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School Science and Mathematics Association 

Founded in 1901 

The School Science and Mathematics Association [SSMA] is an inclusive professional 
community of researchers and teachers who promote research, scholarship, and practice that 
improves school science and mathematics and advances the integration of science and 
mathematics. 

SSMA began in 1901 but has undergone several name changes over the years. The 
Association, which began in Chicago, was first named the Central Association of Physics Teachers 
with C. H. Smith named as President. In 1902, the Association became the Central Association of 
Science and Mathematics Teachers (CASMT) and C. H. Smith continued as President. July 18, 1928 
marked the formal incorporation of CASMT in the State of Illinois. On December 8, 1970, the 
Association changed its name to School Science and Mathematics Association. Now the 
organizational name aligned with the title of the journal and embraced the national and international 
status the organization had managed for many years. Throughout its entire history, the Association 
has served as a sounding board and enabler for numerous related organizations (e.g., Pennsylvania 
Science Teachers Association and the National Council of Teachers of Mathematics). 

SSMA focuses on promoting research-based innovations related to K-16 teacher preparation 
and continued professional enhancement in science and mathematics. Target audiences include 
higher education faculty members, K-16 school leaders and K-16 classroom teachers. 

Four goals define the activities and products of the School Science and Mathematics 
Association: 

• Building and sustaining a community of teachers, researchers, scientists, and
mathematicians

• Advancing knowledge through research in science and mathematics education and
their integration

• Informing practice through the dissemination of scholarly works in and across science
and mathematics

• Influencing policy in science and mathematics education at local, state, and national
levels
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PPRREEFFAACCEE  

These proceedings are a written record of some of the research and instructional innovations 

presented at the 113th Annual Meeting of the School Science and Mathematics Association held in 

Jacksonville, Florida, November 6 – 8, 2014. The theme for the conference is Bridging Connections 

between Mathematics and Science.  

The blinded, peer reviewed proceedings include 6 papers regarding instructional innovations, 

12 research papers, 1 transdisciplinary science and mathematics lesson plan, and 2 perspectives of 

the teacher. The acceptance rate for the proceedings was 60%. Papers are organized by paper type 

and presented in alphabetical order.  

We would like to thank Maureen Cavalcanti and Kayla Blyman for their dedication to the 

technical details of putting together this document. We are pleased to present these Proceedings as 

an important resource for the mathematics, science, and STEM education community. 

Margaret J. Mohr-Schroeder 

Shelly S. Harkness 

Co-Editors
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Teaching about environmental concerns and sustainability is often met with challenges 
such as misinformation and biased opinions among learners. Such one-sided and erroneous ideas 
are often derived due to highly polarized political perspectives. This article describes a professional 
development experience for in-service science teachers that exposed participants to multiple 
perspectives on a series of local energy sources (e.g., nuclear reactor, wind farm, coal power 
plant). Mathematical modeling was used as a lens through which the participants could consider 
the multiple stakeholders and myriad environmental impacts of each energy source to determine 
their relative sustainability. 

Introduction 

For decades, scientists have warned of growing environmental threats (e.g., climate 

change, acid rain, ozone hole) and encouraged action by individuals, corporations, and 

governments to mitigate and/or reverse them. For such warnings to be heeded, citizens must 

be educated about the environment and be able to understand the sustainability of practices 

that impact it. Despite efforts of science educators, individuals’ understandings of such issues 

are often misinformed or underdeveloped due to one-sided representations provided by 

political pundits, pastors, news outlets, and social media (Saylan & Blumstein, 2001). Since the 

green movement began, there has been conflict between pro-environmentalist and corporate 

interests. For example, Rachel Carson (1962) met personal and professional attacks from the 

chemical industry in response to her book, Silent Spring, despite her work ultimately being 

deemed valid. Radical environmental groups have been as guilty of sacrificing truth in favor of 

pro-environmental (and often anti-corporation) objectives (Saylan & Blumstein, 2001). 

Continued politicization of environmental issues (from all sides) has persisted over the 

subsequent five decades. This leads to the public receiving simple, narrow, and inaccurate 

views on highly complex environmental problems (Baimbridge, 2004).   

Objectives/Purpose 

The present paper will describe a professional development experience (PD), which 

explored the environmental impacts of various energy sources. The primary objective of the PD 

was to expose participants (in-service science teachers) to various sides of the issues related 

to energy production (both pro-environmental and pro-energy) and guide them in developing 

the skills to evaluate and compare the sustainability of diverse energy sources. In what follows, 
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we provide related literature, describe the general structure of the PD, detail the experiences 

related to one of the energy sources, and close with implications for supporting teachers in 

evaluating environmental issues. 

Related Literature 

The social and cultural perspectives that people hold regarding energy production and 

use are often influenced by the politicization of environmental issues (Baimbridge, 2004). In 

order to navigate such politicization, individuals must consider diverse factors such as 

ecological interdependency, relationship between social and ecological systems, relationship 

between local- to global-scale environmental problems, local and specific knowledge of 

particular ecosystems, and the implicit value of life and diversity (Parker, Wade, & Atkinson, 

2004). 

The importance of environmental issues to individuals’ lives can best be emphasized 

when connections between human action and environmental impacts are emphasized 

(Connell, 1999; Littledyke, 2008), instruction targets cognitive and affective domains 

(Littledyke, 2008; Loughland et al., 2002; Loughland et al., 2003; Martin & Brouwer, 1991), and 

personal action/choice is presented as a potential change agent with regard to environmental 

concerns (Bloom & Holden, 2011). Bloom, Holden, Sawey, and Weinburgh (2010) emphasize 

the importance of such learning experiences happening in natural environments when the goal 

is to create a sense of concern for environmental issues.  

Mathematical modeling serves as a link between mathematics and its use to examine 

real-world situations in other fields (Giordano, Weir, & Fox, 2003; Pollak, 2011). Specifically, 

mathematical modeling “is the process of choosing and using appropriate mathematics and 

statistics to analyze empirical situations, to understand them better, and to improve decisions” 

(NGA & CCSSO, 2010, p. 72). The practice of modeling has multiple stages: identify a problem 

grounded in a real-word context, make assumptions, distinguish critical variables, devise an 

appropriate model, apply the model to the problem, evaluate the model, and, if necessary, 

revise the model (Galbraith, Stillman, & Brown, 2010). Galbraith et al. describe two approaches 

to mathematical modeling instruction. For the first approach, modeling as content, the goal is 

to proceed through all stages of the mathematical modeling process in order to address a real-

world problem. The purpose of the second approach, modeling as vehicle, is to use 

mathematical modeling as a means to learn specific content or to focus on one or more 

competencies of the modeling process (Maaβ, 2006). 
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The modeling competencies parallel the stages of the modeling process and are 

described by subcompetencies (Maaβ, 2006). For instance, the first competency relates to 

understanding the problem in order to create a model, which reflects the reality of the situation. 

The subcompetencies in this area include: making assumptions and simplifying the situation; 

identifying important quantities and variables, which affect the situation; recognizing 

relationships between the variables; and researching and distinguishing relevant information to 

the situation (Blum & Kaiser, 1991 as cited in Maaβ, 2006). Mathematical modelers dedicate a 

significant amount of time to the various subtasks of understanding the problem, stages of the 

modeling process, which pose particular challenges for students (Haines & Crouch, 2010). 

Hilborn and Mangel (1997) argue that the power of mathematical modeling is the development 

of an understanding of a real-world situation, which leads to making informed decisions about 

societal issues. 

Professional Development 

The professional development consisted of an intensive three-week summer experience 

followed by monthly meetings throughout the subsequent academic year. The follow-up 

monthly meetings were to offer an opportunity for the teachers to reflect on how the summer 

experience was impacting their classroom teaching. A team consisting of science educators, a 

mathematics educator, and content specialists conducted the PD. The present paper 

describes the summer portion of the PD, which consisted of three primary components: 1) 

introduction to mathematical modeling, 2) classroom instruction and on-site experiences at 

various energy production sites, and 3) group activities to synthesize the information gained 

from classroom and field experiences. 

To prepare the participants for the on-site experiences, they were first introduced to 

mathematical modeling by engaging in two modeling activities. Using a modeling as vehicle 

approach, the first activity focused on the initial stages of the modeling process. The 

participants were asked to identify the variables that should be considered when determining 

what time one must leave one’s home in order to arrive at work on time. With the guidance of 

the mathematics educator, the participants generated the steps to the modeling process. Over 

two sessions, the participants then used this process to create a model to evaluate the 

environmental costs of locally versus non-locally grown produce. To close this portion of the 

PD, the participants presented their initial models. Mathematical modeling, in particular the 

initial phases involving identifying variables and making assumptions, became the lens through 
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which the participants considered what they learned during the subsequent on-site field 

experiences. 

The general approach used in the PD involved multiple sources of instruction. For all 

energy sources, the participants were provided with general, non-biased, scientific background 

about how the energy was produced via The Energy Report published by the Texas 

Comptroller of Public Accounts [TCPA] (2008). After being exposed to the general background 

regarding how each energy source was used to produce electricity, a combination of 

information sources were used to expose participants to various (and opposing) perspectives 

regarding the relative economic and environmental benefit of each. Table 1 outlines the 

experiences for each energy source.  

Table 1  
Energy Sources Investigated, Location of Instruction, and Representations of Energy Sources 

Energy 
Source Location of Event Representations of Energy Source 

Oil East Texas Oil Museum 
Kilgore, Texas 

Video and tour by museum representative  
Film – A Crude Awakening: The Oil Crash 

News – Deepwater Horizon oil spill in the Gulf of 
Mexico 

 
Coal Oak Hill Mine Henderson, 

Texas 
Martin Creek Steam Electric 

Power Plant Henderson, 
Texas 

 

Tour of Oak Hill and Martin Creek by energy 
company representatives 

Film – Coal Country 
Film – Burning the Future: Coal in America 

Wind  Wolf Ridge Wind Farm 
Muenster, Texas 

 

NextEra representative presentation 
Research ecologist presentation 

Bird/bat mortality sampling experience 
 

Hydroelectric Buchanan Dam Buchanan, 
Texas 

Lower Colorado River Authority representative 
presentation and tour 

Film – Deliverance  
News – 2010/2011 Texas drought 

 
Natural Gas Classroom 

 
XTO Energy representative presentation 

Film – Gasland 
 

Nuclear  Comanche Peak Nuclear 
Power Plant 

Somervell, Texas 

Video and tour by Comanche Peak representatives 
Film – Silkwood 

News – Fukushima Daiichi nuclear power plant 
meltdown 
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These information sources included presentations by energy sector representatives and 

environmental biologists, instructional documentaries, mainstream films, news media, and on-

site energy extraction/production sites. Effort was made to ensure that divergent perspectives 

on each energy source were presented. Subsequent to on-site visits, participants were given 

the opportunity to share their own developing ideas about each energy source and the 

variables, which should be considered when determining their environmental impact. In the 

next section, a detailed description of one energy source (wind power) is given. 

After the on-site visits, the participants were challenged to work in groups to develop 

models, which could be used to compare the energy sources with respect to their impact on 

the environment. The intention of the PD was not for the participants to successfully develop a 

complete model (i.e., a modeling as content approach). However, by using a modeling as 

vehicle approach and focusing on the initial stages of the modeling process, participants 

gained an understanding of the complex nature of making decisions about the sustainability of 

energy production and its effect on the environment, which was a primary goal of the PD. The 

cumulative product of the summer portion of the PD was a PowerPoint presentation created in 

groups wherein participants advocated for or against one assigned energy source. During the 

presentations, the other participants were able to use their new knowledge and awareness to 

contest or support the presenters’ arguments. 

Example 

This section illustrates one example of how participants were exposed to multiple 

perspectives on an energy source, namely wind generated power. Participants were taken to 

Wolf Ridge Wind Farm in Muenster, Texas where they deepened their content knowledge of 

wind power and heard from both energy sector representatives and wildlife biologists. Before 

the onsite visit, participants were given textbook materials that conveyed the scientific, non-

biased, background information on how wind was used to generate electricity (TCPA, 2008). 

Upon arrival at the wind farm, they were provided classroom instruction on wind energy and 

were given a model wind turbine kit. Each participant was challenged to build the most efficient 

wind turbine using the materials provided. Upon completion, fans were used to test the 

efficiency of each design. 

After this activity, a representative from Wolf Ridge conducted a presentation, which 

depicted the construction of the wind farm and presented data regarding, the amount of 

energy produced annually, the environmental benefits of wind power, and the economic benefit 
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of Wolf Ridge to the local community. Following his presentation, he took the participants on a 

tour of the farm and allowed them to observe, photograph, and/or videotape the turbines up 

close, look inside a turbine tower, and witness the powering-up and powering-down of one to 

hear the relative change in noise level. The participants spent the night in cabins, which 

overlooked the wind farm and were able to watch the turbines throughout the evening and the 

following morning when the experience continued.  

To further develop their understanding of the environmental costs and benefits of wind 

generated power, a wildlife biologist shared data regarding bird and bat mortality, discussed 

other wildlife impacts, and conducted a question and answer period. After the discussion, the 

participants engaged in a simulated bird/bat mortality search at one turbine. Field researchers 

taught the participants the sampling protocol, assisted them in locating bird and bat 

mortalities, and described the relative number of casualties found throughout the migratory 

season.  

Upon returning to the classroom, participants had the opportunity to debrief about the 

experience. During this time, they shared their own perspectives of wind energy and how their 

perceptions had (or had not) changed. Emphasis was given to identifying the variables that 

must be considered when making the determination regarding the sustainability and 

environmental costs/benefits of this form of energy. 

Implications 

The instructional approach helped achieve positive learning outcomes related to both 

academic understanding of energy production as well as deepening recognition of 

environmental variables affected by energy production. In their post-assessments, many 

demonstrated more developed understanding of energy production methods. For example, 

regarding how wind can be used to generate power, Participant 8 initially stated: “Wind turns a 

generator directly.” Her post-assessment description included more details and complexity: 

“Windmills (propellers turned by blowing wind) can provide mechanical energy to pump water 

or power machine tools. This mechanical energy can be used to turn generators that generate 

electricity.” Her answer changed from a very vague and general explanation to one with more 

elements of an informed answer.  

Likewise, with regard to environmental costs of each energy production method, many 

more were identified on the post-assessments than on the pre-assessments. For wind power, 

Participant 2 only referred to the space needed: “Requires A LOT of space to give moderate 
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amount of electricity.” Her post-assessment response (“Degradation to aesthetic aspects of a 

landscape…disruption to migratory patterns of birds… noise…need to be a tremendous 

number of windmills through the windiest parts of the country to make this a viable solution to 

energy needs.”) related much more. 

The participants also emphasized the importance the on-site, field-based experiences 

to their own learning process: “Having direct contact with the places and topics we were 

studying really made them real to me, took them out of abstraction and paper scenarios to a life 

experience” (Participant 12) The participants also related how this approach would impact 

instruction in their own classrooms.  

When we discuss energy sources, my resource is the textbook, so I can only give my 

students the advantages/disadvantages that the text provides…. Now I can factually 

give my students info that I personally saw and know, thus providing more info than the 

text. In addition, we can have better discussions and better presentations from me. 

Also, I can talk more knowledgeably about nuclear, hydropower, and coal plants. And 

with pictures taken of these sources, I can connect Texas to the students and show 

them what's going on in their own state. Not only am I planning to boost my lecture 

strategy with the additional info, I'm also going to use the windmill kit with the students 

to teach variable, fair testing, inquiry, etc. I'm going to let them test out blades and try 

to light a bulb. I'm excited!!! (Participant 13) 

The PD had implications for the participants and the instructional experiences of their students. 

The PD, described herein, connected science and mathematics through the use of 

mathematical modeling. Using a modeling as vehicle approach, the initial stages of the 

modeling process (gathering information, identifying variables, and making assumptions) 

served as means for the participants to consider the multiple stakeholders and myriad 

environmental impacts of each energy source to determine their relative sustainability. The PD 

was designed to provide the participants with multiple, diverse experiences, which provided 

various perspectives regarding the relative economic and environmental benefit of each energy 

source. The participants explored the content via onsite field trips, films, and classroom 

teaching; explained what they had learned through classroom discussions and their group-

constructed energy presentation; elaborated on their understanding by critically analyzing the 

presentations of other groups; evaluated the content through their comparison of the energy 

sources; and made final determination of their relative sustainability and environmental impact. 

As a result of the PD the participants experienced modeling as a vehicle for learning, realized 
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the educational impact of on-site experiences for learning, gained content knowledge, and 

recognized the complexity of environmental issues.  
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In the summers of 2013 and 2014, a team of university and informal science educators 

planned and implemented four one-week K-12 STEM Summer Institute that partnered the 
university, local informal science providers, and businesses. With a limited budget, the institutes 
emphasized evidence-based inquiry techniques through the lens of environmental issues. Teachers 
participated in inquiry-based activities, some of which integrated technology such as iPads and 
Vernier probes, while they learned more about conducting scientific investigations. The teachers 
used what they learned to develop and publish inquiry lesson plans for K-12 classrooms. 

Introduction 

The STEM Institute Summer Workshop for K-12 teachers offered a total of four one-

week summer workshops in 2013 and 2014 to K-12 teachers in southwest Florida. University 

faculty and informal science educators delivered model activities in the areas of environmental 

chemistry, renewable energy, environmental engineering, and forensic anthropology. Features 

of the workshops included a) training in evidence-based inquiry pedagogy, b) sessions on 

navigating CPALMS, an online state repository of information and vetted resources for Florida 

teachers, c) time for teachers to develop their own lessons, d) emphasis on environmental 

education, e) participant lunches and morning coffee, f) breakout sessions for K-5 and 6-12 

where appropriate, and g) outreach training for graduate and undergraduate student 

assistants. The institutes were a collaborative effort among STEM and education faculty 

associates of the Whitaker Center for STEM Education at Florida Gulf Coast University (FGCU), 

informal science educators at the Conservancy of Southwest Florida (Naples, FL) and the 

Imaginarium Science Center (Fort Myers, FL). The institutes were held on site at the 

Conservancy of Southwest Florida providing relevant K-12 classroom technology in an 

environmentally accessible setting conducive to collaboration for good pedagogical practice. 

The institutes filled a need in Southwest Florida for K-12 STEM professional development that 

is highly desired by the school districts in a region of the country with many Title 1schools.  

