each measure. Only the science semantic scores were significantly different across 

groups, with the treatment group having higher scores at both the pre-test and post-time 

administrations. Table 2 presents the results of the repeated measure analysis of variance on each 

measure. As seen in Table 2, scale scores were significantly different across time for science interest, 

science semantics and career semantics. Science interest scores increased over time for both groups. 

Even though the treatment group had a larger gain (about 1.5 times) than the control group, the 

treatment effect was not significant, most likely due to almost equivalent post-test scores. In 

addition to a time effect, a treatment effect was also significant for scale scores for science and 

career semantics. Scores on both semantic scales decreased across time for both treatment and 

control groups. The amount of decrease in science semantic scores was equivalent across groups. 

However, the treatment group experienced a greater decrease than the control group. Post-test 

scores for the treatment group remained higher than the control group for both semantic scales (see 

Figure 2). 

Implications 

 The results provide mixed evidence regarding the impact of 6th graders attendance at three 

outdoor experiential learning days on student knowledge, interest and attitudes towards science and 

science careers. As with most pilot studies of educational interventions, the smaller sample size in 

the treatment group (roughly half the control group) and low dosage (the number of outings) may 

have contributed to the lack of power needed to find significant differences between study groups. 

Estimated power for non-significant effects ranged from .05 to .27. However, in spite of power 

issues associated with attrition, participation in the program was associated with more positive 

attitudes towards science careers at the end of the school year as compared to control group 

students.  
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Table 1.  
Descriptive Statistics for Measures 
  Treatment Control 

Measure Time Mean SD N Mean SD N 
Knowledge 

(19 question test) 
Pre-test 8.02 3.60 45 7.49 3.33 82 
Post-test 8.56 4.04 45 7.90 3.70 82 

        
Outcome Expectations 

(5 point scale) 
Pre-test 2.49 1.34 39 2.80 1.31 78 
Post-test 2.52 1.37 39 2.78 1.28 78 

        
Goal Intentions 
(5 point scale) 

Pre-test 2.52 1.29 39 2.85 1.24 75 
Post-test 2.62 1.35 39 2.80 1.18 75 

        
Science Interest 
(3 point scale) 

Pre-test 1.77 .70 34 2.04 .65 54 
Post-test 2.53 .55 34 2.51 .57 54 

        
Science Semantics 

(7 point scale) 
Pre-test 5.81** 1.33 33 5.07** 1.51 61 
Post-test 5.00** 1.21 33 4.24** 1.26 61 

        
Career Semantics 

(7 point scale) 
Pre-test 5.69 1.56 31 4.93 1.51 58 
Post-test 4.59 1.25 31 4.28 1.22 58 

** indicates significant difference across treatment groups at a = .01. 
 
Table 2.  
Summary of Individual Repeated Measure ANOVA Results 

Response 
Variable Effect F test 

statistic 
Degrees of 
Freedom p-value Partial 

Eta-squared 
Estimated 

Power 

Knowledge 

Time 1.349 1, 125 .248 .011 .211 
Treatment 1.225 1, 125 .270 .010 .196 
Time*Treatment .021 1, 125 .885 .000 .052 

 

Outcome 
Expectations 

Time .001 1, 115 .980 .000 .050 
Treatment 4.119 1, 115 .264 .011 .200 
Time*Treatment .024 1, 115 .128. .001 .065 

 

Goal 
Intentions 

Time .146 1, 112 .703 .001 .067 
Treatment 2.194 1, 112 .288 .010 .185 
Time*Treatment 1.273 1, 112 .262 .011 .201 

 

Science 
Interest 

Time 41.315 1, 86 < .001* .325 1.000 
Treatment .866 1, 86 .137 .025 1.000 
Time*Treatment .692 1, 86 .180 .021 .267 

 

Science 
Semantics 

Time 26.777 1, 92 < .001* .225 .999 
Treatment 9.504 1, 92 .003* .094 .862 
Time*Treatment .003 1, 92 .956 .000 .050 

 

Career 
Semantics 

Time 19.410 1, 87 < .001* .182 .992 
Treatment 5.155 1, 87 .026* .056 .612 
Time*Treatment 1.270 1, 87 .263 .014 .200 

* indicates significance at a = .05, ** indicates significance at a = .01. 
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Figure 2. Post-Test Scores for Semantic Scales for Treatment and Control Groups 

 

 Given the heightened focus on nurturing and retaining student interest in STEM learning 

and careers for traditionally underserved populations, findings from present study are encouraging 

and lend credence to the importance of experiential learning environments in fostering early 

adolescent, minority student interest and attitudes towards science and science careers. Specifically, 

results showed a change in interest over time but no change in outcome expectancy. Perhaps future 

research should explore more direct relationships between predictors of interest (e.g., experiential 

learning), rather than through indirect paths predicted by SCCT through self-efficacy and outcome 

expectancy. There is precedent for this in previous research. For example, Maltese & Tai (2010) 

found in a retrospective study that interest in science developed during the middle school years and 

was different for males and females. For females, interest in science emerged out of school-based 

activities, where for men interested in science developed more as a result of self-initiated activities. 

Collectively, these results point to the importance of structuring out-of-school experiential activities 

to match the developmental needs of the middle school student who often are exploring future 

career options (Wyss, Heulskamp, & Siebert, 2013).  
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Preservice teachers’ beliefs influence how they teach integrated STEM. This study examined 28 preservice teachers’ 

beliefs about STEM education after participating in informal STEM learning experience. Data included the Teacher 

Efficacy and Attitudes Toward STEM Survey. To compare the pre-and post-scores for mathematics teaching efficacy 

and beliefs, elementary STEM instruction, 21st century learning attitudes, STEM career awareness, and science 

teaching efficacy and beliefs a paired t-test was conducted. All categories were significantly different except 21st century 

learning attitudes. Implications of this study are the importance of informal STEM learning, and engaging students in 

belief challenging activities during preservice teacher education. 