Objectives/Purpose of the Study 

Southwest Florida is situated between the Gulf of Mexico and the western edge of the 

Everglades and includes many environmentally important locations, such as mangrove 

estuaries, swamps, and freshwater rivers. However, the opportunities for professional 

development in STEM for teachers have been limited, mainly due to the lack of higher 



	  

 

Mohr-Schroeder, M. J., & Harkness, S. S. (Eds.). (2014). Proceedings of the 113th annual convention of the School Science and 
Mathematics Association. Jacksonville, FL: SSMA. 

16 

education facilities. The area’s first state university, Florida Gulf Coast University, opened less 

than 20 years ago. Although the two largest school districts, Lee and Collier Counties, host 

annual Saturday conferences for teacher professional development with sessions on science 

and STEM, no follow-up support is provided. Collier and Lee counties have advanced 

programming for only a few selected teachers in each district. The summer institutes 

endeavored to support an additional 70-75 STEM teachers in the school districts both in 

content, confidence, and follow-up support to sustain positive effects on teacher practice and 

student learning. 

The goals of the institutes included 

• Development and delivery of integrated STEM activities for participant 

classrooms through  

o focusing on the standards using the backward design process. 

o gaining familiarity with constructivist learning methods such as the 5-E 

model and Process Oriented Guided Inquiry Learning (POGIL).  

o integrating STEM topics into one lesson, with a focus on Conservancy 

themes. 

o collaborating and sharing developed resources in their own school, 

among teachers in their district, and via Florida’s resource repository, 

CPALMS. 

• Dissemination of an effective model for teacher training in integrative STEM 

instruction. 

• Involving FGCU STEM graduate and undergraduate students in the training 

process for their own professional development. 

Significance and Related Literature 

Traditionally, elementary teachers have little background in STEM courses (National 

Research Council, 2007). Further, many middle and high school STEM teachers coming into 

the teaching profession through alternative certification routes have little formal training in 

pedagogy. The institutes encourage collaboration among K-12 teachers, university faculty, and 

informal science educators to share best practices by providing all participants the opportunity 

to teach and learn from each other. This approach has been shown to enhance teacher 

effectiveness because both subject matter knowledge and understanding of how people learn 

are critical for increased student learning (Darling-Hammond & Youngs, 2002). 
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We also sought to involve two graduate students and one undergraduate student in 

each summer institute. The literature is clear that students involved in K-12 outreach activities 

gain teaching skills, confidence, and enhanced communication which give these students a 

competitive edge when seeking employment (Rao, Shamah & Collay, 2007). 

The institutes focused on STEM professional development. In 2011, Wilson reviewed 

and summarized the literature regarding effective STEM teacher preparation, induction, and 

professional development. She notes that even though there are over 15,000 school districts in 

the U.S. and they all have multiple professional development programs with various sponsors, 

the professional development of teachers has been poorly studied. In fact, Wilson 

characterizes the variety of professional learning opportunities as “carnivalesque” and the 

literature too varied and uneven to draw strong empirical claims (Wilson, 2011). Wilson’s review 

suggests that professional learning opportunities for teachers in STEM, when available, are 

often flat, disconnected, and transitory. Furthermore, they are not designed to address the 

specific need of individual teachers. There is a strong need for more quality professional 

development activities for K-12 teachers in STEM (National Research Council, 2011).  

The literature also tells us there is a definite link between teacher confidence, anxiety, 

efficacy and the student’s ability to learn (Enochs & Riggs, 1990; Tschannen-Moran, Hoy, & 

Hoy, 1998). There is further evidence that when teachers are uncomfortable teaching topics, 

they will tend to avoid them cover these topics superficially (Bursal & Paznokas, 2006; 

Nadelson, Seifert, Moll, & Coats, 2012). The institutes sought to address content knowledge 

gaps and improve teacher comfort with STEM content as well as influence teacher self-efficacy 

and confidence. The intent was to provide effective and consistent content models in varied 

STEM areas as well as to provide resources for teachers to investigate content further after the 

workshop. 

Practice/Innovation 

For the first institute (summer 2013), the FGCU facilitators, FGCU students, and 

community partners met during Fall 2012 to begin planning. This planning group met every six 

weeks to share ideas for inquiry activities, suggest supplies needed, and assign individual 

tasks. After the success of the first institute, the collaborators met during the fall to de-brief 

and assess the previous summer’s workshops prior to the follow-up workshop. Using the 

survey results from summer 2013, we continued meeting on a bi-monthly basis during the 

spring prior to the next institute to plan workshops for the Summer 2014 Institute. All partners 
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benefitted from this synergistic collaboration through sharing ideas and resources as we 

created the model for our institute. 

Daily feedback in the form of a single-page reflection regarding each day’s activities 

was collected from the workshop participants allowing the teachers to reflect on the day’s 

information as well as provide formative assessment to the facilitators so that unclear topics 

could be addressed the next day. Participants were also surveyed at the end of the week 

regarding workshop organization and overall satisfaction. In addition, participants completed 

two online surveys pre-, post- and three months after of the workshop. The Inquiry Science 

Implementation Scale (ISIS) survey immediately after provided insight into the level of inquiry 

implementation in use by the teachers while the Science Teaching Efficacy Belief Instrument 

(STEBI) allowed measurement of teacher self-efficacy changes. Although both of these surveys 

were originally developed to measures changes in science pedagogy, additional research has 

established reliability with both instruments when the word “Science” is changed to “STEM” in 

the surveys (Nadelson, Seifert, Moll, & Coats, 2012).  

Additionally, at the conclusion of the workshop, teachers presented an inquiry-based 

lesson module for their classroom. These were developed by teachers working in cooperative 

groups in consultation with the facilitators during the week. We strongly encouraged the 

teachers to submit their lessons to CPALMS, a Florida K-12 vetted repository that shares 

resources through their website. A Florida Gulf Coast University Whitaker Center collection was 

set up in CPALMS to track submissions from institute participants. This submission process 

provided a level of teacher confidence, assurance, and professional development that is rare 

but much needed among teachers.  

During the institutes, K-12 teachers experienced learning through inquiry-based STEM 

lessons developed and modeled by FGCU faculty. Teachers were then tasked with developing 

their own inquiry-based lessons using a backward design (Wiggins & McTighe, 1998) template. 

In backward design, teachers examine the standards, then develop related student learning 

objectives and assessments before designing their lessons based on an inquiry model such as 

Engage-Explore-Explain-Elaborate-Evaluate (the 5-E model) developed by the Biological 

Sciences Curriculum Study in the early 1990s (Bybee, 2014). Finally, teachers posted their 

lessons to CPALMS, a resource for Florida’s K-12 teachers, where they are reviewed first by 

the facilitators and then other state reviewers before sharing with science teachers throughout 

Florida. Our STEM institute offered seven hours of unstructured consultation and development 

time for the creation of the lessons. Beaudoin, Johnston, Jones, and Waggett (2013) found that 



	  

 

Mohr-Schroeder, M. J., & Harkness, S. S. (Eds.). (2014). Proceedings of the 113th annual convention of the School Science and 
Mathematics Association. Jacksonville, FL: SSMA. 

19 

the most important feature of their summer workshop was time for teachers to collaborate in 

lesson development with support from university faculty and their peers. 

The features of the institutes include 

• Model guided inquiry activities developed and introduced by FGCU faculty and 

community partners in STEM focusing on environmental themes of the 

Conservancy with lessons in soil typing, animal anatomy, water chemistry, 

renewable energy, and engineering for K-12 teachers and our student 

assistants. 

• Sessions examining CPALMS, a Florida repository that holds all Next 

Generation Sunshine State Standards and thousands of resources for K-12 

teachers.  

• Time for teachers to develop their own activities based on the guided inquiry 

model. 

• Highlighting a sense of place (SoP) for participants in daily Conservancy 

explorations such as engineering a filter marsh and gopher tortoise corridor with 

Conservancy staff. 

• Break-out sessions for Engineering and Anatomy topics into elementary and 

secondary cohorts to better address varied needs in these areas (based on 2013 

workshop feedback). 

• Training of FGCU graduate and undergraduate students in facilitating K-12 

outreach activities. 

The week-long summer workshops included 18 hours of instruction, 7 hours of teacher 

activity development, 3 hours of dissemination from the teachers, 3 hours of networking and 

unstructured time for socializing (lunches and coffee breaks were provided) and 4 hours for 

Conservancy activities (i.e., boat tours through mangroves; wildlife rescue center; museum 

exhibits explaining habitat reclamation).  

Classroom Examples 

During the first STEM Institute in summer 2013, the Whitaker Center for STEM 

Education faculty associates collaborated with education staff from the Conservancy of 

Southwest Florida and education staff from the Fort Myers science museum, the Imaginarium, 

to develop a pilot offering institute on site at the Conservancy. There were 32 teacher 

participants. Results were promising as evidenced by a post-workshop survey where teachers 
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were asked whether they gained what they were hoping from the workshop. Of the 31 

respondents, 84% said yes, 16% indicated yes and no, and not a single respondent was 

disappointed in the workshop. Additionally we asked teachers what they thought were the top 

three benefits of the workshop. The top responses to this open-ended question were (in order) 

Resources, Activities, Inquiry Training, Technology, and CPALMS. All of these responses were 

cited by more than 20% of the participants. 

Teachers were also asked to complete the Inquiry Science Implementation Scale (ISIS) 

assessment which measures the degree to which faculty implement inquiry in their classroom 

(Nadelson, Seifert, Moll, & Coats, 2012). These results will inform future workshop offerings. 

The results of the 2013 pilot offering are promising, however, with no funds, almost 2/3 of the 

participants were from Collier County, where the Conservancy is located. Providing 

reimbursement for mileage as well as incentives such as classroom technology would assist 

greatly in increasing representation from the five-county area. 

Although teachers were encouraged to submit their lessons to CPALMS, only one team 

in the 2013 institute was successful in having their lesson vetted and published. That lesson, 

entitled “Florida Panthers and Wildlife Corridors,” was accessed on June 6, 2014, at 

http://www.cpalms.org/Public/PreviewResourceLesson/Preview/50971.  

Implications 

The institutes offer a model workshop for effective K-12 STEM professional 

development. The institutes were developed by FGCU STEM and Education faculty (co-PIs) in 

collaboration with community partners. They focus on encouraging teachers to engage 

students in inquiry learning instead of simply meeting benchmarks and standards. The 

institutes offer a unique approach to integrating constructivist learning practices throughout its 

STEM content. The programming is evidence-based and the practices are consistently 

modeled throughout the workshop by the facilitators. The Conservancy setting leverages 

modern technology in an environmental setting that is appealing to teachers. Formative 

assessment from the 2013 pilot offering indicated that teachers gained skills with technology, 

inquiry training, writing activities, and CPALMS. They also appreciate the resources provided 

and the access to FGCU faculty both during and after the institutes. During the four institutes, 

the partners worked to accommodate the needs of the K-12 teachers. For example, feedback 

during one institute indicated that teachers are unsure what “STEM” means when applied to K-
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12 education, so a very informative discussion was held where university faculty and K-12 

teachers shared their viewpoints. 

In addition to impacting the professional development of the K-12 teacher participants, 

the institutes had a broader impact including:  

• Enhancement of academic/community/K-12 interaction. Our model of involving post-

secondary educators and informal science partners to deliver K-12 professional 

development is a win-win for the university, the community, and the school districts, all 

of whom have an interest in K-12 STEM education enhancement. 

• Increased participation of underrepresented schools. In 2013, the two institutes had 32 

attendees from the five-county area, with 1/3 of the teachers representing Title 1 

schools.  

• Teachers sharing their activities with a larger audience. Teachers were encouraged at 

the end of the workshop to upload the lessons developed in the institutes to the State 

repository, CPALMS which, when vetted, are made available to any K-12 educators. 

The lessons are identified in CPALMS as belonging to the FGCU Whitaker Center 

Collection. Teachers were also encouraged to present their developed activities at their 

local STEM events for K-12 teachers including Super Science Saturday (Lee County) 

and Collier County’s STEM Conference. With funding, future plans include supporting 

teachers during their first year of implementation via a Saturday follow-up 

workshop/learning community where faculty will share results of their implementation. 

 The summer institutes continue to evolve to meet the STEM professional development 

needs of K-12 teachers in southwest Florida. The participating teachers have shared their 

enthusiasm for what they learned during the institutes informally, and in local workshops and 

presentations. As the professional development model is refined for future STEM summer 

institutes at the Conservancy, lessons learned will be shared with a larger audience including 

university faculty and informal science educators. 
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A novel method for both examining and improving preservice teachers’ knowledge for 
facilitating mathematical discussion is presented. The online platform LessonSketch.org was used 
to create comic-based representations of mathematics teaching that included multiple variations 
depending on user (preservice teacher) question choice. Each scenario includes three decision 
points in which question types are available as options for the user, allowing for 39 potential 
storylines generated from user choice. Preliminary data from preservice teachers is presented, 
along with an example scenario, to support discussion for implementation in teacher education, 
with the example provided focusing particularly on elementary mathematics. 

Introduction 

Over the last several years, approaches to mathematics teacher education have been 

increasingly informed by indicators of mathematical knowledge for teaching (MKT). Most 

widely discussed by Deborah Ball and colleagues (Ball, Thames, & Phelps, 2008; Ball & Bass, 

2000; Hill, Schilling & Ball, 2004), MKT includes several sub-domains of knowledge that can be 

usefully distinguished into two primary groups: subject matter knowledge (SMK) and 

pedagogical content knowledge (PCK). These domains, and their subdomains, have been 

particularly useful in creating multiple-choice quantitative assessments at the elementary (Hill 

et al., 2004), middle (Hill, 2007), and secondary level (Herbst & Kosko, 2014), as well as 

assessments based on representations of practice (Kersting, 2008; Kersting, Givvin, Sotelo, & 

Stigler, 2010). Such assessments have aided in exploring relationships observed between 

teachers’ actions and their level of MKT (Ball et al., 2008; Kersting et al., 2010), as well as 

relationships between teachers’ MKT and their decision-making in hypothetical scenarios 

(Kosko, in review; Kosko & Herbst, 2012). Part of what makes these assessments both reliable 

and valid is their construction of items surrounding particular tasks of teaching (Herbst & 

Kosko, 2014). In the case of assessments following Ball and colleagues’ approach, items are 

situated in a task specific to mathematics teaching and the participant reading the item is 

solicited to make some form of decision (is a child’s mathematics correct, do they hold a 

certain misconception, etc.). However, such a design can be modified to not only assess, but 

improve conceptions of MKT.  
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Objectives and Purpose 

Tasks of mathematics teaching provide a useful context for assessing and improving 

teachers’ conceptions of MKT. In this paper, I describe the use of animated representations of 

practice via an interactive web-based platform (LessonSketch.org) to prompt preservice 

teachers to consider multiple scenarios of instruction, differing on the premise of pedagogical 

decisions made in the scenario. To facilitate this description, an example and response data 

are discussed. Given these objectives, the purpose of this paper to describe the initial efforts of 

designing these activities for preservice elementary teachers to develop their MKT for the 

specific task of facilitating mathematical discussions. 

Related Literature 

Much of the research examining teacher knowledge, in general, and MKT in particular is 

based on early research on teachers’ decision-making in the 1970’s, pioneered by Alan 

Bishop, Lee Shulman, and Richard Shavelson through a series of concurrent investigations 

(Borko, Roberts, & Shavelson, 2008). Such work considered understanding teachers’ decision-

making as a means of improving teacher education. Shulman’s (1986) contribution to this line 

of research was his conceptualization of teacher knowledge, particularly PCK. MKT, developed 

by Ball and colleagues as an extension of Shulman’s work (Ball et al., 2008; Ball & Bass, 2000), 

has since been shown to be a useful factor in explaining a portion of teachers’ decision-making 

(Kosko, in review; Hill, 2010: Kosko & Herbst, 2012).However, items included in assessments 

of MKT are situated in tasks of teaching (Herbst & Kosko, 2014). These tasks of teaching can 

serve as simplistic scenarios of classroom practice, often boiled down to a very particular 

moment in the potential decision-making process. As such, tasks of teaching can be 

considered as one type of representation or practice. 

Representations of practice, in general, have been used in teacher education programs 

for decades; mostly in the form of written cases and video vignettes. For example, Jacobs, 

Lamb, and Philipp (2010) describe the use of video vignettes as a means of developing 

elementary teachers’ noticing of student thinking. However, Jacobs et al. (2010) frame their 

description of noticing as a part of a process of decision-making on the part of the teacher. 

Further, the skillset of noticing students’ thinking and operationalizing it within teachers’ 

decision-making is something that can be learned provided certain experiences. Some have 

suggested the use of cartoon and comic-based representations as a means of developing 

such skillsets (Chen, 2012; Chieu, Herbst, & Weiss, 2011; Herbst, Aaron, & Chieu, 2013). Chieu 
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et al. (2011) found that animations provided prospective teachers with opportunities to focus 

on particular aspects of instruction. Rather, while videos include all events that occur in a 

classroom, animations allow for a filtering of certain information and events, allowing for 

specific features of practice to come to the fore. Chen (2012) examined preservice teachers’ 

construction of vignettes and found that when preservice teachers created cartoon-based 

scenarios, they had an increased focus on student actions in lessons.  

While cartoon-based scenarios have been found to be useful for facilitating 

mathematics teacher education, other studies have examined how cartoon-based scenarios 

can be used to examine teachers’ decision-making (Kosko & Herbst, 2012), as well as how 

MKT is embedded as part of the process of decision-making (Kosko, in review). The findings 

from these various studies suggest that cartoon-based scenarios can be used to both improve 

and assess MKT. Given this background, I extended findings from the literature and applied 

them to the context of an elementary mathematics methods course. Within the next section, I 

describe the nature of the comic-based scenarios used, the manner in which they were used, 

and preliminary evidence for their effect on preservice teachers’ MKT in the context of 

facilitating mathematical discussions. 

Innovative Instructional Practice 

Branching Decisions as a Representation of Practice 

I use the term branching decision to denote a particular representation of mathematics 

teaching that includes multiple decision points, and thus multiple branches in a decision tree 

for a scenario1. While it is possible to use various types of representations to create a 

branching decision (i.e., written cases, video vignettes), Herbst, Chazan, Chen, Chieu, and 

Weiss (2011) have argued that comic-based representations of teaching offer a more 

pragmatic means of developing such branching scenarios. In particular, comic-based 

representations contain many of the visual indicators present in video, but can include 

hypothetical as well as actual happenings in the classroom (Herbst et al., 2011). Herbst et al. 

(2011) advocate the use of LessonSketch.org for the creation and organization of such 

representations, and I elected to follow this recommendation. 

In Spring 2014, I developed and implemented two branching decision scenarios into a 

preservice elementary mathematics methods course early in the semester (n = 20). The course 

one of two mandatory mathematics methods courses for preservice teachers, focusing on 

mathematics pedagogy and children’s mathematical thinking. Because the course also places 
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a large emphasis on number and operations topics, the two branching decision scenarios were 

designed to focus on multi-digit subtraction and fractions, respectively. Each scenario included 

three decision points with between three and four hypothetical actions for preservice teachers 

to consider. Each action depicted the teacher posing a question, structured after Boaler and 

Broadie’s (2004) descriptions of gather info, generate discussion, and probing questions 

because of the prevalence these question types are observed in classroom practice. Further, 

scenarios were designed so that decision branches could be designated as probing sequences 

that included more than one probing question to solicit students’ mathematical thinking 

(Franke et al., 2009). Preservice teachers could explore alternate decision branches using a 

‘back button’ embedded in LessonSketch.org experiences. In this manner, preservice teachers 

enrolled in the course could examine the consequence of asking certain questions. Following 

completion of branching decision experiences, we discussed both the question practices, and 

students’ mathematical thinking within scenarios as part of the next course meeting. 

Classroom Examples 

For purposes of space, I discuss the use and preliminary findings from using the 

fractions branching decision experience in the fifth week of the course. Preservice teachers 

completed the experience after one course meeting which focused on Steffe and Olive’s (2010) 

description of children’s fractional schemes, and ways in which to help students develop 

particular definitions of fractions. When preservice teachers opened the experience in 

LessonSketch.org, they were provided an overview of the class, including descriptions of the 

teacher, particular students, materials, and curriculum at time of the scenario. They were then 

presented with the initial slides of the scenario, shown in Figure 1. The scenario included use of 

Cuisenaire rods, which aligned with content focused on in the course meeting, as well as the 

readings assigned for the preceding and forthcoming week. 

  

Figure 1. Initial Stem of Example Branching Decision. 
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After viewing the scenario in Figure 1, preservice teachers were provided with three 

initial options (see Figure 2). Each of these decisions, designated with a dashed border, 

resulted in different student responses. The first option was classified as a gather info question 

because it solicited only an answer from the depicted student Jessie. The second option was a 

probing question because it asked Jesse to describe the procedures for finding the number 

between one-third and two-thirds. The final option was a generate discussion question as it did 

not designate a particular student provide a response.  
 

  

 

Figure 2. Optional Decisions for First Decision Point. 
 

Selecting the second option resulted in Jesse briefly describing what she and her 

partner did to find a solution of three-sixths. However, another student disagrees and says that 

the number can also be one-half. Figure 3 presents this consequence of choosing the second 

action in Figure 2. Yet, Figure 3 also presents a portion of a decision path that can result; the 

second slide in Figure 3 presents another decision point (probing question) and the third slide 
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presents the consequence of that decision. Should the preservice teacher completing this item 

continue to choose certain prompts, students will eventually present their full and correct 

descriptions of their mathematical strategies and solutions (as has been observed by Franke et 

al., 2009). 
 

 

  

Figure 3. Potential decision branch resulting from selecting action 2 in decision point 1. 
 

In the comments and discussion that followed, preservice teachers noted how 

comparing the results of different questions affected their teacher knowledge. One preservice 

teacher, Sarah, noted, “it was interesting to see at which point the teacher moved on the next 

question. I tried many different options to try and include the most discussion and explanations 

before moving on, while not forgetting to solve the original problem.” This echoes what many 

other preservice teachers noted was a tension regarding attending to students’ mathematical 

thinking, while also attending to demands of the curriculum (in this case the mathematical task 

at hand). Another preservice teacher, Megan, commented that “it’s important to dig deep and 
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encourage children to show their thought process. Instead of moving on to the next problem, 

we encouraged Jesse to explain why.” 

What it meant for preservice teachers to have students “explain why” was a concept 

that evolved over the entire course. At this point in the semester, Sarah was describing this in 

terms of using probing sequences while Megan was referring to individual probing questions. 

Megan’s descriptions were fairly common in the course, but they also demonstrated an 

improvement in how preservice teachers described facilitating mathematical discussions at the 

beginning of the course. In completing the first branching decision experience, approximately 

60% of the class indicated that using a series of generate discussion prompts was appropriate; 

this effectively limited the depth of mathematical description in the depicted scenario in 

exchange for a larger number of participating students in the scenario. Rather, by examining 

the various branches in each depicted scenario, and being instructed to focus on how the 

questions helped students articulate their thinking, preservice teachers began to make more 

meaningful connections between the nature of a mathematical prompt and students’ 

mathematical descriptions. Anna’s description, below, helps illustrate this point. 

One thing that I learned was you really need to follow along with the story and 

think about the responses the students will give. When I picked what the teacher 

should do next, I had a scenario set up in my head, but when I reflected on my 

story it wasn’t what I expected (Anna). 

Implications 

Use of the branching decision experiences showed the potential for engaging 

preservice teachers in reflecting on their own MKT in regards to facilitating mathematical 

discussions. This was in spite of only using two such experiences in the course. Future 

implementation will include additional experiences with a similar emphasis on focusing on how 

choice of prompt affects what student thinking was solicited. Additionally, branching decision 

experiences for other tasks of teaching could be created to help preservice teachers develop 

their PCK in specific instructional contexts that may not readily come about in their field 

experiences. However, additional study and implementation is necessary to fully realize the 

potential of branching decisions in mathematics teacher education. While this paper provides 

the mere beginnings of such work, it appears there is much promise in branching decisions as 

a teacher education tool. 
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Notes 
1The term branching decision was coined by Daniel Chazan and Patricio Herbst in their 

work with cartoon-based representations of practice. 
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CCOONNSSTTRRUUCCTTIIVVIISSMM--BBAASSEEDD  ““SSEETTSS””  FFOORR  LLEESSSSOONN  PPLLAANNNNIINNGG::  AANN  EEXXAAMMPPLLEE  

FFRROOMM  HHIIGGHH  SSCCHHOOOOLL  CCHHEEMMIISSTTRRYY  

James W. Laughner 
Deerfield Academy 

jlaughner@deerfield.edu  
Constructivist practice requires flexible lesson planning based on longitudinal assessment. 

This example document for lesson planning demonstrates a way to transfer constructivist, 
methodological teacher knowledge. The “SET,” for “atoms-first” chemistry, covers all SAT II topics 
using the mental-models approach. Key components are: direct correspondence to a free text, 
student-performed demonstrations replacing non-constructivist teacher demonstrations, lab 
activities allowing more discussion, explicitly-presented mental models, simulations, and 
manipulatives, keyed to proven classroom methodology. This successfully used (SAT II average 
>650) SET is freely available. 

Introduction 

Today’s new teachers, graduated from a program often based on constructivist theory 

and with a working knowledge of many valuable methods and proven activities, often move 

into school settings where it is very hard to apply all of their learning. Chief among the 

difficulties are time limitations and institutional resistance to change.  

Lesson planning takes an inordinate amount of time. Young teachers following 

constructivist ideas must find and evaluate (for quality and appropriateness) many 

methodologically varied components, preferably many more than they will ever use in one year, 

so that they may adapt the learning environment to the needs of the students in real time. In 

training, pre-service teachers may have spent much time on a unit plan or other assignment, 

and done an excellent job, while learning how to construct and modify a good learning 

environment. But on the job, time constraints hinder this process greatly while real-time 

response too longitudinal assessment limits the applicability of the traditional unit-length plan. 

Many new teachers must also immediately integrate into environments that are not 

optimal. Some new teachers are under state-mandated constraints associated with high-

stakes tests; some have insufficient funding; many have multiple class preparations or other 

duties like coaching and monitoring; most do not yet fully understand the range of student 

abilities and backgrounds in their schools. These constraints make a high-quality learning 

environment with quality lessons more difficult to construct. 

Older teachers like the author, especially those of us who have tried to stay abreast of 

educational innovations, should help new teachers adapt to today’s challenging educational 

settings. Probably the best way for us to help is to mentor new teachers, but one-on-one 
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mentoring has obvious limitations. In the most challenging situations, mentoring is not even a 

possibility: a new teacher may be in a school with no appropriate mentor and no time or 

equipment to work online with a mentor. Clearly, another means of transferring constructivist-

friendly practices is needed. The purpose of the Constructivist “SET” is to provide an efficient 

way to pass constructivist methods and ideas to a new teacher, who may simply not have the 

opportunity or time for extensive mentoring, onsite observations, or consulting. 

Objectives/Purpose 

For three years, I have been modifying lesson plan formats with the objective of 

constructing a transferrable (especially to new teachers) set of information that would reduce 

preparation work load but still facilitate the use of constructivism-compatible practices. I have 

developed an example of the resulting “Constructivist Set” (or just “SET”) for the curriculum for 

a first-year, advanced chemistry class with high SAT II performance as a principle end-of-year 

goal. SAT constraints have often been used as an excuse to avoid constructivist methods, but I 

have included much methodology consistent with constructivist theory (although the 

curriculum is far from perfect in this regard) into the SET. 

I have applied and developed this curriculum for three years, using it with three first-

year teachers. I want to share this specific SET and the SET idea so that new chemistry 

teachers may benefit, and so that other long-time constructivist-based teachers might try a 

similar method of sharing knowledge and practice with new teachers they may not be able to 

mentor individually. 

Instructional Framework 

I decided based on my online and onsite mentoring that different information would be 

useful to new teachers with constructivist backgrounds, instead of the typical unit and lesson 

plans, which tend to limit variation based on classroom assessment. The design I developed I 

call a “Constructivist Set” since it is a listing of tested learning activities, classroom 

environment activities and characteristics, and assessment methods for determining best 

practices, not just a collection of dictatorial step-by-step plans.  

Innovation 

I use this "SET," a collection of documents, to provide a teacher with a highly varied list 

of proven methods from which they could choose appropriate activities based on their 

assessments of student learning needs. I did not want to dictate specific lessons, although I 

often asked a mentee to try a specific method for a while. 
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This particular “SET” parallels (in general) a free web text and associated ancillaries 

(Bishop, 2013). This text is incredibly readable, and ancillary material on the same site includes 

a wide range of activities, from problem solving to simulation and animation. Audio book, 

PowerPoint format, and portable formats are also available. This choice of text and ancillaries 

allows nearly any teacher to access the text, even if the school cannot purchase new texts, or 

has a poor or too high a level of text in hand.  

The SET includes a page of tested activities for each section of the book (there are 

about 60 pages total) beginning with chapter 3 (the first two chapters are not taught 

individually; their topics are integrated into later chapters). A typical SET page begins the 

examples below. The activities referenced include POGIL student worksheets, on-line 

animations and simulations, YouTube demonstrations and helps, Khan Academy lectures, 

laboratory procedures, student-performed demonstrations (Laughner, 2006) and more. 

Obviously some of these are more helpful than others to constructivist practice. Therefore, 

most activities are also keyed (using a two-letter code) to a list of methodologies and 

classroom practices the teacher is encouraged to use and assess. 

Completing the SET are supplemental documents (accessed via links or document 

files), for example: 

• Any necessary details of activities listed on the pages  

• A compendium of classroom practices 

• Brief reminders of theory behind the activities and practices to be used and 

avoided 

• Laboratory and demonstration activity procedures 

• Other procedures and other documents for student and teacher use 

Examples 

Examples of SET components follow: 

• Appendix A is An example of a SET section page (section 3.1) 

• Representative excerpts from the list of classroom practices 

• Representative excerpts from the theoretical background section 

• A typical student-performed demonstration document, representative of the 

laboratory and demonstration procedures compilations 

The SET section page is the basic “SET” document. It contains a list (or set) of possible 

activities, methods, and topics to be covered in a period of a few classes. The items on the list 
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can be found in the text or in the other documents. Here is an example from Chapter 3 section 

1 of the text (Bishop Chemistry, Atoms-First). Note particularly the letter pairs in brackets, 

which are used for easy reference to comments in the other documents: 

Example SET Basic Document: The Section Page  

SSEETT  ffoorr  CChheemmiissttrryy  11AA  DDeeeerrff iieelldd  AAccaaddeemmyy    
RReemmeemmbbeerr  ttoo  uussee  bbrraacckkeetteedd  lleetttteerr  ppaaiirrss  ttoo  rreevviieeww  tthheeoorryy  
aanndd  pprraacctt iiccee!!  

         
            TTeexxtt    SSeecctt iioonn  ##        TTii tt llee  ooff  SSeecctt iioonn  

OObbjjeecctt iivveess  
llooccaatt iioonn    

BBiisshhoopp  AAttoommss  FFiirrsstt  33..11  SSooll iiddss,,  LLiiqquuiiddss,,  aanndd  GGaasseess  pp..  110077   

         

    
Beginning of Class:  

   
HHoommeewwoorrkk  ppoossssiibbii ll ii tt iieess  pp..  111100  ##88,,1100,,1122,,1144,,1166,,1188  

   
[[HHAA]]  pp..  111122  ##4433,,  4455,,  4477,,  4477,,  4499  

   

  
RReeaadd  aanndd  oouutt ll iinnee  33..11  ((bbeeffoorree  ff ii rrsstt  ccllaassss))   

   

  
RReeaadd  aanndd  oouutt ll iinnee  33..  22((aafftteerr  llaasstt  ccllaassss  iinn  tthhiiss  sseecctt iioonn))   

   
WWaarrmm  UUpp((ss))  11))  UUssee  SSLLGG  ssiimmuullaatt iioonn  55  mmiinn..  aanndd  ttaakkee  nnootteess::  

   
  [[WWUU]]  hhttttpp::////pprreeppaarraattoorryycchheemmiissttrryy..ccoomm//KKMMTT__ff llaasshh..hhttmm   

   

    
Main Class Possibilities: 

   
CCllaassss  ccoommppoonneenntt  

  
DDeessccrr iipptt iioonn  aanndd//oorr  llooccaatt iioonn  

   
TTeexxtt  LLiinnkk  [[RRAA]]  hhttttpp::////pprreeppaarraattoorryycchheemmiissttrryy..ccoomm//BBiisshhoopp__BBooookk__aattoommss__33..ppddff   

 
MMeennttaall   MMooddeell ((ss))   [[MMMM]]  KKMMTT  ((pp..  7766  OORR  mmooddeell>>mmeennttaall>>KKMMTT))  

   
HHaannddss--oonn  mmooddeell ((ss))   [[MMHH]]  2277  ddiiccee  SSLLGG  mmooddeell   ((mmooddeell>>SSLLGG))  

   
CCoonncceepptt  MMaapp  [[CCMM]]  hhttttpp::////pprreeppaarraattoorryycchheemmiissttrryy..ccoomm//BBiisshhoopp__CChhaapptteerr__MMaapp__33..hhttmm   

 
SSttuuddeennttPPeerrffoorrmmeeddDDeemmoo  [[SSDD]]  LLaabbssAAnnddDDeemmooss>>SSPPDD>>WWiirreeTThhrroouugghhIIccee  

   
LLaabb  [[LLTT]]  LLaabbssAAnnddDDeemmooss>>LLaabbss>>HHeeaatt iinnggCCoollddIIccee  

   
PPOOGGIILL  aacctt iivvii ttyy  [[PPAA]]  nnoonnee  

     
OOtthheerr  aacctt iivvii ttyy  DDrraaww  KKMMTT  ppiiccttuurreess  22--oonn--WWhhiitteebbooaarrdd  [[WWTT]]  ffoorr  pphhaasseess,,  ttrraannssii tt iioonnss,,  eettcc..    

 
KKhhaann  AAccaadd..  lleeccttuurreess  [[KKAA]]  

hhttttppss::////wwwwww..kkhhaannaaccaaddeemmyy..oorrgg//sscciieennccee//cchheemmiissttrryy//ssttaatteess--ooff--mmaatttteerr//vv//pphhaassee--
ddiiaaggrraammss  

OOtthheerr  aaiiddss  
PPhhEETT  aanniimmaatt iioonn  hhttttpp::////pphheett..ccoolloorraaddoo..eedduu//eenn//ssiimmuullaatt iioonn//ssttaatteess--ooff--mmaatttteerr--
bbaassiiccss  

 
CCoommppaatt iibbllee  CCoonntt iinnuuoouuss  SSooccrraatt iicc  [[QQSS]]  dduurr iinngg  MMHH,,  LLTT,,  SSDD,,  aanndd  MMMM..    

   
  AAsssseessssmmeenntt  TTyyppeess  [[CCAA]]  MMuulltt iippllee  CChhooiiccee  CCaarrddss//CCll iicckkeerr  [[CCCC]]  dduurr iinngg  MMHH,,  CCMM,,  iinn--ccllaassss  HHAA..  

 

  
RRaannddoomm  QQuueesstt iioonniinngg  [[QQRR]]  dduurr iinngg  tteerrmm  rreevviieeww,,  lleeccttuurree  

   

    
End of Class: 

   
EEnndd--oorr--ccllaassss  rreevviieeww  [[EERR]]  

DDrraaww  aa  ppiiccttuurree  ooff  tthhee  KKMMTT  mmooddeell   ooff  aa  ppaarrtt iiccuullaarr  
pphhaassee  

   
EEnndd--ooff  ccllaassss  SSttrreettcchh  [[EESS]]  

CCoonnssiiddeerr  KKMMTT  ooff  ssuuggaarr  sswweeeetteenneedd  ccoollaa,,  ootthheerr  
eexxtteennssiioonnss  

   
TTiicckkeett22LLeeaavvee  [[EETT]]  DDrraaww  KKMMTT  sshhoowwiinngg  wwhhyy  eevvaappoorraatt iioonn  ooccccuurrss  aatt  TT<<TTbbooii ll iinngg  

 

    
Topics List: 

   
PPrrooppeerrttyy  ccoonnttrraasstt//ccoommppaarree  LL//SS//GG//PP  

     
PPhhaassee  TTrraannssii tt iioonnss  aanndd  tthhee  KKMMTT  

     
TTeerrmmss  vvaappoorr iizzaatt iioonn,,  eevvaappoorraatt iioonn,,  ssuubbll iimmaatt iioonn,,  eettcc..  
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The Classroom Practices list is my effort to keep constructivist methods at the forefront 

as the new teacher plans classes, even as the basic document allows maximum versatility to 

respond to student needs. Reference to this document may help the beginning teacher resist 

reverting to non-constructivist practice. Here is an excerpt (the letter pairs connect the 

document with the basic SET document above): 

Excerpt from the list of classroom practices 

QR: This letter pair indicates a place where the teacher should consider random 

questioning, seating, student selection, etc. Many teachers still allow students to raise hands, 

etc. even though random questioning is almost always a superior practice; the theoretical 

background section gives a summary of the theory behind randomness in the classroom. In 

short, though, remember to use some random selection process every time a non-Socratic 

question is asked during a lecture, every time a lab is done (do not use the same lab groups 

repeatedly!), any time a student is selected to be a “reader” or a “performer” of a student-

performed demonstration, etc. 