 

Introduction 
Preservice elementary teachers’ beliefs are important as they influence their willingness and 

ability to teach integrated STEM. The connection between beliefs and practices teachers implement 

in the classroom is well documented in the research literature (Ball and Cohen, 1999; Philipp, 2007; 

Wilkins, 2008). The literature also provides examples of the difficulties in changing elementary 

preservice teachers’ beliefs of teaching mathematics and science, with the preservice teachers’ 

personal experiences often remaining the default for providing mathematics instruction (Foss & 

Kleinsasser, 1996; Thomas & Pederson, 2003). This is especially true for STEM subjects. Other 

studies (e.g., Williams, & Roberts, 2018) have explored the use of service learning in field placements 

as ways to shape preservice teachers’ beliefs while developing their pedagogical abilities. Our study 

takes a similar approach by using an informal STEM learning experience as a way to positively affect 

the beliefs of preservice teachers enrolled in an elementary mathematics methods course. 

Objectives of the Study 

 The purpose of this paper is to examine how informal STEM learning environments can be 

used to positively influence preservice teachers’ beliefs. While the literature on preservice teachers’ 

dispositions toward mathematics is broad, how those beliefs are shaped through the use of informal 

STEM environments is not as prevalent. For the purpose of this study informal STEM learning 

environments refers to experiences that take place outside of the classroom for K-12 students. 

Characteristics of this informal STEM learning environment include a) to provide underrepresented 
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students opportunities to engage in informal STEM learning; b) increase student interest in STEM 

education; c) use hands-on activities to engage students and motivate them to pursue careers in 

STEM (Mohr-Schroeder, Jackson, Miller, Walcott, Little, Speler, Schooler & Schroeder, 2014). This 

study reports on initial quantitative results of a larger, ongoing study that seeks to illustrate the 

impact of informal STEM learning environments on preservice teachers’ beliefs about STEM 

education. For the purpose of this study, beliefs are defined to be “psychologically held 

understandings, premises, or propositions about the world that are thought to be true… Beliefs 

might be thought of as lenses that affect one’s view of some aspect of the world or as dispositions 

toward action” (Philipp, 2007, p. 259). The primary research question for this study is: How does 

participating in an informal STEM learning experience influence preservice teachers’, enrolled in an 

elementary mathematics methods course, beliefs about STEM education? 

Theoretical Framework and Related Literature 

Preservice teachers’ beliefs about teaching are shaped by their own mathematical learning 

experiences (Yackel, & Rasmussen, 2002). These beliefs will impact their future teaching practices, 

especially in STEM education (Stohlmann, Moore, & Roehrig, 2012). Traditionally, STEM subjects 

are taught in isolation of each other. In order to create authentic STEM learning experiences, STEM 

content should be integrated (Stohlmann et al., 2012). Teachers, however, have not had sufficient 

support using integrated STEM (Bybee, 2013; Stohlmann et al., 2012). This lack of experience 

influences preservice teachers’ beliefs about integrated STEM education. When preservice teachers 

see children's’ mathematical thinking, their beliefs about teaching mathematics change (Philipp, 

2007). This is also true for preservice teachers’ beliefs about STEM (Maiorca & Mohr-Schroeder, 

Accepted). 

Situated learning theory was used to examine how the preservice teachers’ beliefs were 

influenced by their participation in the informal STEM learning experience. Mathematics learning is 

socially situated; both the learning and teaching of mathematics is influenced by the learning activity 

and the social setting in which it takes place (Lave, 1988). Learning is an active process where 

individuals need to interact with their environment and discover concepts for themselves.  

Situated learning theory has been used similarly to explore connections between student 

attitudes toward STEM and informal STEM learning (e.g., Roberts, Jackson, Mohr-Schroeder, Bush, 

Maiorca, Cavalcanti, Schroeder, Delaney, Putnam, & Cremeans, 2018) and learning and attitudes 

toward STEM (e.g., Guzey, Moore, Harwell, & Moreno, 2016). Preservice teachers’ first experienced 

STEM activities as learners in their elementary math methods class. Situated learning theory can be 
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applied to this study because the preservice teachers’ beliefs about STEM education were influenced 

their participation as both the learner and the teacher in a STEM learning experience.  

Methodology 

 In order to examine how participating in an informal STEM learning experience affected the 

pre-service teachers’ dispositions towards STEM education, data was collected from pre-service 

teachers enrolled in an elementary mathematics methods course during the summers of 2017 and 

2018. This present study took place at a public university in Southern California and is part of a 

larger study examining integrated STEM education in teacher education.  

Twenty-eight pre-service teachers, seven males and 21 females, participated in the study. 

Nine participants were special education credential students, 18 were elementary education 

credential students and one was a bilingual education credential student. The participants were 

enrolled in an elementary mathematics methods course where they received instruction on how to 

teach mathematics, including the implementation of integrated STEM education activities. In the 

elementary methods course the preservice teachers completed engineering design activities as 

learners. During the week-long informal STEM learning experience, the preservice teachers worked 

middle school students from local Title I schools with more than 40% of students from low income 

families. During the informal STEM learning experience the preservice teachers helped facilitate 

hands-on, integrated STEM activities with local STEM professionals, and They helped facilitate 

hands-on, integrated STEM activities with local STEM professionals, and supervised the middle 

school students as they designed and built robots for robotics challenge activities.  