QS: This letter indicates an appropriate place for Socratic questioning. For example, 

dice are used in many of the hands-on models. The dice represent different things in different 

models. Using dice in this way is purposeful; it encourages students to think about what each 

model component stands for, rather than to concentrate on the model components 

themselves. So, as the students are working on a model that uses dice and you are walking 

around, great Socratic questions include: What does the red die represent and how is it a good 

thing to use a die to model this? How is it bad? What is one thing this model can help you think 

about? Is there anything this model might predict if you apply it? Is the prediction right or 

wrong? 

For more on Socratic questions (there is a whole literature on this one topic!), try some 

suggested readings (Elder, 1998; Moore, 2002). 

The theoretical background document, like the classroom practices document, is an 

attempt to connect the activity choices to constructivist ideas and enforce the theoretical ideas 

in the mind of the new teacher during actual practice and lesson design. Here is an excerpt: 

Excerpt from the theoretical background section 

QR: The job of the teacher is to construct an environment in which students can learn 

efficiently. This environment will change quite a bit as the students learn by constructing 

mental models, practicing mathematical procedures, memorizing content, applying models 

using multiple-step critical thinking, etc. The teacher must gather information about the 
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students continuously in order to make decisions about the most appropriate methodology to 

introduce next. Statistically there are two ways to collect valid information: sample every 

student or sample randomly. 

Since a sample must be as representative as possible, allowing students to raise hands 

(or not to!), to pick partners, etc. guarantees that information gathered from the resulting 

situation is not valid for methodological decisions. Also, student effort is significantly increased 

when random elements are included (McDougall, 1993). 

QS: The subject of classroom questioning in general and Socratic questions in 

particular is too large to go into here. For more on how to ask questions in chemistry, look at 

relevant articles (for example, Wenning, 2006) or the very large literature on this topic in 

general. Questions can be designed best after background research into student 

conceptualization and language are first reviewed by the teacher, for example by reading 

appropriate sections of The Chemistry Classroom (Herron, 1996). 

The final part of the SET is the collection of laboratories and demonstrations. While 

Laboratories are often redesigned to be more constructivist in practice, the demonstration is 

much more radically changed. Doing demonstrations in front of passive students is neither 

constructivist nor productive (Crouch, 2004). The following is an example of a student-

performed demonstration, which is led by a pair of randomly-chosen students. Perhaps 30 of 

these are done in a year. The two students are under careful classroom observation, with the 

teacher acting only as safety observer. Other students take notes, make sketches, and 

perhaps hypothesize during the first reading, then write down observations during the second 

reading (which is done as the second student performs the demonstration step-by-step. 

One example follows; a complete collection of “SPD’s” is available from the author: 
Example of a Student-Performed Demonstration Procedure 

STUDENT PERFORMED DEMONSTRATION 

Wire through Ice 

Background for this SPD: Coverage of phases of matter, particle model of matter, 

KMT, closeness of density of solid and liquid compared to gas, and “backwards” pressure 

behavior of water-to-ice transition (phase diagram). 

Teacher preparation for this SPD:  

1. Obtain ice cube (colder ones work better) 

2. Tie loops onto ends of a mono-strand copper wire or other suitable wire.  

3. Hang about 500 g mass onto wire to insure it will hold. 



	  

 

Mohr-Schroeder, M. J., & Harkness, S. S. (Eds.). (2014). Proceedings of the 113th annual convention of the School Science and 
Mathematics Association. Jacksonville, FL: SSMA. 

37 

4. Cantilever a meter stick over the end of a bench, clamping it or weighting the end on 

the bench to insure stability.  

Teacher SPD initiation: 

Randomly select a student “reader. Then randomly select a student “performer.” Have 

the reader begin reading immediately below the heading “Student Instructions,” while ensuring 

that all directions are followed and everything is done safely. 

Student Instructions 

One student reads these directions while ALL students take notes. Then the same 

student reads the instructions again. This time, the “performer” follows the directions while 

everyone takes notes on what they observe. 

Demonstration directions: 

• Make sure meter stick cantilever is secure 

• Center the metal wire so that its middle is on the top of the meter stick 

• Hang the 500 g mass through both loops of the wire, below the meter stick 

• Put an ice cube on the cantilevered meter stick and move it under the wire until 

the wire holds it in place. 

• Everyone observe, and then go back and check on the ice after minute or so, 

then again after another minute. After two minutes, you may attempt to lift the 

wire out of the ice by lifting on each side of the wire. 

Implications 

This SET product will hopefully be one model for a more constructivism-compatible 

way to transfer practice to new teachers, who simply do not have the time both to continuously 

assess students to determine their needs and to find or construct activities, practices, and 

classroom environmental characteristics from scratch to fit the needs of their students and 

meet the requirements of good constructivist practice. Since all students, classrooms, and 

teachers are different, the flexibility of the SET may allow a new teacher to more efficiently 

improve classroom practice, when compared to current lesson planning techniques. The SET 

may do this by providing many good activities and methods, while still allowing (and 

encouraging with integrated helps) new teachers to continually assess the needs of their 

students and modify classroom environments and activities accordingly. 
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Lending an artistic flare to exploring modular arithmetic makes the subject more palatable 
and interesting to both the math and non-math wired student. Making observations, drawing and 
shading patterns obtained from residual sets can range from simple to complex. Adding fractal 
explorations connected to the familiar Pascal’s Triangle to make models of Sierpinski’s Triangle by 
use of different modulo just increases the fun!  

Introduction 

An exploration of subsets of modular arithmetic residual sets provides an opportunity to 

blend art and mathematics together. By placing points on circles delineating congruent arc 

lengths for the number of non-zero elements of residual sets for a given devisor, some 

interesting designs can be created. Some of the patterns are trivial and some have interesting 

symmetries. Reciprocal modular arithmetic congruencies have identical designs; which are 

unexpected outcomes by the students. Nonetheless, they quickly catch on to the pattern and 

can thereafter describe additional reciprocals for different moduli. 

Another group of interesting sketches that can be made comes from the investigation of 

fractals. Fractals are iterative designs where a pattern is repeated many times. We can 

generate the beginning of a fractal design by hand, but to see several iterations of the design 

we need to use a computer. We will explore some of the famous fractals like Sierpinski’s 

triangle (sometimes referred to as Sierpinski’s gasket or Sierpinski’s sieve), Koch’s snowflake, 

and the Mandelbrot Set.  

Purpose of the Study 

Here in the United States in the twenty-first century there has been a significant push 

by government, industry, and educators to improve the quality and quantity of students 

attracted to the STEM (Science, Technology, Engineering, and Mathematics) areas of study. In 

an endeavor to spark interest and to make connections between art and mathematics, I have 

revitalized and extended some activities published in 1984 and 2003 to promote and stimulate 

interest by young students to look at mathematics with a different lens. By showing students 

patterns created with residual sets and doing some informal work with fractals, students can 
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see some mathematics beyond their usual course of study and potentially be inspired and 

stimulated to study mathematics or other related STEM fields. 

These activities are not only engaging, but they provide an opportunity for the instructor 

to introduce students to the names of famous mathematicians and to help familiarize them with 

some of their work. Granted this is not a thorough or even rigorous investigation of Gauss, 

Sierpinski, Koch, or Mandelbrot, but it is a beginning exposure to these giants within the field. 

It is an opportunity to stimulate interest and direct students to find more information on these 

scholars. It is a chance to inspire a student into committing to the study of mathematics! 

Significance and Related Literature 

The first mathematician and ideas explored in the activity centered on Gauss. Karl 

Friedrich Gauss (1777 – 1855) launched the idea of congruences in one of his number theory 

books, Disquisitiones Arithmeticae, making Gauss the father of modular arithmetic (Eves, 

1990). Congruence ideas are frequently found in our every day lives. The position of the hour 

hand on a clock can be determined by using mod 12, Thanksgiving on Thursday is that day 

mod 7, and grades are determined using mod 5 on a 4.0 scale. Manufacturers use moduli to 

determine the amount of product to make to fit into packaging. This activity explored the 

graphing patterns of the non-zero residual sets for a few different moduli (NCTM, 1984). 

Students were given a rudimentary understanding of modular arithmetic congruencies 

and then asked to look at creating some designs mod 7 and mod 10. Reciprocal congruencies 

were explored and a final activity mod 65 was assigned as homework. The mod 65 residual 

design using 2 as a multiplier created a cardioid as shown in Figure 1. Following the modular 

arithmetic exercises, the activity continued with an exploration of fractals and some of the 

mathematicians associated with them. 

 

Figure 1 
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Waclaw Sierpinski (1882 – 1969) was a mathematician from Poland who introduced the 

triangular fractal named for him in 1915, although the design had been used in Italian art since 

the 13th century (Wolfram, 2014). The iteration is performed by connecting the medians of an 

equilateral triangle and then connecting the medians of each equilateral triangle formed by this 

iterative process. Online you can play with Sierpinski’s triangle at 

http://www.shodor.org/interactivate/activities/SierpinskiTriangle/ as seen in Figure 2 (Shodor, 

2014a).  

  

Figure 2: Level 5 

O’Sullivan (2003) does a nice job of linking Pascal’s triangle, Sierpinski’s triangle, and 

the use of spreadsheets. The directions are clear, concise, and easy to follow. The time needed 

to complete the programming is nominal and the results are well worth the effort. Using the 

spreadsheet program, not only can Pascal’s triangle be shown mod 2 (see Figure 3), but the 

instructor or student can now instantly produce Sierpinski-like designs mod 3 through mod 

100 allowing for discussion of a wide variety of patterns within these patterns (see Figure 4). 

From here we moved on to look at another equilateral triangle fractal design. 

 

Figure 3: Pascal’s triangle mod 2 
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Figure 4: Pascal’s triangle mod 12 

Helge von Koch (1870 – 1924) was a Swedish mathematician who created a continuous 

polygonal curve without tangents at any point often referred to as Koch’s snowflake (O’Conner 

& Robertson, 2000). Like Sierpinski’s triangle, Koch’s snowflake begins with an equilateral 

triangle. The length of each line segment is increased by one-third its length repeatedly as 

indicated in the figures below. This iterative pattern produces an infinite perimeter with a finite 

area! One online interactive tool exploring this pattern is found at 

http://www.shodor.org/interactivate/activities/koch/ seen in Figure 5 (Shodor, 2014b). The 

National Library of Virtual Manipulatives for Interactive Mathematics (NLVM) provides an 

animated simulation of many iterations of the Koch snowflake seen in progress in Figure 6 

(2014a). Finally, we move to our final fractal exploration, leaving the real numbers behind and 

delving into the complex numbers. 

   

Figure 5: Koch’s Snowflake Level 3   Figure 6: Koch snowflake animated 

Benoit B. Mandelbrot (1924 – 2010) was born in Poland and is known for creating an 

infinitely complex set known as the Mandelbrot set (O’Conner & Robertson, 1999). The basic 

idea behind deriving the set comes from the plotting of Z = Z2 + C, where Z is a complex 

number and C is some constant to be tested (Dewey, 2014). When colors are added to the 

graph, spectacular artistic shapes appear within the set. Julia sets are small subsets of the 

Mandelbrot set or close-ups of particular segments. The appearance of the set is dependent 
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upon what initial values are selected for C and Z. Dr. Mandelbrot was a professor at Yale 

University (see his personal website at http://www.math.yale.edu/users/mandelbrot/). NLVM 

(2014b) provides a tool for easily exploring the Mandelbrot (see Figure 7) and Julia sets (see 

Figure 8). 

    

Figure 7: Mandelbrot set    Figure 8: Julia set 

Practice 

The material for this workshop was put together in such a way as to be used either as a 

group lead whole class activity (GLA) or a standalone individual learning activity (ILA) for 

students with a sufficient background to handle the concepts presented. The GLA offers 

opportunities for robust discussions and peer assistance exploring modular arithmetic and 

fractal design ideas. It is important for the facilitator of the GLA to allow for natural 

development of ideas and side excursions into the “I wonder what would happen if…” 

scenarios. The facilitator should take the time to review the activity and materials in advance to 

determine where their students may or may not have problems and plan as much as is 

possible in advance for these occurrences. 

The ILA offers the classroom teacher possibilities for enticing students to do some work 

in mathematics while exposing them to ideas and concepts they might not hear about 

otherwise until they were in college, if at all. Students are given the ILA when they have 

completed other assignments or potentially as extra credit types of explorations or projects. 

The activity gives the students an exposure to mathematical ideas beyond the scope of the 

regular classroom and helps to open the door into developing their interest and curiosity about 

higher levels of mathematics. 

Classroom Examples 

I presented this material as a workshop with sophomore to senior girls and their 

teachers from several different high schools in southern Georgia as part of Valdosta State 

University’s annual Sonya Kovalevsky Day activities. The students found the material very 

accessible and had few questions regarding the instructions for doing the modular arithmetic 



	  

 

Mohr-Schroeder, M. J., & Harkness, S. S. (Eds.). (2014). Proceedings of the 113th annual convention of the School Science and 
Mathematics Association. Jacksonville, FL: SSMA. 

44 

or for creating the desired figures. Some caught on to the process more quickly than others, 

but all were able to complete the exercises with minimal assistance from teachers or peers. 

Perhaps more importantly, they seemed to enjoy doing the activities and felt good about their 

mathematics abilities when they completed the various activities.  

Additionally, I had the opportunity to present this workshop for the Valdosta State 

University Learning in Retirement (LIR) program. Approximately a dozen retirees attended the 

workshop and were energized and amazed at the connections between the residual designs 

and modular arithmetic as well as being able to complete some fractal designs. Even though 

several claimed rusty mathematics skills or outright difficulties with numbers, all were able to 

grasp the concepts presented and complete the work. Several attendees requested extra 

worksheets to take home to share with their grandchildren in an effort to spark interest into the 

field of mathematics. 

Implications 

This type of activity provides, not just an elect few individuals, but all students a chance 

at being exposed to non-routine mathematics at the middle grades to high school level. In a 

climate of high stakes testing and teaching to the test, this type of activity provides educators 

and their students with materials that can help to ignite interest and fuel a desire to study 

materials vital for a student to become successful in any of the STEM majors. The activity can 

be employed even if there is no whole class time available. Exposing young students to these 

types of materials affords them the chance to see mathematics used in a way they never 

thought possible. It allows them to do mathematics they never thought they would be able to 

get to let alone be successful at doing.  

Exposure by itself is not enough. We still need to encourage young students to study 

hard and take as many advanced courses as they are able. Empowering students with the 

notion they can do and find a use for advanced mathematics is vital if we hope to inspire 

students to enter into the STEM fields. Dr. Peter Hilton (1923 – 2010), renowned topologist and 

mathematician, once told me, “If only the students could see the beauty in the numbers, the 

way I do, they would delight in doing their exercises!” (personal communication, 2000). By 

creating and delivering these types of activities, maybe, just maybe, we are on the path to 

opening students’ eyes to seeing the beauty in the mathematics. 
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The State of Illinois is beginning tri-level certification, requiring a new middle level education 

certification degree program of each higher education institution. This paper is a discussion of the 
stages of development of an integrated, cross-disciplinary degree – including the political, social, 
and academic challenges and achievements. In particular, the program for mathematics and 
science has several unique aspects including assisting students through notorious university 
“gateway” courses and the blending of STEM Education into methods courses. 

Introduction 

By the fall semester of 2015, each four-year higher education institution in Illinois is to 

have a degree program for the newly created middle school teacher licensure certification. 

Illinois will begin tri-level teacher certification, namely grades 1-6, 5-8, and 9-12, by February 1, 

2018 (Illinois State Board of Education, 2013). This paper is a discussion of the stages of 

development of an integrated, cross-disciplinary degree – including the political, social, and 

academic challenges and achievements. 

Objective 

The objective of the Northern Illinois University (NIU) Middle Level Teaching and 

Learning Program is to prepare teacher candidates who understand the intellectual, physical, 

social, emotional, ethical, and cultural needs and interests of young adolescents; who 

demonstrate content knowledge expertise; and who commit themselves to a developmentally 

responsive approach to curriculum and instruction at the middle school level.  

The program fosters the following values as central to middle level teaching and 

learning: 

• Social justice and equity for all students; 

• Respect for diversity among learners and within their community; 

• Developmentally responsive practices; 

• In-depth content knowledge and interdisciplinary connections; 

• Profound pedagogical content knowledge; 

• Comprehensive pedagogical knowledge; 

• Standards-based curricula; 

• Data-informed instruction;  
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• Collaboration with colleagues, parents, and the school’s community; and 

• Commitment to ongoing professional development and reflective practice (NIU, 

2013a). 

The NIU Bachelor of Science in Education (B.S. Ed.) degree in Middle Level Teaching 

and Learning is an interdisciplinary program. It is designed to prepare future practitioners with 

the content knowledge and pedagogical approaches necessary to serve the needs of young 

adolescent learners in specific disciplines as required for teacher licensure in middle level 

education. As a condition for obtaining an initial or subsequent Illinois middle level teaching 

license, for grades 5-8, candidates prepare for teaching endorsements in two of four content 

areas: English Language Arts, Mathematics, Science, and Social Sciences.  

Instructional Framework 

Designing a new certification degree program is a daunting task.  It is especially 

daunting when this task was dictated by an entity outside the university, namely the Illinois 

State Board of Education (ISBE). Our process began with a handpicked Middle Level Teaching 

and Learning (MLTL) Program Advisory Committee by the Provost. This committee was made 

up of faculty from each subject area in the College of Liberal Arts and Sciences and from 

faculty from the College of Education.  

In an approach to eliminate possible academic “turf wars” the Provost deemed the new 

degree to be independent of either College in the charge to the MLTL Committee. Later, the 

degree was agreed by both College Deans to be under the College of Education for purely 

logistic reasons.  A further charge to the committee was to design four-year degree pathways 

that satisfy all State Certification and University graduation requirements in the various subject 

areas. The ISBE mandated educational content in Education Psychology, Middle School Child 

Development, Assessment, ELL, Content Area Literacy, Middle School Organization, 

Classroom Management, and Integration of the Exceptional Student, plus Clinical Experiences 

and Student Teaching. In addition, ISBE also mandated that certification candidates fulfill the 

subject matter content requirements in two of four content areas: English Language Arts, 

Mathematics, Science, and Social Sciences. 