Multiple sources of data were collected from the preservice teachers, including interviews, 

reflections, and integrated STEM lesson plans. For this paper, we analyzed data from a pre and post 

administration of the Teacher Efficacy and Attitudes Toward STEM (T-STEM) Survey (Friday Institute for 

Educational Innovation, 2012). The T-STEM survey was administered the first day of the semester 

and after the informal STEM learning experience. The composite scores for each participant were 

calculated averaging the scores for each question in the category. Then, a paired t-test was 

conducted to compare the pre-and post-scores for the following categories: mathematics teaching 

efficacy and beliefs, elementary STEM instruction, 21st century learning attitudes, STEM career 

awareness, science teaching efficacy and beliefs. The Bonferroni method was used to control for 

type I error, and the adjusted alpha was 0.01 (Hinkle, Wiersma, & Jurs, 2003). 
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Results and Discussion 

A paired t-test was conducted to compare the pre and post scores for the following 

categories of the T-STEM survey: mathematics teaching efficacy and beliefs, elementary STEM 

instruction, 21st century learning attitudes, STEM career awareness, science teaching efficacy and 

beliefs (Table 1). There was a significant difference between the pre and post scores for all of the 

categories except 21st century learning attitudes (p < 0.001).  

 

Table 1.  

Results from T-STEM Survey 

Category Mean SD Significance 

  Pre Post Pre Post p-value 

Mathematics Teaching Efficacy and Beliefs  3.31 3.98 0.70 0.43 p < 0.001 

Elementary STEM Instruction 3.06 3.91 0.43 0.56 p < 0.001 

21st Century Learning Attitudes 4.28 4.35 0.82 0.85 p = 0.447 

STEM Career Awareness  2.7 4.75 0.98 0.38 p < 0.001 

Science Teaching Efficacy and Beliefs 3.19 3.96 0.60 0.56 p < 0.001 

  

For the categories, mathematics teaching efficacy and beliefs and science teaching efficacy 

and beliefs, participants scored higher on the post-survey [M= 3.98, SD = 0.43; M = 3.96, SD = 

0.56] than the pre-survey [M= 3.31, SD = 0.70; M = 3.19, SD = 0.60]. After the integrated STEM 

learning experiences, participants had higher self-efficacy and confidence towards teaching 

mathematics and science. This can be partially explained by the preservice teachers’ typical beliefs 

about teaching mathematics and science when they enter a methods class. For example, Stohlmann, 

Cramer, Moore, and Maiorca (2014) initially found that preservice teachers held beliefs that did not 

support teaching mathematics in a conceptual way, like through STEM, but after working with 

students their beliefs changed and supported teaching conceptual understanding versus procedural. 

Jaipal-Jamani, and Angeli (2017) found preservice teachers’ self-efficacy to teaching science using 

robots improved after working with robotics. These findings are similar to those of different studies 

(e.g., Foss & Kleinsasser, 1996; Maiorca & Mohr-Schroeder, Accepted). Stohlmann et al. (2012) 

found teachers’ beliefs did change but that the teachers needed long term support to maintain these 
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changed beliefs. Some suggested supports included professional development and time to 

collaborate with other STEM teachers.  

For the category elementary STEM instruction, participants also had higher scores on the 

post-survey [M= 3.91, SD = 0.56] than on the pre-survey [M= 3.06, SD = 0.43]. Participants 

reported that they would use more STEM instructional practices in their teaching after the informal 

STEM learning experience. This suggests interacting within a community of practice with content 

experts while doing authentic activities (Kelley & Knowles, 2016) positively influenced the 

preservice teachers’ conceptions of STEM. 

STEM Career Awareness also showed a significant improvement between the pre and post 

survey [M= 2.7, SD = 0.98; M = 4.75, SD = 0.38], respectively. STEM Career Awareness category 

saw an increase of over two points, on average. STEM Career Awareness also saw the largest 

decrease in standard error, suggesting a more uniform awareness of STEM careers. The informal 

STEM learning experience emphasized the variety of STEM careers and this increase in awareness is 

important because of the context it created for the content. This is important because preservice 

teachers’ beliefs about what STEM is greatly influences how they implement STEM activities 

(Mohr-Schroeder, Cavalcanti, & Blyman, 2015). 

Of the five categories in the T-STEM survey, only 21st Century Learning Attitudes did not 

show a significant difference between the pre and post surveys. This could be due to scores which 

were already high on the pre [M = 4.28, SD = 0.82] and post [M = 4.35, SD = 0.85] surveys. The 

standard deviation also remained relatively steady. One possible explanation is the informal STEM 

learning environment reinforced the preservice teachers’ beliefs about 21st Century Learning 

Attitudes. Thus, not only did the presurvey results leave limited room for growth, what the 

preservice teachers experienced reinforced their previously held beliefs about 21st Century learning. 

Ultimately, the results of this study demonstrate the importance of preservice teachers having 

experiences in informal STEM learning environments as they positively impact their beliefs about 

teaching science and mathematics. 

Implications 

 One implication of this study is the importance of using informal STEM learning 

environments in preservice teacher education. As the preservice teachers participated in the informal 

STEM learning environment, their beliefs about STEM changed. This is incredibly important as 

preservice teachers learn and think about instructional methods. When their default teaching 

strategies derive from the way they were taught (Foss & Kleinsasser, 1996), the preservice teachers 
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are not always open to other ways that could be effective for their future students. Participating in 

the informal STEM learning environment not only engaged them but allowed them to see the 

effectiveness of the pedagogy in action. 

 A second implication is the importance for students to engage in belief challenging activities. 

Philipp (2007) recounted the importance of changing beliefs to change behaviors. In this case, the 

behaviors we sought to change are STEM pedagogy strategies preservice teachers enact. By 

providing preservice teachers with this nontraditional field experience, their learning was situated in 

a community of practice that was participating in authentic STEM activities (Kelly & Knowles, 

2016). By immersing the preservice teachers in this environment and allowing them to experience 

authentic STEM activities as both the learner and the teacher they were provided an opportunity in 

which their beliefs could change. As evidenced by the significant changes in mathematics teaching 

efficacy, elementary STEM instruction, STEM career awareness, and science teaching efficacy. A 

future direction for this study is to follow the preservice teachers and see how they enact pedagogy 

in STEM subjects when they begin teaching and to determine any lasting impact of the experience.  

 While the sample size in this study is small, results have been consistent from year to year. 

Due to the consistently positive results from this pilot study, future research will focus on scaling up 

the program to determine the effectiveness at a larger scale. Relatedly, this paper only presents the 

quantitative data analysis of a larger mixed methods study. The qualitative data analysis is ongoing, 

with preliminary findings supporting the quantitative results. Thus, future work will provide a more 

complete picture of the preservice teachers’ experiences in the informal STEM learning environment 

and how those lived experiences shaped their beliefs about teaching STEM content. 
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We investigated how instructions on fraction concepts and operations, and instructions on writing story 

problems changed prospective teachers’ (PTs) knowledge of writing story problems for fraction number sentences. Results 

showed that receiving instructions had a significant effect on PTs’ knowledge. They showed the highest improvement in 

writing story problems for fraction subtraction and division number sentences, however writing story problems for 

fraction multiplication number sentences remained a challenge for most PTs. We also compared the effect of two 

instructional approaches for writing story problems; error analysis and direct instruction. However, there was no 

significant difference between the two instructional approaches. 

 

Introduction 

In mathematics education, problem posing is related to both the creation of questions in a 

mathematical context, and to the reformulation of existing ill-structured problems (Pirie, 2002). 

Posing story problems requires a deeper understanding than the symbolic manipulation of the 

mathematical content. However, it is not an easy task, and teachers face problems in drawing 

meanings from symbolically represented mathematical content for some certain curriculum areas in 

primary and lower secondary mathematics (Rubenstein &Thompson, 2001). Fraction concepts are 

one of those curriculum areas (Ma, 2010), and teachers’ knowledge of writing story problems should 

be enhanced for fraction number sentences. 

Objectives of the Study 

The goal of this study is to examine the effect of instruction (instruction on fraction 

concepts and operations, and instruction on writing story problems) on prospective teachers’ (PTs) 

knowledge of writing story problems for fraction number sentences, and to compare the effect of 

two different instructional approach (error analysis and direct instruction) for writing story problems 

on PTs’ knowledge. To achieve this goal, we examined PTs’ knowledge of writing story problems on 

three occasions; (a) before they receive any instruction, (b) after they receive instruction on fraction 

concepts and operations and (c) after they receive instruction on writing story problems. This study 

sought to answer the following research questions: 
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1. Was there a mean difference between the number of correct story problems written by 

PTs (a) before and after receiving instruction on fraction concepts and operations (b) 

before and after receiving instruction on writing story problems for fraction number 

sentences? 

2. Was there a mean difference between the number of correct story problems written by 

PTs who received instruction that focused on error analysis and who received a direct 

instruction on writing story problems for fraction number sentences?  

Related Literature 

In 2008, the National Mathematics Advisory Panel stated that proficiency with fractions 

should be a major goal for K-8 mathematics. They stated that the proficiency with fractions is 

foundational for algebra, yet it seems to be severely underdeveloped. Teachers’ conceptual 

knowledge of fraction concepts and how they teach them to their students are important factors for 

students’ conceptual development of fractions. In the U.S., the conventional instruction with 

fractions is usually procedural or rule-based (NRC, 2001), and U.S. teachers are more likely to 

emphasize algorithmic processes and much less likely to create story problems to help their students 

understand fractions than their Chinese counterparts (An, Kulm, & Wu, 2004). However, students 

are less likely to make a conceptual error when either a visual model or a story problem context is 

present in scaffolding (Rittle-Johnson & Koedinger, 2005). Therefore, they need to learn fractions in 

real-world contexts that are meaningful to them (Cramer & Whitney, 2010). However, Ma (2010) 

reported that U.S. teachers were not able to create a story problem for a fraction division number 

sentence. McAlister and Beaver (2012) identified 40 distinct errors found in story problems 

generated by their PTs for specified fraction number sentences. Many of their participants reported 

that they had never written a story problem before, and also many had no idea how to even attempt 

to write one, particularly for multiplication and division. Student-authored story problems can reveal 

a variety of students’ misconceptions (Alexander & Ambrose, 2010). For example, Dixon et al. 

(2014) examined the story problems generated by PTs, and reported that PTs represented fraction 

subtraction number sentences by an incorrect redefinition of the whole. 

Methodology 

Participants and Data Collection 

Participants were 65 PTs who were enrolled in two sections of mathematics content course 

designed for elementary/middle-school teachers. One section was randomly chosen as the treatment 

group and the other section served as the control group. PTs in both groups were given two number 
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sentences for each of the four basic operations for which the first number sentence included two 

fractions, and the second number sentence included two mixed numbers, totaling eight number 

sentences. They were asked to write a story problem for each number sentence in August, before 

they received any instruction; in October, after they received instruction on fraction concepts and 

operations; and in November, after they received instruction on writing story problems for specified 

fraction number sentences.  

Class Instruction 

For both the treatment and control groups, the first part of the class instruction focused on 

making sense of fraction concepts and operations using different strategies with emphasis on 

modeling strategies. Class instructions usually started with PTs working on contextualized problems 

in their small groups, and then sharing variety of solution strategies as a whole class. When the 

classes finished fraction concepts and operations, the two groups received different types of 

instruction on writing story problems. In treatment group, we used an error analysis approach. In 

this approach, PTs were provided with story problems (problems that we collected from our PTs in 

previous semesters), which included several errors and were asked to identify errors first in their 

small groups. Next, these errors and how to change the wording of the problem to eliminate the 

errors were discussed as a whole class. While determining the errors, PTs were encouraged to use 

modeling strategies to solve the problems if needed. Then, PTs wrote their own problems for 

specified number sentences and we shared several problems and discussed the errors, if any, as a 

whole class. In the control group, a direct teaching approach was used. PTs were asked to write 

story problems. Then, we strategically chose several problems with errors for each operation, explain 

what the error(s) was, and had a class discussion about how to change the wording of the problems 

to eliminate the error(s). The instructional time for control group was about 4 hours, and it was 

about 5.5 hours for the treatment group.  