The MLTL Committee researched the standards of the National Council for 

Accreditation of Teacher Education, Association for Middle Level Education, as well as the 

Specialized Professional Associations: International Reading Association, National Council of 

Teachers of English, National Council of Teachers of Mathematics, National Council of 
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Teachers of Social Studies, and National Science Teachers Association. Further, the degree 

certification requirements of universities that are in states that already had Middle Level 

certification were evaluated.  

Innovation 

It became immediately obvious that choosing courses to fulfill all these requirements 

and standards would violate the Provost charge of a four-year degree pathway. The MLTL 

Committee also was committed to having rigorous content course requirements in the subject 

areas beyond the State minimum specifications. New courses needed to be designed and 

existing courses need to be revised to fulfill these expectations. For example, freshman English 

was blocked with Education as an Agent of Change and with Education Experience and school 

visitations into a Themed Learning Community course package for second-semester freshmen.  

The blocking of courses in the freshman year should structure the undergraduate students into 

four-year cadres of students. Cadres can allow the students to belong to a community of 

learners to meet students’ academic, emotional and social support needs (Zollman, Smith & 

Reisdorf, 2011). 

Specifically for the notorious university “gateway” courses of chemistry and calculus, 

these courses were blocked with a University Experience course. This course goes beyond the 

normal introduction to college study skills. Students are guided into how to read and study 

mathematics and science at the college level explicit to the content study during that period of 

the semester. The first purpose is to teach specific content study skills, e.g., thinking of a limit 

in multiple perspectives – not just graphical. The second purpose is to assist students in 

becoming mature reflective learners and forming their own identity by fostering self 

determination, cultivating self regulation, and capitalizing on peer interaction in a productive 

learning environment (Zollman, Smith & Reisdorf, 2011). 

Example 

Appendix A presents the four-year degree pathway for a student going for middle 

school certification with mathematics as the primary content area and science as the 

secondary content area. Many of the courses are blocked together, disrupting the one-to-one 

correspondence between requirement standards and a specific course assumed by some 

university faculty. The primary area of mathematics has 32/33 semester hours of mathematics, 

beginning with calculus and includes one STEM methods course and one mathematics 
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methods course for middle level students. The secondary area of science for this pathway has 

24 hours in the natural sciences. The professional education coursework is 41 additional hours. 

Implications 

Usually a “top-down” administrative approach, as in this case forced by the State, does 

not succeed. However the top University administrators fortunately identified individual faculty 

members in various departments that bought into and whole-heartedly supported the 

objectives of the new middle school certification degree program. These faculty members 

shaped, swayed and coerced the established programs to develop a fresh approach to a new 

degree. 

Will these new degrees be successful?  This depends on several factors beyond the 

control of the university faculty:  

• Will the university continue financial support of degrees that may require small 

class size?  

• Will the administration continue to compel colleges, departments and faculty to 

stop turf battles over control of programs and courses?  

• Will the State, as has occurred in the past, change requirements before 

programs can develop? 
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Appendix A 

Four-Year Degree Pathway: Primary Area Mathematics and Secondary Area Science 

 

Fall 1 Credits To Do Spring 1 Credits To Do

COMS 100 3 ENGL 104 3

ENGL 103 3 EPFE 201 3

MATH 229 4 UEDU 101 1

UNIV 101 1 CHEM 211 + CHEM 213 (lab) 4
Secondary Content Area

CHEM 210 + CHEM 212 (lab) 4 MATH 230 4 Primary Content Area

 

Total hours 15 Total hours 15

Fall 2 Credits To Do Spring 2 Credits
To Do

MATH 303 3 Primary Content Area MATH 302 3 Primary Content Area

STAT 301 3 Primary Content Area BIOS 209 + BIOS 211(lab) 4 Secondary Content Area

HIST 260 or 261 3 EPS 419 (Middle Child) 3

BIOS 208 + BIOS 210 (lab) 4 Secondary Content Area MLTL 301 Clincial #1 (Early 
Adolescent Dev. Emphasis)

1

ENGL 110 or other ENGL 
Literature course

3 EPS 300 (ED PSY) 3

PSYC 102 3

Total hours 16 Total hours 17

Fall 3 Credits To Do Spring 3 Credits
To Do

MATH ELECTIVE #1* 3 Primary Content Area TLCI 422 (M.S. Organization) 3

MLTL 302 Clincial #2 (Special 
Ed. & Content Area Lit. 

1 MLTL 404/MATH 404X (STEM 
ED METHODS)

3 Cross-listed inter-discipline methods 
course

TLSE 457 (Sp ED - 
Exceptional Child)

3 choose special Middle School 
section

MATH ELECTIVE #2* 3 Primary Content Area

PHYS 210 4 Secondary Content Area POLS 100 or Appropriate 
Social Studies Elective

3

LTR 311 (LIT in the STEM 
Area)

3 Cross-listed course PHYS 211 4 Secondary Content Area

ARTH 282 or MUSC 220 or 
THEA 203

3 MLTL 303 Clincial #3 (Multi-
Culture & Middle Sch. Phil. 

1

Total hours 17 Total hours 17

Fall 4 Credits To Do Spring 4 Credits
To Do

LTIC 420 METHODS for ELL 3 MLTL 485 STUDENT TEACHING 11

MLTL 304 Clincial #4 (Co-
Teaching & ED TPA 

2 MLTL 461 Seminar (ED TPA 
Emphasis)

1

MLTL 410/MATH 410 (MIDDLE 
SCHOOL MATH METHODS)

3 Cross-listed course

MATH ELECTIVE #3* 3 Primary Content Area

TLCI 450/EPS 450X (Classroom 2

ETR 422 Assessment & 
Technology

4

Total hours 17 Total hours 12

UNIV 101 specifically tied to MATH 
229 & CHEM 210/212

Notes:''''!130/131!Total!Hours!with!32/33!Hours!in!Mathematics!(includes!two!methods!courses)!and!24!Hours!in!Science!Content!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
April'1,'2014!!!!!!!!!!!!red:!CORE!COMPENTCY,!orange:!IDS),!purple:!Social!Sciences,!green:Humanities!&!the!Arts,!blue:Science!&!Math:!GENERAL!EDU!REQUIREMENTS!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!*!Math!Elective!Options!(Choose!three):!MATH!206;!MATH!210;!MATH!304;!MATH!360;!MATH!415;!MATH!416

Middle Level - Teacher Certification

EPS 419, MLTL Clinical #1,  and 
EPS 300 are Blocked Courses

Degree Path - Catalog 2015-2016
Grades 5-8 Program

ENGL 104 EPFR 201 and UEDU 
101 specifically tied to Themed 

Learning Communities & School 
Visitations

MathemaVcs!(primary!content!area)!&!!
Science!(secondary!content!!area)!

!
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LLEESSSSOONN  PPLLAANNNNIINNGG  TTHHRROOUUGGHH  AA  TTRRAANNSSDDIISSCCIIPPLLIINNAARRYY  SSTTEEMM  LLEENNSS  

VVaarr iiaatt iioonnss  ttoo  aa  ttrraannssddiisscciippll iinnaarryy  uunnii tt   ooff  ssttuuddyy  
Maureen Cavalcanti 

University of Kentucky 
mcavalcanti@uky.edu  

 
The purpose of this plan is to present a way to engage students in a complex real-world 

problem and in doing so facilitate learning within and across STEM related content areas using 

inquiry-based standards-driven methods. This document can serve as a guide for developing a 

transdisciplinary unit of study. The unit here relates to the biodiversity of forests and the 

influence of human intervention through harvesting natural resources. The unit can progress 

along a number of different paths, depending of the scope and time constraints in the 

classroom.  

Identify relevant content standards and look for commonalities. Identify applicable 
mathematical practices, science and engineering practices, and potential connections to 
literacy standards. 

Mathematics Science Engineering 
CCSS-M  
F-IF-3 Understand the 
concept of a function 
and use function 
notation 
3. Recognize that 
sequences are 
functions, sometimes 
defined recursively, 
whose domain is a 
subset of the integers. 
  
F-BF-1a Build a 
function that models a 
relationship between 
two quantities 
1. Write a function that 
describes a relationship 
between two quantities. 
a. Determine an explicit 
expression, a recursive 
process, or steps for 
calculation from a 
context. 

NGSS Performance Objectives,  
HS-ESS3-1. Construct an explanation based on 
evidence for how the availability of natural 
resources, occurrence of natural hazards, and 
changes in climate have influenced human activity.  
 
HS-ESS3-4. Evaluate or refine a technological 
solution that reduces impacts of human activities on 
natural systems.*  

HS-LS2-2.Use mathematical representations to 
support and revise explanations based on 
evidence about factors affecting biodiversity and 
populations in ecosystems of different scales. 
 
HS-LS2-6.Evaluate the claims, evidence, and 
reasoning that the complex interactions in 
ecosystems maintain relatively consistent 
numbers and types of organisms in stable 
conditions, but changing conditions may result in 
a new ecosystem. 
 
HS-LS2-7. Design, evaluate, and refine a solution 
for reducing the impacts of human activities on 
the environment and biodiversity. 
 

 

HS-ETS1-3. 
Evaluate a solution to 
a complex real-world 
problem based on 
prioritized criteria and 
trade-offs that account 
for a range of 
constraints, including 
cost, safety, and 
reliability, and 
aesthetics as well as 
possible social, 
cultural, and 
environmental 
impacts. 
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Mathematical 
Practices 
4. Model with 
mathematics. 
8. Look for and 
express regularity in 
repeated reasoning. 

Science and Engineering Practices 
5. Using mathematics and computational thinking 
6. Constructing explanations (for science) and designing solutions (for 
engineering) 
7. Engaging in argument from evidence 

Common Core State Standards Connections-ELA/Literacy 
RST.11-12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical 
text, verifying the data when possible and corroborating or challenging conclusions with other 
sources of information. 
WHST.9-12.2 Write informative/explanatory texts, including the narration of historical events, 
scientific procedures/ experiments, or technical processes.  

The big idea, driving question for the unit of study, potential sub-driving/investigative 
questions, and end product 

The Big Idea: Functions and modeling can be used to solve complex real-world problems 
related to natural resources and the purpose and impact of human intervention. 
Unit Driving Question: Should we stop cutting down trees? 
 
Possible sub-driving/investigative questions: 
1. What happens to the trees that are cut down? (Science) 
2. Investigate the impact on animal species in areas of logging. (Science, Math) 
3. To what extent can we predict the future of trees? Develop an appropriate mathematical 

model (Math, Engineering) 
4. Consider alternatives to tree and logging (e.g. fuel, construction, paper products, etc.) 

(Math, Science, Engineering)  

 
End Product  
• Build a structure using material other than wood OR build a “before and after” model of a 

geographic area  
• Create a campaign for or against advocacy of conservation efforts (options could include 

newsletters, wiki page, blog, infomercials, create and conduct a survey and report the 
results) 
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Instructional Methods and Assessment 
General instructional methods appropriate for the unit of study: 
 
Text driven Socratic seminar (potential readings below) 
• Purdue University. (2009, December 9). Logging effects vary based on a forest's history, 

climate. ScienceDaily. Retrieved November 3, 2014 from 
www.sciencedaily.com/releases/2009/12/091202114046.htm 

• USDA Forest Service - Pacific Southwest Research Station. (2014, January 6). 79 years of 
monitoring demonstrates dramatic forest change. Science Daily. Retrieved from 
www.sciencedaily.com/releases/2014/01/140106133257.htm 

• University of Washington. (2010, December 8). Bringing the green back. Conservation. 
http://conservationmagazine.org/2010/12/bringing-the-greenback/ 

Guest Speakers-experts in the field 
• Field trip to local arboretum, with geocaching component and landscape analysis 
• Use of popular television to develop narrative of experiences of loggers such as AxMen and 

SwampLoggers 
• Connections to technology 
• Role playing activities-what if you needed to leave your environment? 
• Brainstorming (e.g. alternative resources) 
• Reflective Journal (e.g. daily journal of uses of wood) 
 
Assessment: 
Sample General Rubric appropriate for the unit end product: 

 
Source: https://www.scienceleadership.org/pages/Assessment_at_SLA 

 
For additional resources check out Pinterest- 
• PBL-Project Based Learning http://www.pinterest.com/MrsMacsMusic/pbl-project-based-

learning/ 
• STEM Education and Play http://www.pinterest.com/resseguie/stem-education-and-play/ 
• National Academies Press-STEM Education http://www.pinterest.com/napress/stem-

education/ 
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Sample Mathematics Benchmark Lesson 
Sub-driving/Investigative Question: To what extent can we predict the future of trees? 
Develop an appropriate mathematical model. 
Learning Objectives 
• Students will be able to write an explicit formula using recursive methods. 
• Students will determine the limiting value of a function and interpret in the context of the 

problem. 

Instructional Methods 
Engage/Explore 
The Problem: You are a forest ranger in charge of a national forest that currently has 1000 
trees. A new policy of cutting and planting has just been approved: At the end of each year, 
20% of the trees in the forest will be cut down and 100 new, fast-growing trees will be planted. 
In this lab, you will discover the long-term effects on the number of trees in a forest of a cutting 
and planting process in which 20% of the trees are cut down at the end of each year and 100 
new trees are planted. Figure out the long-term effects of this environmental policy; that is, 
whether all the trees will eventually disappear from the forest, the forest will be overwhelmed 
with trees, or something between these two extremes. 

Source: Goldberg, K. (2007). Using technology for problem solving in middle and high school mathematics. Upper 
Saddle River, NJ: Pearson Education 

 
Work to dissect the problem will be accomplished using mixed teacher guided and student 
directed methods. The teacher will guide students through a KWL for the problem. Then 
students will move into groups using a method appropriate for the given class and work to 
solve the problem. 
 
Explain 
Discussion of results and explanation of mathematical procedures. The following terminology 
will be discussed in the context of the tree problem (examples will be provided as needed, 
connections to prior learning will be consistently made): 

• Function 
• Recursively defined functions 
• Closed form or an equation (incl. linear functions) 
• Input and output (revisit domain and range) 
• Conjecture and hypothesis 

 
Elaborate 
Students explore the Ecology Global Network website 
http://www.ecology.com/2011/09/10/paper-chase/ 
 
Students use the site http://www.bugwood.org/intensive/forest_tree_planting.html or other 
similar to identify the cutting and planting values for a geographic location. Determine an 
equation to model and explain the long-term outcome for the trees. Represent the model 
graphically and include a table of at least 10 values. 
 
Additional Resource: 
NCTM Illuminations-Rainforest Deforestation Problem or Myth? 
http://illuminations.nctm.org/Lesson.aspx?id=3820 
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Assessment:  
Student work from the elaborate phase will be assessed to determine student understanding 
of recursively defined functions and using multiple representations (tabular, graphical, 
algebraic) to present results. Students’ appropriate use of content-specific language will 
additionally be assessed, feedback will be provided, and opportunities to make revisions using 
feedback will be available. 
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Sample Science Benchmark Lesson 
Sub-driving/Investigative Question: Investigate the impact on animal species in areas of 
logging.  
Learning Objectives 
• Students will investigate the impact on the human activity of logging on biodiversity of a 

geographic location. 
• Students will create an alternative habitat for a species misplaced by the practice of 

logging. 

 
Instructional Methods 

 
Engage 
Ask students to share what they know about forests/wooded areas and the plants and animals 
that live there. Generate a list of geographic locations that are classified as forests.  
Teacher reads Dr. Seuss’ The Lorax to the class (or show select movie clips); Video clips from 
Avatar, Fern Gully, Planet Earth-Rainforests or The Inconvenient Truth could be used in place 
of The Lorax. Debrief the selected reading or video clip. 
 
Explore 
Students are assigned to a group characterized by various layers of the rainforest: Emergent 
layer, Canopy layer, Understory, Shrub layer, Forest floor. These are the expert groups. At 
each station students explore the environment, including plant and animal life, for the given 
layer. The goal is for each student to become an expert of a single rainforest layer. Possible 
guiding questions include: 
1. Describe the layer-amount of sunlight, climate, available resources 
2. Identify plants and animals that would thrive in a given layer, including identifying animals 

that could move between layers. Consider various aspects of animals and relationships 
such as nutrition, adaptive behaviors, predation, movement, growth and reproduction. 

Now that the individual layers have been explored (below left), new groups are formed that 
consist of one member from each of the expert groups (below right). 
 

 
 
 

Experts share out their understanding of their respective rainforest layer. The group compares 
and contrasts the various rainforest layers. Individuals record “take-aways” for each layer 
using a selected graphic organizer.  
 
 

canopy	  
layer	  

understory	  

shrub	  
layer	  

forest	  2loor	  

emergent	  
layer	  

emergent	  
layer	  

canopy	  
layer	  

understory	  shrub	  layer	  

forest	  2loor	  
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Explain 
• Check in with groups and share out “take-aways.” This work can be displayed using 

Google Drive or other tool for document sharing for students to use as a reference. 
• Vocabulary will be explicitly addressed including-biodiversity, habitat, ecosystem, and 

other terms identified as needing clarification 

 
Explore/Elaborate 
Once students have completed group discussions of the five layers, the teacher probes them 
with a follow-up scenario:  
• Find a New Home Activity-Imagine trees are being harvested in a rainforest of your choice. 

Find a new home for an animal of your group’s choice using your knowledge of your 
understanding of the animal and its habitat. Compare the new habitat to the rainforest and 
identify long-term impact on the species (e.g. was it a good move? can the species 
survive? advantages? disadvantage? adaptive behaviors?) 

 
Explain 
Students present a visual and narrative of the animal and its new habitat  
 
Additional Resources 
• Student Activities related to forests: https://www.plt.org/focus-on-forests 
• Background information on Logging, Rainforests, Deforestation: 

http://kids.mongabay.com/lesson_plans/ 
• FOSS Kit-Animals Two by Two (for younger students) 
• Environmental Education: http://ee.wfpa.org/ee/ 

Assessment: 
“Find a New Home” assignment can be evaluated using a holistic rubric. 
• 1 points- An animal and brief description of a new home is described. 
• 2 points- all of the above and the description contains many details. 
• 3 points- all of the above and both animal and habitat are described in many detail. 
• 4 points- all of the above and comparisons are clearly made to the rainforest ecosystem 
• 5 points- all of the above and long-term impact is explored and discussed 
• *Work that is not presented in a clear and fluid manner will be returned for revisions. 