Data Analysis 

Student authored story problems were coded by two researchers independently into two 

categories as correct and incorrect story problems. The percent agreement method used for inter-

rater reliability and it was calculated to be 0.86. The researchers met twice to discuss all discrepancies 

and came to an agreement on the final coding. Descriptive statistics were obtained for each type of 

operation at each data collection point. Repeated measures ANOVA was conducted to compare the 

differences in scores among three data collection points, and ANCOVA analysis was conducted to 
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compare the treatment and control groups with respect to their November scores in which the 

October scores were used as the covariate. 

Results and Discussion 

The line plots in figures 1 and 2 show proportions of correct answers obtained by treatment 

and control group PTs separately for each operation at each data collection point.  

 
Figure 2: The proportions of correct answers for each operation at each data collection point in the treatment group 

 

 
Figure 2: The proportions of correct answers for each operation at each data collection point in the control group 

 
The proportions presented above show that for both groups, the highest proportion (.5 or 

more) of correct story problems was for the addition number sentences in August, before they 

received any instruction. The proportion of correct story problems for subtraction number 

sentences was very low, and the proportions were the lowest for multiplication and division number 

sentences. This revealed that writing story problems for multiplication and division number 

sentences were the most challenging tasks for PTs in August. Comparison of proportions at 

different data collection points revealed that, in general, there was an increase in the proportions of 

correct problems for all operations in October, after PTs received instructions on fraction concepts 
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and operations. There was a higher amount of increase in the proportion of correct answers for all 

operations in November, after PTs received instructions on writing story problems. PTs in the 

treatment group showed the highest improvement in writing story problems for subtraction and 

division number sentences from August to November. PTs in the control group showed the highest 

improvement in writing story problems for division number sentences from August to November. 

The least improvement from August to November was seen on story problems for multiplication 

number sentences in both groups. 

To compare the differences in scores (August, October, and November), we used repeated 

measures ANOVA. The Mauchly’s Test of Sphericity was not significant. Table 1 displays the mean 

number of correct story problems in August, October and November. 

 
Table 1: 

Descriptive Statistics 

 
Mean Std. Deviation N 

August Score 2.2063 1.46087 63 

October Score 3.4762 1.78576 63 

November Score 5.3492 1.8242 63 

 

Table 2 shows that there were significant differences in scores (i.e. significant effect of 

instruction on fraction concepts and significant effect of instruction on writing story problems) (F2= 

86.52, p < .001). Approximately 58% of the variance in score can be accounted for by repeated 

trials.  

Furthermore, table 3 shows that instruction on fraction concepts and operations, and 

instruction on writing story problems had a significant effect on PTs’ knowledge of writing story 

problems. PTs obtained significantly lower scores in August than they obtained in October, and 

their scores from October were significantly lower than the scores they obtained in November. 

To compare the differences between the treatment and control groups, we performed an 

ANCOVA analysis where we used the November scores as the dependent variable, and October 

scores as the covariate. Table 4 shows that there was no statistically difference between the two 

groups (F=0.111, p>.05). 
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Table 2: 

Tests of Within-Subjects Effect 

Source   

Type III 
Sum of 
Squares df 

Mean 
Square F Sig. 

Partial 
Eta 
Squared 

Noncent. 
Paramete
r 

Observ
ed 
Powera 

Testing_
Time 

Sphericity 
Assumed 314.963 2 157.481 86.519 0.00 0.583 173.038 1 

 
Greenhous
e-Geisser 314.963 1.942 162.151 86.519 0.00 0.583 168.056 1 

 
Huynh-
Feldt 314.963 2 157.481 86.519 0.00 0.583 173.038 1 

 
Lower-
bound 314.963 1 314.963 86.519 0.00 0.583 86.519 1 

Error(Tes
ting_Tim
e) 

Sphericity 
Assumed 225.704 124 1.82      

 
Greenhous
e-Geisser 225.704 

120.4
29 1.874      

 
Huynh-
Feldt 225.704 124 1.82      

 
Lower-
bound 225.704 62 3.64      

a Computed using alpha =             
 

Table 3: 

Pairwise Comparisons 
(I) Testing 
Time 

(J) Testing 
Time 

Mean 
Difference (I-J) 

Std. 
Error Sig.b 

95% Confidence Interval for 
Differenceb 

     Lower Bound Upper Bound 
1 2 -1.270* 0.222 0.00 -1.714 -0.826 

 3 -3.143* 0.258 0.00 -3.658 -2.627 
2 1 1.270* 0.222 0.00 0.826 1.714 

 3 -1.873* 0.24 0.00 -2.353 -1.393 
3 1 3.143* 0.258 0.00 2.627 3.658 
  2 1.873* 0.24 0.00 1.393 2.353 
Based on estimated marginal means     
* The mean difference is significant at the     
b Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
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Table 4: 

Tests of Between-Subject Effect 

Dependent Variable: November Score     

Source 

Type III 
Sum of 
Squares df 

Mean 
Square F Sig. 

Partial 
Eta 
Squared 

Noncent. 
Parameter 

Observed 
Powerb 

Corrected 
Model 51.488a 2 25.744 8.276 0.001 0.203 16.551 0.954 
Intercept 178.188 1 178.188 57.28 0.00 0.468 57.28 1 
S2 47.238 1 47.238 15.185 0.00 0.189 15.185 0.97 
TC 0.346 1 0.346 0.111 0.74 0.002 0.111 0.062 
Error 202.203 65 3.111      
Total 2149 68       
Corrected 
Total 253.691 67             
a R Squared = .203 (Adjusted R Squared = .178)         
b Computed using alpha =               

 

Implications 

In our study we investigated the PTs’ knowledge of writing word problems for specified 

fraction number sentences. PTs showed a significant increase in their knowledge after receiving 

instruction on fraction concepts and operations. Furthermore, their knowledge continued to 

improve significantly when they received instruction on writing story problems. Therefore, we 

recommend mathematics educators to include tasks about writing story problems for specified 

fraction number sentences in their content classes.  

We also examined the effect of two types of instructions (error analysis and direct 

instruction) on writing story problems, but did not find any significant differences between these 

two approaches. In both groups, PTs were provided with an opportunity to write story problems for 

fraction numbers sentences, which might have contributed to this result. It is important to note that, 

PTs who received the error analysis approach had a higher proportion of correct story problems for 

fraction subtraction and fraction division number sentences (82.5%, and 74% respectively) than the 

PTs were in the control group (60% and 65% respectively). Both groups had similar proportion of 

correct story problems (43%) for fraction multiplication number sentences. Writing story problems 

for fraction multiplication number sentences remained as a challenge for most PTs in our study. 

Further investigation is needed to understand how this lack of improvement in writing 

multiplication story problems relates to PTs’ level of understanding of what it means to multiply two 

fractions.  



 

 

51 

 

References 
Alexander, C. M., & Ambrose, R. C. (2010). Digesting Student-Authored Story Problems. Mathematics Teaching in the 

Middle School, 16(1), 27-33. 

Ann, S., Kulm, G. & Wu, Z. (2004). The Pedagogical content knowledge of middle school mathematics teachers in 

China and the U.S. Journal of Mathematics Teacher Education, 7, 145-172. 

Cramer, K., & Whitney, S. (2010). Learning rational number concepts and skills in elementary school 

classrooms. Teaching and learning mathematics: Translating research for elementary school teachers, 15-22. 

Dixon, J. K., Andreasen, J. B., Avila, C. L., Bawatneh, Z., Deichert, D. L., Howse, T. D., & Turner, M. S. (2014). 

Redefining the whole: Common errors in elementary preservice teachers’ self-authored word problems for fraction 

subtraction. Investigations in Mathematics Learning, 7(1), 1-22. 

Ma, L. (2010). Knowing and teaching elementary mathematics: Teachers' understanding of fundamental mathematics in China and the 

United States. Routledge. 

McAllister, C. J., & Beaver, C. (2012). Identification of error types in preservice teachers' attempts to create fraction 

story problems for specified operations. School Science and Mathematics, 112(2), 88-98. 

National Mathematics Advisory Panel. (2008). Foundations for success: The final report of the National Mathematics Advisory 

Panel. Washington, DC: U.S. Department of Education. 

National Research Council, & Mathematics Learning Study Committee. (2001). Adding it up: Helping children learn 

mathematics. National Academies Press. 

Pirie, S. (2002). Problem posing: What can it tell us about students’ mathematical understanding? In D. Mewborn, P. 

Sztajn, E. White, H. Wiegel, R. Bryant & K. Nooney (Eds.), Psychology of Mathematics Education North America 

(PME-NA), Athens, GA (pp. 927–958, vol 1-4). Columbus, OH: Eric Clearinghouse for Science, Mathematics, and 

Environmental Education. 

Rittle-Johnson, B., & Koedinger, K. R. (2005). Designing knowledge scaffolds to support mathematical problem 

solving. Cognition and Instruction, 23(3), 313-349. 

Rubenstein, R. N., & Thompson, D. R. (2001). Learning mathematical symbolism: Challenges and instructional 

strategies. The Mathematics Teacher, 94(4), 265. 

 



 

 

52 

THE IMPACT OF TECHNOLOGY BASED MATHEMATICAL MODELING ON MIDDLE SCHOOL 
STUDENTS’ MINDSETS 

Micah Stohlmann 
University of Nevada,  

Las Vegas 
micah.stohlmann@unlv.edu 

Xing Huang 
University of Florida 
xing.huang@ufl.edu 

Lina DeVaul 
University of Nevada,  

Las Vegas 
lina.devaul@unlv.edu 

 
Growth mindset is a vital belief for students to be successful in mathematics. Mathematical modeling as well has many 
positive benefits for students. Little research has been conducted on growth mindset and mathematics at the middle 
school level and particularly growth mindset with mathematical modeling. This study explored middle school students’ 
mindsets before and after a four-week Saturday program that incorporated mathematical modeling. We also looked at 
the quality of solutions developed by the students. It was found that the students generally had growth mindsets at the 
beginning of the student that were improved through the four weeks. 

 

Introduction 

One of the main factors that affects whether students do well in mathematics is their 

mindset. A student’s mindset is a collection of beliefs on if he or she feels that intelligence is 

something that can be changed and if continual learning is possible. The concept of a growth 

mindset has received more attention since Dweck’s (2006) book on the subject. A growth mindset is 

the belief that intellectual skills can be cultivated through effort while on the opposite spectrum a 

fixed mindset is believing that your qualities are carved in stone or fixed (Dweck, 2006). Fixed 

mindsets are particularly troubling because “fixed mindsets beliefs contribute to inequalities in 

education as they particularly harm minority students and girls; they also contribute to overall low 

achievement and participation” (Boaler, 2013, p. 150).  

In addition to instilling in students a growth mindset, incorporating mathematical modeling 

has been recommended as a way to reduce inequities in mathematics education and to give students 

the opportunity to demonstrate mathematical understanding that may not be captured on typical 

assessments (Lesh & Doerr, 2003). Implementing mathematical modeling enables teachers to 

employ best practices for mathematics teaching including cooperative learning, assessment 

integrated in instruction, building on prior knowledge of students, and a focus on students’ 

capabilities.  

Since growth mindsets can be an important factor to continued success in mathematics, it is  
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vital to determine how to develop this belief in students. In the past research, teaching students 

directly about growth mindset through computer programs, readings, and brain research has been 

used to develop growth mindsets in students (e.g. Paunesku et al., 2015). Little research though has 

focused on mathematical modeling being used as an intervention to help students hold growth 

mindset beliefs. Participating in mathematical modeling has the potential to develop growth 

mindsets. In one study, freshmen engineering students worked on an open-ended project and the 

researchers found this project had a positive effect on helping students develop a growth mindset 

(Reid & Ferguson, 2014). Through mathematical modeling students can persevere in problem 

solving, use multiple representations in their solutions, see there is more than one right answer to a 

problem, that there is not one type of person that can be successful in mathematics, and learn from 

others. 