 
Additional skills including collaboration and critical thinking will be supported and assessed 
throughout this multi-day lesson. Students will have an opportunity to submit a summary of 
individual contributions and new learning of how animal species are impacted by harvesting in 
their environment.  
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WWAARRMM--UUPPSS  TTRRAANNSSFFOORRMMEEDD  MMYY  CCLLAASSSSRROOOOMM  

Brooke Powers 
Fayette County Public Schools 

lindsay.powers@fayette.kyschools.us 
http://powersfulmath.wordpress.com/  

 

I have always had a love/hate relationship with warm-ups and flashbacks. At the school 

where I teach they are required and I truly to get the “why” behind using them to start class. 

After all, I honestly need that 5 minutes to take attendance, answer questions, and deal with 

whatever 7th grade crisis just transpired in the hall. However, I have always struggled with 

what that warm-up or flashback should look like. So I have done what many teachers do, that 

good old skill and drill warm-up. You know the process, you give the kids the five questions, 

they pretend to do them, you go over the answers, they write the answers down and pretend 

they got them all correct. Great learning going on there right? (Side note, sometimes I think 

about the ways I have taught kids in the past and cry a little on the inside). 

Time to Change 

Enter this year’s teacher led TMC conference. No I didn’t attend the conference but I 

felt like I did. I anxiously awaited every tweet, read every blog post that came out of it, and 

resolved that even if I wasn’t there I could certainly still use it to make myself a better teacher. 

Of course, I quickly became overwhelmed with so many amazing ideas at once so I decided I 

needed to focus my efforts and energies so I started working on my warm-up dilemma. I 

started by reading this blog post and then that quickly led to others and as I read post after 

post about teachers who had leveraged their warm-ups in the classroom to really improve 

student learning. I knew this change was needed for me and was doable so I created 

this Warm-Up to use this year in my class. 

Each day we do Estimation 180. I know some only incorporate it once or twice a week 

but due to the fact that I love it and the kids love it I knew I needed to do it every day. The kids 

fill out the hand-out provided on the website and also send their estimate in on their clicker. 

This allows me to provide an incentive to our best estimator (using our team money system) 

and once I display the live results it gives us some great talking points. We talk a lot about the 

estimates, what we know was too high or low, why some answers were more popular than 

others, etc. Besides just the reasoning and number sense provided by the activity I love the 

focus that we have been able to place on finding the percent of error. Percent error is such a 
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big 7th grade Common Core Standard and is so valuable in students being able to reason with 

percentages. I have been amazed by the results so far. In a class that is about 30% English 

Language Learners and 45% students with disabilities, 92% of students turned in an 

Estimation 180 sheet for the first 20 days of school that was filled with beautiful reasoning 

strategies and high quality percent of error work. I can’t begin to tell you how rare it is for 

students to put that much effort into a warm-up sheet. And to date, 84% of students in that 

class have currently mastered finding the percent of error with no formal instruction only the 

focus we have placed on it during our Estimation 180 time. 

 
The rest of our warm-up time changes based on the day of the week as follows: 

• Math Talk Monday 
• Counting Circle Tuesday (There are tons of great resources out there for this, just 

google Counting Circle!) 
• Would You Rather Wednesday 
• Tough Pattern Thursday  
• Find the Flub Friday (I just write a problem on the board and purposefully work it out 

incorrectly.) 
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Love 

I love the focus this has allowed us to place on mathematical reasoning and processing 

and not skill and drill. I love that the kids have a few minutes to share their ideas and just talk 

about math. I love that kids the used to pretend to do their warm-ups and then just wrote down 

the answers have bought in and work diligently so that they have something to share with the 

class. I love that we are focusing less on the right answer and more on the right reason. I love 

that when I read their warm-ups at the end of the week that I can see the effort they have put 

in. I love that warm-ups have went from my least favorite part of class to the most valuable 

time we spend. 
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CCRREEAATTIINNGG  HHIIGGHH--QQUUAALLIITTYY  SSTTAANNDDAARRDDSS--BBAASSEEDD  EEXXTTEENNDDEEDD  RREESSPPOONNSSEE  

QQUUEESSTTIIOONNSS  ((EERRQQSS))  

Craig Schroeder 
Fayette County Public Schools 
dcraig.schroeder@gmail.com  

 

As we continue to move towards changing standards and classroom expectations, we 

must continue to find ways to prepare our students not only for mandated standardized tests, 

but also for real-life mathematical challenges they will face.  Writing exceptional Extended 

Response Questions (ERQs) is not an easy task. If you are like me, tested or not, these 

questions are the summative assessment tool that incorporates the application of targeted 

standards.  Whatever your reason for creating and using, I have outlined below some tips and 

ideas as you create these ERQs. 

11..  RReeaadd  tthhee  ssttaannddaarrdd,,  ccaarreeffuull llyy..   

If you want to assess a standard, make sure you have read it and understand its scope 

and magnitude.  Check standards that are similar in both the grade prior and grade after your 

targeted grade to verify you are covering the scope of the standard at your grade level. 

22..  SStt iicckk  wwiitthh  oonnee  ssttaannddaarrdd..  

If you try to assess too many standards in one ERQ, your ability to determine your 

student’s knowledge of each standard will become muddied.  The standards are complex on 

their own, so try not to mix in multiple standards. 

33..  PPiicckk  aa  ssttaannddaarrdd  tthhaatt  iiss  hhaarrdd  ttoo  aasssseessss  wwiitthh  mmuull tt iippllee--cchhooiiccee  ii tteemmss..  

There are certain standards that lend themselves to ERQs and more importantly cannot 

be assessed with multiple-choice accurately.  For instance if you want to find out if a student 

can solve a system of equations using the substitution method, this is much better left to a 

short answer or ERQ.  A multiple-choice question for this standard would allow for guess and 

check or any other method to be used. If you used a multiple-choice question that asked for a 

step in substitution you would only be assessing part of the process.  While writing your 

standards-based tests, these standards that can only be assessed with ERQs will be evident to 

you. 

44..  AAsskk  aann  ooppeenn--eennddeedd  qquueesstt iioonn,,  bbuutt  kkeeeepp  tthhee  ppaarrttss  aass  iinnddeeppeennddeenntt  aass  ppoossssiibbllee..  

That may be a little blurry.  What I’m trying to say is that if a student doesn’t understand 

part A of a three part question, he should still be able to share his knowledge or complete parts 
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B and C.  If the answer to part A has to be correct in order to get part B or part C, then you 

might get a lot of false negatives on parts B and C.  

55..  SSttaarrtt   ff rroomm  ssccrraattcchh..  

We all have our favorite older open response questions that we want to keep using.  

Please don’t.  The curriculum has changed and so has the expectations for the question.  It is 

much better to be creative and generate a new question that is focused solely on the standard 

you wish to assess.  Modifying old questions often results in assessing multiple standards or 

maybe even one that isn’t on grade level.  

66..  PPiicckk  ssoommeetthhiinngg  tthhaatt  ssttuuddeennttss  ccaann  rreellaattee  ttoo..  

The bane of my existence was a flour barrel question we used for an open response 

question at my school.  I’m not even sure I’ve ever seen a flour barrel and I know my students 

haven’t.  Make it something common and culturally relevant to your area and socially relevant 

to your students.  I’ve seen some recently with Napoleon Dynamite, but even that is old.  Try to 

include Psy, Lady Gaga, or Lebron James and your students will think you’re ERQ is more 

relevant and interesting. (I just felt old trying to be cool there.) 

77..  RRuunn  ii tt   bbyy  aa  ccooll lleeaagguuee..  

Some of us are fortunate enough to have other teachers that teach the same grade 

level, but many of you may not.  Have another teacher look it over (post it on a blog or Twitter 

#edchat if there is no one in your building) for feedback before you use it.  Ask them what 

standard they think it addresses.  Sometimes this other vantage point will allow you to catch an 

error in wording or content. 

88..  GGrraaddee  wwiitthh  aa  ff iinnee--ttooootthh  ccoommbb..  

I always grade extremely difficult on my own ERQs.  Whatever you allow during the year 

and give credit for, you should expect when it comes state testing time.  Don’t slack on the 

grading thinking they will do it perfectly next time.  You will get what you demand. 

 

I hope these suggestions will help you in developing quality ERQs for your students.  

Find a real-life problem they can relate to, one that assesses one standard, and one that helps 

your students apply their knowledge.  Good luck to everyone! 
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TTHHEE  UUSSEE  OOFF  HHAANNDDSS--OONN  AACCTTIIVVIITTIIEESS  TTOO  EEXXPPLLOORREE  DDIIRREECCTTLLYY  AANNDD  

IINNVVEERRSSEELLYY  PPRROOPPOORRTTIIOONNAALL  RREELLAATTIIOONNSSHHIIPPSS    

Muhammet Arican 
The University of Georgia 

marican@uga.edu  
In mathematics education literature, preservice teachers’ reasoning about and 

comprehension of proportional and inversely proportional relationships is not well-explored. In this 
explanatory multiple-case study, hands-on and real-world problems were used to investigate the 
reasoning of four middle and secondary grades teachers’ when determining whether two quantities 
are in a directly or inversely proportional relationship. This study makes use of the coordination 
classes construct to analyze teachers’ responses. Although teachers considered proportionality to 
explain relationships, they determined directly and inversely proportional relationships by 
comparing given quantities qualitatively and had trouble in recognizing the reciprocal multiplicative 
relationships between those quantities. 

Introduction 

Understanding ratios, proportions, and proportional reasoning has been a central focus 

of school mathematics, and these topics are critical for students to learn, but difficult for 

teachers to teach (Lobato, Ellis, & Zbiek, 2010). One of the problems of teaching and learning 

proportional relationships is that traditional proportion instruction puts an emphasis on rule 

memorization and rote computations (Izsák & Jacobson, 2013). Hence, the most common 

strategy for solving a missing-value problem is the cross-multiplication strategy (Fisher, 1988), 

which requires setting a proportion and cross-multiplying numbers within the proportion. Even 

though this strategy has been mentioned in textbooks as a general strategy and widely used in 

classrooms, many students apply this strategy without a meaningful understanding of it 

(Lobato et al., 2010). In fact, simply knowing how to apply the cross-multiplication strategy to 

these types of problems does not mean that students really understand the proportional 

relationships. A second problem is that mathematics education research has overlooked 

teachers’ proportional reasoning (Izsák & Jacobson, 2013). In particular, only a few researchers 

(e.g., Fisher, 1988; Izsák & Jacobson, 2013; Lim, 2009; Riley, 2010) studied teachers’ 

proportional reasoning regarding inverse proportions. Similarly, the concept of multiple 

proportions has been explored by only a few researchers such as Vergnaud (1983, 1988). 

Therefore, the preservice teachers’ reasoning about and comprehension of inversely 

proportional relationships are not well-explored. 
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Objectives of the Study 

My main goal in conducting this study is to explore how preservice secondary grade 

mathematics teachers identify directly and inversely proportional relationships and distinguish 

them from each other. Additionally, the types of strategies that prospective teachers use to 

solve single and multiple proportion problems, their ability to represent direct and inverse 

proportional relationships in given problems, and the difficulties that they encounter while 

solving these problems are explored. Thus, the following research questions guide this study.  

1. How do preservice middle school mathematics teachers determine directly and 

inversely proportional relationships in given problems, and what types of reasoning 

strategies do they use in detecting and explaining directly and inversely proportional 

relationships?  

2. What types of strategies do preservice teachers use to solve given problems, and what 

kinds of difficulties do they encounter in the process of detecting and explaining directly 

and inversely proportional relationships?  

Theoretical Framework and Related Literature 

This study makes use of the construct of coordination classes (diSessa & Sherin, 1998), 

a concept established in science education as part of the knowledge-in-pieces epistemological 

perspective (diSessa, 1988), to analyze teachers’ facility with precise identification of directly 

and inversely proportional relationships and multiplicative relationships. A coordination class 

contains two essential tools: readout strategies and the causal net. Readout strategies “deal 

with the diversity of presentations of information to determine, for example, characteristic 

attributes of a concept exemplar in different situations” (diSessa & Sherin, 1998, p. 1171), or 

more simply, they are strategies for acquiring information about the physical world. The causal 

net, is “The general class of knowledge and reasoning strategies that determines when and 

how some observations are related to the information at issue” (diSessa & Sherin, 1998, p. 

1176).  

Most recently, Izsàk and Jacobson (2014) investigated preservice middle and 

secondary grades teachers’ facility with multiplicative relationships and the identification of 

directly and inversely proportional relationships by utilizing coordination classes. However, the 

missing-value problems used by Izsàk and Jacobson (2014) involved either a single 

proportional or nonproportional relationship. As Izsàk and Jacobson (2014) stated, this was a 

limitation of their study, and they suggest that future research should involve more complex 
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cognitive structures to analyze teachers’ responses to the proportion problems (Izsàk & 

Jacobson, 2014). In order to examine complex cognitive structures Izsàk and Jacobson (2014) 

recommend using problem tasks that involve physical devices and other contexts with which 

teachers have less experience. Since this study uses hands-on problem tasks and multiple 

proportion problems to examine teachers’ proportional reasoning, it extends and strengthens 

the knowledge-in-pieces perspective by applying core components of this perspective to 

understand the more complex cognitive structures used by teachers to identify directly and 

inversely proportional relationships and multiplicative relationships.  

Methodology 

An explanatory multiple-case study methodology (e.g., Yin, 1993, 2009) was used in 

designing this study. Because the purpose of this study was to explore preservice teachers’ 

reasoning, each individual participant constituted a case. Since there was more than one case, 

a multiple-case study methodology best suited the scope of this study. The data was collected 

through semi-structured clinical interviews (e.g., Bernard, 1994). In Spring 2013, one female 

and two male students from the secondary grade program (8-12 grades) and in Fall 2013, one 

female student from the middle grade program (4-8 grades) at one large public university in the 

Southeast participated in the study. The following pseudonyms were used for the students 

from middle and secondary grade programs, respectively: Abby, Robert, Sally, and Jason. All 

participants were in the third year of their programs. Robert, Jason, and Sally were interviewed 

for three hours each; Abby was interviewed for approximately 80 minutes.  

This study presents participants’ responses to the three hands-on—Gear I, Gear II, and 

Balance—, and three real-world problem—Speed, Fence, and Apartment—tasks. Abby worked 

on the Balance and Speed tasks; Robert worked on the Gear I, Gear II, Fence, and Apartment 

tasks; and Sally and Jason both worked on Gear I, Gear II, Speed, Fence, and Apartment 

tasks. I developed the Gear, Balance, and Apartment tasks and adopted the Speed and Fence 

tasks from Dr. Sybilla Beckman’s mathematics textbook, Mathematics for Elementary Teachers 

(2013). In the Gear and Balance tasks, participants were provided with plastic gears and with a 

mini number balance system, which was a simple version of an equal-arm beam balance scale, 

respectively. The Gear I task involved determining a directly proportional relationship between 

the size of a gear and the number of notches it possessed. The Gear II task involved 

determining an inversely proportional relationship between the number of revolutions that a 

gear makes and its radius as well as an inversely proportional relationship between the number 
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of revolutions and the number of notches. The Balance task involved determining an inversely 

proportional relationship between the distance (how far from the center a weight was placed) 

and the number of weights. The Fence, Apartment, and Speed tasks involved multiple directly 

and/or inversely proportional relationships.  

Results and Discussion 

AAbbbbyy’’ss  CCaassee  

Abby successfully explained the directly and inversely proportional relationships 

between quantities in the Balance and Speed tasks. In both tasks, she determined directly and 

inversely proportional relationships by describing qualitative relationships between quantities. 

However, except in one instance, she did not explain the multiplicative reciprocal relationships. 

Hence, her read out of the relationships was based on appropriate qualitative relationships, not 

on the multiplicative relationships between quantities. Her difficulty with forming appropriate 

multiplicative relationships seemed to be an important constraint in her causal net. Additionally, 

she did not recognize the constancy of the products in the inversely proportional relationships 

and the constancy of the quotients in the directly proportional relationships. For instance, in 

the Balance task, although she suspected the product of the distance from center and the 

number of weights to be something constant, she did not recognize that the same constant 

could be obtained from the rate table that she generated to explain the inversely proportional 

relationship.  

Since, in her causal net, Abby knew that the quantities in a directly proportional 

relationship were increasing and decreasing at a single constant rate, she initially endorsed a 

single constant rate in the inversely proportional relationship between the number of weights 

hung and the distance from center. Later, as a result of examining the values in her rate table, 

she recognized that there was not a single constant rate. However, she had two inconsistent 

meanings of the term rate. She used the term to indicate the multiplicative within and between 

measure factors. Later, she associated between measure factors with the slopes of the directly 

proportional graphs. Her usages of the term rate was evidence that she understood the rate to 

be a constant factor that can be used to get from one value to another. She did not recognize 

that the rate was showing the multiplicative relationship between quantities compared. Thus, 

Abby’s initial endorsement of a single rate in the inversely proportional relationship and the use 

of rate to indicate within and between multiplicative factors were two significant constraints in 

her causal net. On the other hand, as she worked out the questions, she appeared to make 



	  

 

Mohr-Schroeder, M. J., & Harkness, S. S. (Eds.). (2014). Proceedings of the 113th annual convention of the School Science and 
Mathematics Association. Jacksonville, FL: SSMA. 

69 

adjustments in her causal net that provoked to more complete coordination with directly and 

inversely proportional relationships. To solve the problems in the Balance task, she used the 

balance formula and considered constancy of the place values. In the Speed task, she used 

the unit ratio, coordinated multiplication and division, and scale factor strategies. She also 

obtained the distance formula correctly but did not have time to use it solve the given 

problems. She expressed relationships with ratio and rate tables, balance and distance 

formulas, and directly and inversely proportional graphs. 

SSaarraahh’’ss  CCaassee  

Similar to Abby, Sally recognized the directly and inversely proportional relationships by 

attending to the qualitative relationships between quantities. For example, in the Gear 2 task, 

she described the inversely proportional relationship between the size of a gear and its 

revolutions by saying, “so, as your radius gets bigger you do less turns, and then [as] the 

radius gets smaller your revolutions increase.” She sometimes recognized and described 

multiplicative relationships between those quantities. For instance, in the Gear I task, one of 

the problems involved investigating the number of notches around a gear with a 4-cm radius, 

given that it was meshed to another gear with a 3-cm radius and 18 notches. She explained 

the reciprocal multiplicative relationship between the size of a gear and its number of notches 

by saying, “I know that Gear 1 is always going to have three-fourths the amount of little 

notches that Gear 2 has. And so if I know how many notches Gear 2 has, [then] I can multiply 

this by  and get the amounts of notches that gear 1 has.” Her read out of the relationships 

was mainly based on appropriate qualitative relationships since she did not always recognize 

the appropriate multiplicative relationships between quantities.  

Sally seemed to be comfortable while she was working on the tasks. She set up direct 

and inverse proportions and used other proportional reasoning strategies to solve given 

problems. If the tasks involved a single relationship such as in the Gear tasks, she set up direct 

and inverse proportions to solve problems. However, the Fence, Apartment, and Speed tasks 

involved multiple relationships, so her main strategy for solving the problems in those tasks 

was that she fixed one quantity as constant and used either the coordinated multiplications (or 

divisions) strategy or the coordinated multiplication and division strategy. She used the 

coordinated multiplications (or divisions) strategy if there was a directly proportional 

relationship between the remaining two quantities. On the contrary, if the relationship was 

inversely proportional, then she used the coordinated multiplication and division strategy. She 
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expressed the relationships between quantities with proportions, ratio and rate tables, directly 

and inversely proportional graphs, and/or algebraic formulas. While depicting the inversely 

proportional relationship between the number of revolutions and the number of notches, she 

stated that she initially did not know what the graph of an inversely proportional relationship 

would look like. She obtained the correct graph by marking the values, which she already 

calculated. In the Gear I and Fence tasks, she drew the directly proportional graphs as if the 

lines were intercepting the y-axis at y ≠0. It is likely that she did not know that if the line 

intercepts the y-axis at y ≠0, then the graph expresses a non-proportional relationship. In 

addition, if there was a directly proportional relationship, she recognized the constancy of the 

quotients. However, in the inversely proportional relationships, she did not recognize the 

constancy of the products.  

JJaassoonn’’ss  CCaassee  

Similar to Abby and Sally, Jason initially recognized the directly and inversely 

proportional relationships by attending to the qualitative relationships between quantities. He 

also sometimes recognized and described multiplicative relationships between those 

quantities. Similar to Sally, if problems involved more than two quantities, he fixed value of one 

quantity as constant to discuss the relationship between the other two quantities. For example, 

in the Fence task, he fixed the number of fences and explained that there was an inversely 

proportional relationship between the number of painters and the number of days to paint 

those fences.  

Although he reasoned proportionally and used proportional reasoning strategies to 

solve problems, he sometimes had difficulties to distinguish directly and inversely proportional 

relationships. For instance, in the Gear II task, he initially endorsed a directly proportional 

relationship between the radius and the number of revolutions. To determine the number of 

revolutions that a gear with a 3-cm radius made given that another gear with a 4-cm radius 

revolved six times, he set up the direct proportion , and so he obtained an 

incorrect answer. Later, although he obtained the correct answer, his initial endorsement of a 

directly proportional relationship was a sign of a significant constraint in his causal net. In 

addition, in the Fence task, he initially endorsed an inversely proportional relationship between 

the number of days and the number of fences painted. He immediately realized that it was a 

directly proportional relationship, so he corrected his initial endorsement. Similarly, when he 

was obtaining the speed of a car that was driving two miles in 100 seconds he assumed the 
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relationship between the time and the distance to be inversely proportional. As a result of 

assuming an inversely proportional relationship, he obtained an incorrect answer.  

RRoobbeerrtt ’’ss  CCaassee  

Robert appeared to be looking for numerical relationships to generate algebraic 

equations and formulas during the interview on each task. This strategy allowed him to 

correctly solve the given problems but prevented him from the use of proportional reasoning 

strategies. He also used a proportion formula strategy in which he usually cross multiplied 

values to get the missing one. Similar to the other three preservice teachers, he determined the 

directly and inversely proportional relationships between quantities by describing the 

qualitative relationships. For instance, in the Gear II task, he determined that a small gear was 

making more revolutions than a larger gear, and he explored that the increment in the size of a 

gear was resulting in fewer revolutions. Therefore, he easily determined the inverse relationship 

between the size of a gear and the number of revolutions it made. However, he focused on 

qualitative relationships between quantities instead of multiplicative relationships. 

Because Robert depended on the algebraic equations and formulas to solve given 

problems, he had more difficulties than the other participants in explaining and making sense 

of his solutions. For example, he had difficulty with using correct units, explaining the meaning 

of the units, and the unit conversions. When the numbers were not presented, he had trouble 

in generating algebraic equations and formulas. He also had difficulty with fractions and 

fraction operations and solving problems that involved multiple relationships. In addition, in 

some cases, he could not explain the meanings of his operations, equations, or formulas. In 

the Fence and Apartment tasks, he explored the relationships between quantities by fixing one 

quantity at a time and explaining the relationship between unfixed quantities. In the Gear II and 

Apartment tasks, even though he used the idea of constancy of the products, he did not 

recognize and explain that the products were constant because of the inversely proportional 

relationships between quantities. For example, in the Gear II task, he determined the total 

number of notches moved on a gear for each revolution multiplying the number of notches by 

the number of revolutions. Similarly, in the Apartment task, he obtained a constant 1,152 man-

hours by multiplying the values of the inversely proportional quantities. 

Implications 

In earlier research, researchers investigated teachers’ proportional reasoning mostly 

using missing-value word problems, which usually involved a single directly or inversely 
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proportional relationship. In this study, a combination of hands-on and real-world missing-

value problems, which involved either single or multiple directly and inversely proportional 

relationships, were used. Because multiple proportion problems cannot be solved by simply 

constituting a single proportion and applying the cross-multiplication strategy, preservice 

teachers did not prefer using the cross-multiplication and the additive strategies in those 

problems. Likewise, the use of hands-on tasks generated a checking mechanism for teachers 

and helped me in observing teachers’ application of different strategies to determine directly 

and inversely proportional relationships and to solve given problems. 

Thus, this study makes three contributions to the current research base: First, very little 

research has been conducted on preservice teachers’ proportional reasoning. In particular, 

only a few researchers (e.g., Fisher, 1988; Izsák & Jacobson, 2013; Lim, 2009; Riley, 2010) 

have studied teachers’ proportional reasoning regarding inverse proportions, and even fewer 

researchers have studied multiple proportions (e.g., Vergnaud, 1983, 1988). Second, the use of 

hands-on tasks and real-world missing-value problems together precipitate the gathering of 

relevant information regarding preservice teachers’ proportional reasoning. Third, the study 

examines the construct of coordination classes for analyzing teachers’ capability of detecting 

and explaining directly and inversely proportional relationships.  
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High stakes testing is driving the decision for when and where teachers use technology in 

the mathematics classroom. This study examined two sequences for using graphing calculators to 
teach quadratic functions in four sections of advanced Algebra 2 (n=40) in a large Midwestern high 
school. While each class received both types of instruction, initial instruction for two classes 
incorporated the graphing calculator while the other two classes used pencil and paper. Data from 
pre and post-tests suggest that students can learn to graph quadratics by either sequence. 

Introduction 

High stakes testing is driving the use of technology in core mathematics’ classrooms 

(Robelen, 2013). Wording such as “studies have shown” or “research shows” resonating in the 

jargon of the proponents for technology in high stakes testing seems to have minimal actual 

classroom research backing their claims. Graphing calculators are currently allowed and also 

included in dropdown windows on the computerized versions of some Algebra end of course 

exams (Robelen, 2013). However, teachers fear that allowing the use of graphing calculators 

on these exams skew the scores by allowing students to correctly answer questions even 

when they lack meaningful understanding. Because of wide attention to the test scores by 

various stakeholders, we are being “strongly encouraged” by administrators to use graphing 

calculators in Algebra classes simply because they are allowed on the end of course exams. 

Although graphing calculators allow students (and teachers) to explore real world data and 

functions in ways that they otherwise could not, conceptual cognizance is essential for building 

a mathematical foundation for future coursework.  

The use of graphing calculators has redefined the mathematical content that can be 

explored and mastered in the secondary mathematics classroom. Graphing calculators used 

as instructional resources “provide opportunities for students to learn about the connections 

between algebraic and graphing representations, an important skill in the visualization process” 

(Smith & Shotsberger, 1997, p. 368). Furthermore, “Anyone who has seen trained teachers use 

calculators knows that they can be used to teach ‘thinking’,” (Martin, 2008), and it is this 

“thinking” that the rigor of mathematics requires. However, as Smith and Shotsberger (1997) 

discovered and Martin (2008) confirms, teachers do need training to be able to use them 

appropriately. When used properly in the mathematics classroom, graphing calculators 



	  

	  

	  

	  

encourage students to ask “more thoughtful, higher-order questions in class” and allow 

teachers and students to “model the use of multiple approaches – numerical, graphical, 

symbolic, and verbal – to help students learn a variety of techniques for problem solving” 

(Martin, 2008, p. 23).  

Objectives of the Study 

Graphing calculators certainly have a place in the Algebra classroom, as backed by 

multiple studies yielding convincing evidence (Martin, 2008; Kastberg & Leatham, 2005; Smith 

& Shotsberger, 1997, e.g.). However, studies have been inconclusive concerning how and 

when to implement graphing calculators into the classroom (Kastberg & Leatham, 2005). A 

driving purpose for this study was urged on by other studies such as Martin (2008) who 

recognized that there are multiple articles that “give wonderful advice on how to use the 

graphing calculator to teach a specific concept, but significantly fewer articles report studies 

which compare the success rates of the traditional (paper-pencil) approach to teaching algebra 

versus the graphing-calculator-based approach to teaching algebra” (Martin, 2008, p. 20). One 

of the reasons for a lack of studies in this area is because researchers must take great care to 

not knowingly withhold a possibly better pedagogy from select groups of students (Herman, 

2007, p. 28). The focus of this study was to determine whether or not the timing of the use of 

graphing calculators when teaching the graphing of quadratics affects the learning outcome of 

the students. In this study, all students were instructed both with the graphing calculator and 

by traditional paper-pencil lecture (without the graphing calculator). The purpose of this study 

was to determine if calculator or traditional paper-pencil based instruction should come first. 

This study used pre-test and post-test during the quadratics unit to assess the effectiveness of 

the two different sequences of instruction. Two questions guided this study. First, does the 

sequence of instruction, graphing calculator exploration or traditional paper-pencil lecture, 

have a greater impact on the student’s overall success on the end of unit quadratics exam? 

And second, do students develop a deeper understanding of graphing quadratics if first 

introduced to the topic by traditional paper-pencil lecture or by graphing calculator 

exploration?  

Related Literature 

Attitudes of teachers toward the use of graphing calculators in their classrooms greatly 

affect the students’ achievement in those classes. Lee and McDougall (2010) found that 

“Teachers who are proficient in using the graphing calculators can in turn teach their students 



	  

	  

	  

	  

to effectively and efficiently use their graphing calculators” and that calculator use freed up 

“mundane pencil and paper mechanics” making more classroom time for meaningful 

discussions about mathematics. They add, “When graphing calculators are effectively used in 

the mathematics classroom, they are a powerful tool to assist teachers in providing their 

students with an environment to help them construct their mathematical knowledge and 

understanding” (Lee, 2010, p. 871). 

Nonetheless, many are concerned with equity issues surrounding the implementation of 

the graphing calculator in all Algebra classes. Special needs students, control groups, access 

to personal technology, and teacher assignment are all equity issues that must be considered. 

Although some believe that teachers are making positive strides when they “encourage 

graphing-calculator use in high school, particularly among lower-achieving students” (Robelen, 

2013), others do not share that optimism. Steele (2006) states “Although graphing calculators 

are clearly useful resources for both teachers and students, the calculators frequently present 

challenges for students with learning problems” (Steele, 2006, p. 32). Equity in research, 

secondly, becomes an issue because to determine whether or not the graphing calculator 

helps or hinders, control groups prevent some students from receiving the benefits of the 

technology that other groups receive (Herman, 2007, p. 28). Third, equity is an issue when it 

comes to high-stakes testing, because not all students have access to graphing calculators for 

personal use during their learning. Therefore, even though the tests may all have “dropdown” 

graphing calculators, students who have not had hands-on access to comparable calculators 

during their learning are at a great disadvantage when it comes time to take the exams 

(Robelen, 2013). The fourth equity issue involves the teacher to whom a student is assigned. 

The attitudes of teachers, not only toward graphing calculators, but also toward mathematics 

in general, greatly affects calculator usage and the teaching that occurs with (or without) them. 

(Dewey, Singletary, & Kinzel, 2009, p. 383) 

However, beyond equity issues, many others are concerned about the usage of the 

graphing calculators in Algebra. Robelen (2013) believes that the debate over calculator use in 

the classroom should not be a matter of whether we use them, but over when to strategically 

use them, how to appropriately use them, and why their capabilities may modify how you 

teach. Dewey (2009) adds to the discussion that even with the interpretation of the standards 

and existing supporting research, the calculator use in the mathematics classroom is debated 



	  

	  

	  

	  

and it “is most controversial when it is introduced before students master the equivalent 

pencil-and-paper algorithms without the technology” (Dewey et al., 2009, p. 383). 

Methodology 

The study was conducted in school district located in the Midwest with approximately 

10,000 students and is located within thirty minutes from a major city. The four-year suburban 

high school has a student population of just over 2800 students. Mr. Thomas (pseudonym) has 

taught the advanced classes for several years and routinely uses technology while teaching. 

He prefers to teach in a blended combination of teaching methods or “hybrid classroom” 

(Slavit, 1996, p. 13), using traditional tried and true methods along with the graphing calculator 

for exploration. Mr. Thomas attends College Board Advanced Placement summer institutes 

and conferences and uses the Rule of Four in all of his classes. The Rule of Four states, 

“Where appropriate, topics should be presented geometrically, numerically, analytically, and 

verbally”(Harvard Consortium, n.d.). 

Mr. Thomas’ teaches four sections of advanced Algebra 2. Students, mostly 

sophomores, were invited to participate in the study. Two of the sections, A and B, were in the 

morning while C and D were in the afternoon. Further, sections A and D were both small 

classes containing fewer than 15 students each, but sections B and C were large with more 

than 25 students each.  

Mr. Thomas invited the students to participate in the study, assuring them that there 

would be no change in their instruction or grade regardless of their decision. Students who 

participated in the study did not receive any extra or bonus points and students who did not 

participate did not lose any points. He explained both orally and in writing that the only 

difference would be that those participating in the study would have their testing data 

examined by the researchers. Eighty-nine students were invited to participate in the study and 

forty-three brought back signed forms (n=6, 15, 11, 8 respectively). Mr. Thomas noted that 

students had two weeks to return the forms, but he did not compel them. He said that students 

often failed to return items not affecting their grades. Of the forty-three, three of the students 

missed one or more days when the tests were administered, thus data from the remaining forty 

students were used in this study. 

A pre-test designed by the researcher was given to all students to test for prior 

knowledge and identify differences between treatment groups. Sections A and B received 

graphing calculator instruction first, followed by a more traditional paper-pencil instruction; 



	  

	  

	  

	  

while sections C and D received the traditional paper-pencil instruction first, followed by the 

graphing calculator instruction. The quadratic unit test was created by the teacher to ensure 

alignment with his overall teaching philosophy and to minimize the researcher impact on the 

student exam. For purposes of data analysis, students’ scores across both sections receiving 

the same treatment were combined for a total of two groups, CT for sections A and B which 

received calculator instruction first and TC for sections C and D which received traditional 

paper-pencil lecture first. Students were tested at two points: prior to any instruction and 

following the end of the second treatment. The purpose of the study was to examine the timing 

of the usage of graphing calculators in the Algebra classroom when learning to graph and 

identify key components of quadratic functions. The data from the tests were analyzed using 

an independent sample t-test in SPSS.  

In addition to the exams, open dialogue focused on pedagogies of research and 

practice in the classroom occurred throughout the overall study and was documented via 

instructor notes to be included in analysis. During the graphing calculator instruction, basic 

graphing calculator usage preceded the lessons. After they were familiar with the calculators, 

Mr. Thomas led the students to explore how changes to a quadratic function affected its 

graph. The students were then able to use the calculators’ technology to determine intercepts 

and extrema. During the traditional paper-pencil led instruction, Mr. Thomas spent more time 

with tables of values and plotting points to graph the functions. In all of his lectures he made 

use of a standard dry erase board and markers to write functions, draw tables, and create 

graphs with the students.  

Results and Discussion 

While the pre/post test scores of both groups do suggest an increase in overall 

knowledge of quadratic equations, neither group significantly outperformed the other on the 

post-test (t = 1.473, df = 38, p =.159). Since the data suggest the groups were also the same 

prior to instruction (t = .410, df=38, p=.684), it can be suggested that it does not matter if 

students first receive instruction with the calculator or traditional pencil-paper instruction.  
Table 1 
Independent Samples t-test on Student Pre/Post Exam Scores 

Sequence Sections N Pre-test M (SD) Post-test M (SD) 

Calculator first/then traditional (CT) AB 21 55.2381 (14.70342) 92.8571 (13.3682) 

Traditional first/then calculator (TC) CD 19 53.1579 (17.33738) 86.8316 (13.09432) 

 



	  

	  

	  

	  

The qualitative analysis of both the student responses as well as test development 

highlighted an interesting phenomenon for both treatment groups. Students’ pre-test 

knowledge of extrema seemed to be greater than their post-test knowledge. This unexpected 

finding may be attributed to differences in question format due to different test developers. 

This prompted further analysis into the types of questions asked on the post-test. It was found 

that the exam created by Mr. Thomas seemed to lack the depth of knowledge (DOK) questions 

needed for deeper analysis of what students did and didn’t know and understand about 

quadratics. The results of both treatment groups indicate that students can benefit from both 

teaching methods, but that some students may learn more effectively by using graphing 

calculators in the introduction of new topics followed by traditional lecture in the synthesis 

phase. 

Conversations with Mr. Thomas about his thoughts on the implementation focused 

mainly on time-frame feasibility. Although he presented the same material to both groups 

simultaneously, the calculator-first classes required a day longer than the traditional paper-

pencil lecture classes. He also said that even though the calculator-first classes were able to 

do some tasks on the calculator, other tasks were so time consuming that he went to the 

board and made T-charts to explain the concepts. He tried the table feature on the calculators 

with the students, but found it frustrating and time consuming. Mr. Thomas reported that 

students in the graphing calculator-first sections were quite engaged with the graphing 

calculators. However, they were so absorbed in the technology that all questions related to 

that technology aspect of the lesson, rather than to quadratic functions. He also commented 

that his students did not question the results found on the graphing calculator, but instead 

accepted whatever they saw on the screen. The group that received traditional paper-pencil 

lecture method first, had more higher-order synthesis and analysis questions than the 

calculator-first group. Mr. Thomas recognized that his students were advanced Algebra 2 

students and questioned whether the results would be the same with regular Algebra 2 

students. Mr. Thomas did enjoy the research and shared that based on the experience, he 

planned to introduce the material using the traditional paper-pencil lecture method and 

supplement the learning with the graphing calculator in the future.  