Objectives of the Study 

This study investigated middle school students’ mindsets, using Dweck’s (2006) growth  

mindset Likert questionnaire, before and after a four-week Saturday science, technology, 

engineering, and mathematics(STEM) program offered at a large research university in the 

Southwestern part of the United States. The program focused on having students participate in 

mathematical modeling. For this study our definition of mathematical modeling problems are real 

world or game-based tasks that have multiple possible answers that students make sense of with 

mathematics using multiple representations. The research questions that guided this study were the 

following: What are middle school students’ mindsets before and after participating in a four-week 

Saturday program focused on mathematical modeling? Using the Quality Assurance Guide (Lesh & 

Clarke, 2000), how is the quality of solutions related to the groups’ mindsets?  

Related Literature 

Growth Mindset 

Theories of mindset enable us to understand how mindset fosters goals, attributions, and 

reactions to setbacks (Dweck, 2017). Students who hold growth mindsets set self-improvement as 

achievement goals, attribute failures to something that is under their control, and work harder when 

faced with setbacks. These students actively try new learning strategies and seek all available 

resources. However, students who hold fixed mindsets aim for performance-oriented goals, see 

failures as something that is beyond their control, and give up when they experience setbacks.  

Research has shown that fostering growth mindsets improves students’ academic  
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performance, increase students’ motivation, and reduce social, gender, and social class gaps. For 

example, a mindset intervention significantly helped at-risk students raise their semester grade point 

average in core academic courses (Paunesku et al. 2015). In a sample across all of the socioeconomic 

levels in Chile, Claro, Paunesku, and Dweck (2016) found that growth mindset was a relative strong 

predictor of math and language performance. It is suggested that students' growth mindset might 

play a role in mediating the effects of economic disadvantages.  

Growth Mindset and Mathematics  

Few studies have examined how growth mindset impacts students’ mathematics 

performance particularly at the middle school level, but there have been promising results. Good 

and her colleagues found that a growth mindset intervention increased both 7th grade boys’ and 

girls’ mathematics performance, and that such increase was higher for girls (Good et al., 2003). 

Blackwell, Trzesniewski, and Dweck (2007) examined the role of growth mindset in 373 seventh 

grade students’ mathematics achievement and found that a growth mindset was a significant 

predictor of students’ mathematics achievement for the students as they were followed into 8th 

grade. Bostwick et al. (2017), in a study of 4,411 Australian students in 7th grade to 9th grade, found 

that even when students’ background factors were included, students’ growth orientations were 

positively associated with both their academic engagement and achievement.  

This previous research demonstrates the importance of helping students to develop a growth 

mindset. More research is needed specifically on growth mindset and mathematical modeling 

though. In a review of research on secondary mathematical modeling, Stohlmann et al. (2016) 

proposed a question that requires further investigation in regards to student mindsets. “What is the 

potential of mathematical modelling to support both students and teachers in their development of 

appropriate beliefs about and attitudes towards mathematics? (p. 21)” This study serves to provide 

insight into this question.  

Methodology 

This study was conducted with 19 middle school students (age 11-13) that voluntarily  

enrolled in a Saturday STEM program at a large research university in the Southwestern part of the 

United States. The students were ethnically diverse and from a large urban school district. The 

purpose of the Saturday STEM program was to provide a series of inquiry experiences designed to 

provide interesting and exciting opportunities in STEM education. Fourteen out of the nineteen 

students reported typically receiving an A or A- in mathematics, with the other five students typically 
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receiving a B+ or B. The first and third authors were the instructors for this program and had been 

instructors for this program for several years.  

The program lasted four Saturdays (Table 1) and involved different activities, mathematical 

modeling activities, and also videos of general social skills that students need to work effectively in 

groups. Each day had an overall topic: day 1 focused on equations and expressions, day 2 on ratios 

and proportions, day 3 linear equations, and day 4 systems of equations. The Ker-splash game is 

played against a partner and involves collecting coins that have x values, y-values, and constant 

values. The waffle choices activity involves determining which box of waffles to buy. Polygraph lines 

is a game played with a partner to determine which linear graph a partner has chosen out of 16 

possible graphs. Polygraph linear systems is similar just with graphs of linear systems. The stairs or 

elevator activity has students determine which is the better choice.  

 

Table 1 

Saturday STEM program activities by day 

Day Activities 
1 -Growth mindset likert questionnaire (Dweck, 2006) 

-Communicating and listening video (FlowMathematics, 2012) 
-Dirt Dash (Calculation Nation, 2018) 
-Ker-splash (Calculation Nation, 2018)-mathematical modeling activity 

2 -Decision making video (FlowMathematics, 2011) 
-Waffle choices activity (When Math Happens, 2018)-mathematical modeling 
activity 
-Marcellus the giant (Desmos, 2018) 
-ST Math 7th grade proportional relationships-monster ratios and build a 
monster (ST Math, 2018) 

3 -Polygraph lines (Desmos, 2018)-mathematical modeling activity 
-Polygraph lines part 2 (Desmos, 2018) 
-Marbleslides line (Desmos, 2018) 
-Lego prices (Desmos, 2018) 

4 -Stairs or elevator problem (When math happens, 2018)-mathematical 
modeling activity 
-Polygraph linear systems (Desmos, 2018)-mathematical modeling activity 
-Systems of two linear equations (Desmos, 2018) 
-Growth mindset likert questionnaire (Dweck, 2006) 

 

Data Collection and Analysis 

The data collection involved student work, a pre and post growth mindset Likert  
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questionnaire (Dweck, 2006), and researcher field notes. Of the 19 students, 15 fully completed the 

pre and post growth mindset Likert questionnaire. The growth mindset questionnaire was analyzed 

by assigning a point value of 0 to 5 for each question, with a higher score being more closely aligned 

to a growth mindset. For example, two questions are listed below with the point values included.  

-No matter who you are, you can significantly change your intelligence level. 

Strongly agree (5) Agree (4) Mostly agree (3) Mostly disagree (2) Disagree (1) Strongly 

Disagree (0) 

-You have a certain amount of intelligence, and you can’t really do much to change it.  

Strongly agree (0) Agree (1) Mostly agree (2) Mostly disagree (3) Disagree (4) Strongly 

Disagree (5) 

The students pre and post questionnaire were summarized using descriptive statistics and a paired t-

test was conducted to see if there was a significant difference between the pre and post scores. Table 

2 summarizes general categories for individual total scores on the growth mindset questionnaire. 

 

Table 2 

Growth mindset questionnaire categorizations 

Categorization  Points value 
Strong growth mindset 61-80 points 
Growth mindset with some fixed ideas 41-60 points 
Fixed mindset with some growth ideas 21-40 points 
Strong fixed mindset 0-20 points 

  

The other data was analyzed using the Quality Assurance Guide (QAG) to give students’  

solutions on the mathematical modeling activities a quality ranking (Lesh & Clarke, 2000). The QAG 

was designed to evaluate products that are developed from mathematical modeling activities (Table 

3). Two of the researchers coded the students’ solutions. The Cohen’s K coefficient of inter-rater 

agreement was .80, and thus within an acceptable range (Fleiss, 1981; Landis & Koch, 1977). Once 

coding differences were identified, the raters came to agreement on the discrepancies so that full 

agreement was reached.  
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Table 3 

Quality assurance guide 

Performance level Description 
(0) Requires 
redirection 
 

The product is on the wrong track. Working longer or harder won’t 
work. The students may require some additional feedback from the 
teacher.  

(1) Requires major 
extensions or 
refinements 

The product is a good start, but a lot more work is needed to 
respond to all of the issues.  

(2) Requires only 
minor editing 

The product is nearly ready to be used. It still needs a few small 
modifications, additions, or refinements.  

(3) Useful for the 
specific situation given 

No changes will be needed for the current situation. 
 

(4) Sharable or 
reusable.  

The solution not only works for the immediate situation, but it also 
would be easy for others to modify and use it in similar situations.  

 
Results and Discussion 

A paired t-test indicated that there was a statistically significant difference between the pre  

and post growth mindset questionnaire: pre-test (M= 59.47, SD = 15.9) and the post-test (M= 

66.07, SD= 14.55), t(14) =1.576, p = 0.069 < .10. The mean increased compared to the post-test 

and moved from a categorization of growth mindset with some fixed ideas to a strong growth 

mindset. The Cohen’s d effect size was .43, which is a medium to small effect size. Table 4 details 

the descriptive statistics.  

 

Table 4 

Pre and post-questionnaire descriptive statistics 

Pre-Questionnaire Post Questionnaire 
n M Min Max SD n M Min Max SD 
15 59.47 20 80 15.9 15 66.07 38 80 14.55 

 

There were five groups for each of the open-ended problems the students completed and 

each group was given a score based on the Quality Assurance Guide (Table 5). The majority of 

scores of 2 or greater on the activity means indicates that the students on average developed useable 

solutions or only needed small modifications or refinements. The students also improved in their 

scores from the first to the last modeling activity. A Wilcoxen signed-rank test indicated that 

students did better on the last activity (mean =3.2) than the first activity (mean = 1.8), Z =-1.84, p 

=.066 < .10.  
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Table 5 

Quality assurance guide scores per group for the mathematical modeling problems  

 Ker-splash Waffle 
choices 

Polygraph 
lines 

Stairs or 
elevator 

Polygraph 
linear 
systems 

Group 
mean 

Group 1 1 2 1 1 2 1.4 
Group 2  4 2 4 4 4 3.6 
Group 3 1 2 1 1 2 1.4 
Group 4 2 4 4 3 4 3.4 
Group 5 1 0 2 2 4 1.8 
Activity 
mean 

1.8 2 2.4 2.4 3.2  

 

Table 6 displays the pre and post assessment averages for each group on the growth mindset  

Likert questionnaire. Results of a Spearman correlation indicated that there was not a significant 

correlation between the groups’ post questionnaire average and the groups’ activity average, (rs(3) = 

-.564 , p >.10) 

 

Table 6 

Pre and post group averages on the growth mindset Likert questionnaire 
 Group 1 Group 2 Group 3 Group 4 Group 5 
Pre-score 48.3 59.6 67 56 65.6 
Post score 70.3 65.3 74 65 63.6 

 

Implications 

This study was conducted to determine the mindsets of middle school students before and  

after a 4-week Saturday program that incorporated mathematical modeling; as well as the quality of 

solutions the students developed. The class average significantly increased from the pre to the post 

assessment on the growth mindset questionnaire. The Saturday program helped improve the 

students’ mindsets. This is an important finding as having students participate in mathematical 

modeling can be another way to help students develop growth mindsets. When students are 

participating in mathematical modeling they need to persevere in problem solving, try new 

approaches, use all of their resources, and continue to develop their ideas when encountering 

setbacks or failures. These are all characteristics that are connected with a growth mindset. The 
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students in this study were on-task while working on the mathematical modeling problems and used 

the Internet when needed, their group members, and other groups to persevere in problem solving. 

For the second research question there was not a significant correlation between the groups’  

growth mindset average and the quality of solutions. Since this study had a small sample size future 

research is needed to investigate how growth mindset is related to the quality of solutions developed 

during mathematical modeling. Future research can also focus on mathematical modeling with 

students who have strong fixed mindsets and/or lower mathematics ability.  
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