Implications 

Based on the findings of this study, it can be suggested that students are able to learn 

about quadratic functions when provided both calculator and paper-pencil lecture based 



	  

	  

	  

	  

opportunities. However, there is no difference in student performance determined by which 

method the student receives first. Thus, similar to the findings of Kastberg and Leatham (2005), 

there is continued need to study when to introduce the calculator in mathematics instruction, 

especially in regards to the overall depth of knowledge developed by the student. 

High stakes testing drives the use of technology in mathematics instruction. Best 

teacher practice is desirable for all students and teachers, but regarding technology, there are 

many conflicting claims for how and when it should be used. The hope of this study was to 

open the door to provide direction for calculator implementation in the secondary mathematics 

classroom. Based on the student exam scores, this study suggests the need for additional 

studies to understand when it is best to integrate calculators into quadratics instruction. 

Further, based on the conversation with Mr. Thomas, appropriate teacher training is necessary 

to help teachers understand how to use graphing calculators as a powerful tool for meaningful 

sense-making activities. Lastly, classroom teachers enjoy research and are in the position to 

make changes that truly make a difference in student learning.  

Those who teach mathematics need to be on the front-line for decision making about 

calculator use on exams while also making sure students from multiple groups are included in 

research. In addition to understanding the importance of the two previous suggestions, future 

research should explore what mathematical knowledge is better learned with graphing 

calculators or other forms of technology along with knowing how to monitor student 

engagement with the technology to determine if the calculator excites meaningful exploration 

by the students. Lastly, how can teachers know whether their students will learn more 

effectively with traditional introductions to new topics and how can teachers recognize the 

value of using a new technology if their students are excelling without it? 

This study suggests that the order of instruction type, graphing calculator versus 

traditional paper-pencil, does not impact student performance on an end-of-unit teacher 

created exam. Further, it is important to continue exploring how and when to integrate 

graphing calculators into instruction, including a “hybrid” method that integrates the calculator 

along with the more traditional paper-pencil lectures that are both more comfortable and more 

familiar to most secondary teachers. The graphing calculator, if used appropriately, is a 

remarkable tool for the classroom. Unfortunately, on the other hand, when used simply as an 

expensive summation tool, it is a waste. As we continue to develop as a technology rich 

society, it is imperative to take both the teacher’s and the student’s knowledge and 



	  

	  

	  

	  

experiences into consideration to continue exploring best approaches for integrating calculator 

use.  
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 This paper reports on a study of College Algebra students that examined their 

understanding of polynomial functions with a degree of three or more. Students were interviewed 
as they solved polynomial function problems individually while ‘thinking aloud.’ Unlike studies of 
understanding that rely on quantitative assessments, the study included interviews with students 
as they completed mathematical tasks, enabling a focus on the students’ on-going cognitive 
actions. The results reported here summarize the students’ conceptions of the shapes of the 
graphs of polynomial function.  

Introduction 

This paper is the first in a series of studies we will conduct with College Algebra (CA) 

students, addressing their understanding of non-linear functions. The current study examines 

the students’ understanding of polynomial functions, f(x)=anxn+ an-1xn-1 + … + a1x1 + a0, n > 3.  

Objectives of the Study 

While studies of non-linear functions have mostly focused on quadratic functions 

(Zaslavsky, 1997; Schwarz & Hershowitz, 1999, Ellis & Grinstead, 2008), there are few studies 

involving polynomial functions. Our research questions are: 

1. What is the essence of students' understanding of polynomial function? 

2. How do students express their understandings in mathematical situations? 

Theoretical Framework and Related Literature 

We incorporate a constructivist view of learning (Piaget, 1970, von Glasersfeld 1991, 

Wheatley, 2004), which views mathematics learning as building up of knowledge that is 

problem-based; and we draw from the work of Steffe (2002) in developing our theoretical 

interpretations. Specifically, we are interested in goal-directed action patterns of learners, and, 

in our analyses, we look to explain how goal-directed sensori-motor actions are transformed 

(or interiorized) into mental action patterns, or operations.  

Though studies of learners' general knowledge of functions (Vinner & Dreyfus, 1989; 

Moschkovich, Schoenfeld & Arcavi, 1993) proved useful to our analysis, we noted some 

limitations. First, the majority of studies incorporate a multiple representation view of functions, 

i.e., that the learners' function knowledge can be specified in terms of different representations 

such as tables, graphs and formal rules. We agree with Thompson’s (1994) concern that the 



	  

	  

	  

multiple representations view may not be the best way to characterize the learner’s knowledge 

of functions: 

…the core concept of “function” is not represented by any of what are commonly 

called the multiple representations of function, but instead our making connections 

among representational activities produces a subjective sense of invariance. … We 

should instead focus on them as representations of something that, from the 

students’ perspective, is representable, such as aspects of a specific situation. (p. 

24)  

A major question then is how to describe and characterize the essence of students’ 

conceptual structure of polynomial functions as problems are encountered and solved. 

Second, we noted that the majority of studies about non-linear functions focus on quadratic 

functions (Zaslavsky, 1997; Ellis & Grinstead, 2008) and do not generalize their findings to 

polynomial functions. Zaslavsky (1997) described a range of difficulties that students often 

experience with quadratic functions; however, polynomial functions introduce still more 

challenges that students must address. Since quadratic functions have graphs that are 

parabolas, they have a conceptual “sameness” to them as a class that polynomial functions do 

not possess. For example, note the differences in the graphs of the cubic functions in Figure 1. 

Polynomial functions have a much greater set of conditions to examine.  
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Figure 1: Possible Graphs for Cubic Functions  

Methodology 

A total of 20 College Algebra students participated in the study. Observing college 

students solving mathematics problems has proven to be an effective way of modeling the 

processes of problem solving (Carlson, 1997; Eizenberg & Zaslavsky, 2004; Schoenfeld, 1992).  

Students were interviewed as they solved problems individually while ‘thinking aloud.’ 

Interviews were videotaped; the interviews followed principles of interviewing for clinical 

teaching experiments (Cobb & Steffe, 1983). 

The paper will discuss the solution activity of the students as each solved a pair of 

polynomial problems (Table 1). 

Results and Discussion 

We have completed the first phase of the analysis by classifying the students in terms 

of how they develop their views of the shapes of the graphs of polynomial functions. Students 

revealed contrasting and sometimes contradictory ways to perceive the shape of the graph of 

polynomial functions. All students related the graph of polynomial functions to parabolas in 

some way. We report results from two students, BD and SE, to summarize some of their 

differences in solving polynomial problems. 

BD appeared to have a more general way of describing polynomial functions compared 

to other students. When asked to explain polynomial functions, BD compared them to 

quadratic functions and stated that polynomial functions with higher degrees, such as cubic 



	  

	  

	  

functions, had more than two roots and that they were “parabolic with an unknown middle” 

(Figure 2).  

Table 1: Selected Tasks Used in the Study 
Task 1: Without using the graphing functions of 

your calculator, sketch the graph of the function. 
1074)( 23 +−−= xxxxf  

Task 2: Which of the following polynomial 

functions might have the graph shown here: 

(a)  

(b)  

(c)  

(d)  

(e)  

 

 

 

Figure 2: BD’s Diagram About Quadratic and Polynomial Functions 

Interviewer: What are polynomial functions about?  

BD: It’s all described by either a cubic function or a quadratic function, it’s parabolic 

with an unknown middle or cubic with unknown middle. Every quadratic will go like this (he 

points to left graph in Figure 2). These 2 parts I’m certain are either up positive or negative 

down. But I’m not sure about when it crosses or touches. Cubic here is going to go like that, so 

that’s what I mean by unknown middle (he points to right graph in Figure 2).  

BD’s comment about “unknown middle” suggests he had a rough general idea of 

polynomial functions, which he could relate to his ideas about quadratics. He elaborated that 

the end behaviors of cubic functions were determined by the leading coefficients of the 



	  

	  

	  

function equations, but the “middle parts” of the graphs varied depending on the specific 

functions.  

In solving Task 1, 1074)( 23 +−−= xxxxf , BD used synthetic division to find a zero, 

x=1, found other zeros using the quadratic formula and then sketched the graph (Figure 3) 

stating “even’s touch and odd’s cross.” Although his graph looks very accurate and he did 

locate the y-intercept, he only estimated the max and min points on the graph.  
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Figure 3: BD’s Graph of 1074)( 23 +−−= xxxxf  

So, BD could: 1) See some differences between quadratics and polynomials in terms of 

the zeros, and 2) Sketch the graphs by finding the zeros. However, the students, including BD, 

experienced more difficulty trying to develop the functional equation from a particular graph. 

These findings are consistent with research findings indicating that students can easily develop 

graphs from function equations, but have difficulty generating equations from graphs 

(Zaslavsky, 1997). 

 In solving Task 2 (Table 1), other students looked to “dissect” graphs into 

conjoined parabolas. For example, student SE viewed the graph as a series of parabolas and 

recalled properties of quadratic functions in a process of elimination to make her selection. 



	  

	  

	  

SE: These are the ones I usually have trouble with. Where it touches the x-axis 

at 3 points. Usually these I’ll see which one makes most logical sense to me. 

Interviewer: What’s hard about this problem?  

SE: I think it’s one of those that looks very difficult but actually you can dissect it 

and see which one, see how it works. Yes. I’ll just start from right to left and see which 

one. Obviously the first curve right here (she points at choice A), so my choices are 4x . 

It’s positive because it’s going upwards so it can’t be B or E. So it leaves me with 

xandxx 24 , .  

In her analysis of the portion of the graph that includes the point (0, 0), SE ruled 

out the correct answer, E, reasoning that the graph “opens up” and thus the formula 

cannot have a term with a negative sign such as 2x− . 

SE: B, in that problem it was a negative and it’s also a parabola which means 

something in there had to be squared. And then there’s another parabola here. 

Interviewer: So you’re thinking of breaking that picture up into parabolas? 

SE: Yes. Looking at this parabola, B is going down making it negative. These 

are what go through my head. But we have to pay attention to points a and b because 

that’s what are given. I’d probably rule out D because this is a parabola right here. 

There’s got to be a reason it goes down and comes up right here (she points at the 

portion of the graph from x=a to x=b). It can’t be D because there’s no squared, so it’s 

just a line. I’d rule out D also and would be left with A and C. 

Episodes from BD's interview suggest that he has a more unified view of polynomial 

functions than that of SE, which appears to be compatible with the idea of a conceptual 

prototype as hypothesized by Schwarz and Hershowitz (1999). On the other hand, SE’s 

structure appears somewhat more fragmented and instrumental (Skemp, 1976) in the sense 

that she sees polynomial graphs as collections of parabolas and seeks to match the graph with 

quadratic expressions.  

While the analysis is still in progress, we believe that the episodes of BD and SE 

illustrate some important ways that our students view polynomial functions. The remainder of 

the analysis will focus on identifying additional categories and sub-categories of the 

classifications discussed above. 

 



	  

	  

	  

Implications 

This study contributes to the literature on students' understanding of functions by 

addressing how some CA students view polynomial functions. The findings provide a dynamic 

account of knowledge of polynomial functions developed by college students as they solve 

mathematical problems. 
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This paper presents an action research project completed in a mathematics methods 

course for prospective elementary school teachers. The goal was to determine if instructional 
practices were effective at preparing teachers to use students’ thinking to inform instructional 
decisions. The teachers’ ability to predict students’ strategies and the teachers’ considerations 
during the planning process were investigated. The teachers selected a task involving the 
comparison of ratios, anticipated students’ strategies for completing the task, and explained their 
rationale. The prospective teachers effectively predicted students’ strategies; however, those 
student strategies were not a consideration during the task selection process for the majority. 

Introduction 

When reflecting on a concluded semester, I began thinking about the link between my 

research and teaching. My research focuses on cognitively guided instruction (CGI) and 

inquiry-based instruction (IBI). When instructional decisions are based off of analyses of one’s 

students’ thinking, in combination with knowledge of the ways students typically develop and 

interact with the content, the instruction is said to be cognitively guided. Inquiry-based 

instruction refers to teaching practices that involve placing students in a carefully constructed, 

and sequenced, series of problems or project scenarios from which they can construct their 

own understanding of complex concepts. I can be relatively sure, from reading my prospective 

teachers’ lesson plans, that they grasped the constructivist nature of IBI. However, I began to 

wonder how successful I was at preparing them to use CGI. To successfully plan CGI, my 

prospective teachers needed to be able to analyze task characteristics and anticipate 

elementary students’ approaches to those tasks to determine if the task was appropriately 

aligned with the lesson goal.  

Objectives of the Study 

The purpose of this study was to determine how effective the methods used were at 

preparing future teachers to plan lessons in a cognitively guided fashion. The objective was to 

investigate: (a) the extent to which prospective elementary school teachers consider the link 

between numerical structure and student thinking when selecting proportional reasoning tasks 

in the lesson planning process and (b) the prospective teachers’ ability to anticipate students’ 

thinking. 



	  

	  

	  

Theoretical Framework 

An underlying assumption connects the objective to the purpose of the study; my 

successful demonstration of the importance of task considerations and their influence on 

student generated strategies would increase the likelihood that, during the task selection 

process, the prospective teachers: first, consider the instructional goal; and, second, 

simultaneously consider the task characteristics (e.g. context, numerical structure) and likely 

student strategies.  

The framework guiding the initial memoing and coding was derived from de la Cruz’ 

(2013) delineation of proportion problem types (distinguished by context or numerical 

structure), students’ proportional reasoning strategies (e.g. unit rate, factor of change), and the 

link between the two.  

Kemmis, McTaggart, and Nixon’s (2013) action research methods were employed: (a) 

develop a plan and research questions, (b) observe effects by evaluating data, (c) reflect, (d) 

incorporate new effects or themes to develop a plan for the future. This paper presents the first 

steps in my action research, and scholarship of teaching and learning. Future steps will involve 

utilizing the results of this investigation to develop a new plan and to continue with action 

research. 

The data collected consists of an observation journal, documents, and an open-ended 

questionnaire, all related to a single activity taking place over two class meetings. While the 

prospective teachers completed this activity, the researcher recorded observations regarding 

their dialog and regarding when students’ strategies were considered in the selection process. 

Each group was asked to create a poster presenting the comparison task and the student 

generated strategies they anticipated. The purpose of collecting the posters was to document 

the types of comparisons chosen and types of strategies anticipated. Finally, the prospective 

teachers were asked to complete an open-ended questionnaire to further document their 

considerations when selecting the comparison. Answers to the questionnaire could then be 

triangulated with the researcher’s observation notes.  

Miles and Huberman’s (1994) systematic data analysis was used to derive causal 

descriptions and lawful relationships among the data by using data reduction, data display, 

and conclusion drawing and verifying. The questions that guided the qualitative analysis of this 

data are: (a) What did the prospective teachers consider when selecting the comparison task? 

More specifically, did they consider the numerical structure of the ratios within the comparison, 

the goal of the lesson, and the likely strategies that such a comparison would elicit from fifth 



	  

	  

	  

graders? (b) Did the prospective teachers accurately predict strategies fifth graders would use 

to solve their chosen comparison problem? (c) What types of comparisons did the prospective 

teachers choose?  

Practices Used 

Several steps were taken to promote CGI and develop the ability to predict the ways 

elementary students will interact with the content. First, there was a persistent focus on 

problem solving and student generated strategies. Across all concepts, the need for students 

to construct their own strategies prior to the introduction to formal procedures was discussed. 

The prospective teachers predicted strategies students would invent for operating with single-

digit and multi-digit numbers, for estimating, for representing and adding fractions, and for 

several other concepts.  

Second, we specifically studied CGI as it relates to addition and subtraction word 

problems. The research findings of Carpenter, Fennema, Franke, Levi, and Empson (1999) that 

explicitly linked problem characteristics to certain student-constructed strategies were shared. 

The prospective teachers learned how to: analyze addition and subtraction story problems and 

categorize problems into the 11 types defined by Carpenter et al. Next, they predicted the 

strategies students would use to solve each of the 11 problem types, analyzed videos of pupils 

solving addition and subtraction story problems, and linked strategies to problem types.  

Third, the prospective teachers completed two video analyses assignments. Each of 

the videos illustrated an authentic classroom scenario and provided a solid example of CGI in 

practice. To help the prospective teachers notice the classroom teacher’s cognitively guided 

actions, they were asked to answer a series of questions which required them to analyze: (a) 

the link between task characteristics (e.g. context, numerical structure) and the classroom 

teacher’s instructional goal, (b) students’ strategies for solving the task, and (c) the classroom 

teacher’s rationale for selecting and ordering the student strategies to be shared.  

An activity was designed to assess the effectiveness of the three aforementioned 

methods in encouraging considerations that are consistent with CGI when planning lessons. 

The activity required pairs of prospective teachers to begin planning a lesson involving 

comparing ratios. The directions stated, 

You are charged with the responsibility to design a lesson for a fifth grade class that 

involves comparing ratios. To make the lesson meaningful, we will be planning a lesson that 



	  

	  

	  

involves comparing prices found in grocery circulars. Complete the following in the order that 

you feel is most appropriate:  

• Select at least two similar items found in the provided grocery circulars that you 

would like students to compare (your lesson would be focused around this task); 

• Anticipate the strategies fifth graders might employ to compare the prices you 

chose; 

• Determine the goal of your lesson. 

The pairs were asked to create a poster to share with the class and to answer the 

following reflection questions: (a) Of all the comparisons that could have been chosen, explain 

in detail why you chose these two items. (b) What did you consider when selecting the 

comparison? (c) What is the goal of the lesson? 

Results and Discussion 

Four main findings emerged from the analyses: 

1. All of the prospective teachers considered the quantities involved in the rates when 

selecting a comparison. However, 50% of the prospective teachers considered the 

quantities in a significant way.  

2. The majority of the prospective teachers did not consider their instructional goal, or 

the strategies students would likely use to complete the comparison, until after they 

had selected the comparison task.  

3. When the prospective teachers considered their instructional goal or student 

strategies during the task selection process, they did not do so independently. 

Instead, they simultaneously considered the lesson goal, student strategies, and the 

relationship between the quantities involved.  

4. The prospective teachers were able to effectively predict the strategies that 

students would most likely implement. Their predictions were consistent with those 

found to be most likely by existing research, due to numerical structure. 

These findings indicate the success of the practices used to prepare prospective 

teachers to anticipate students’ thinking. However, they also indicate the need for further steps 

to emphasize the interplay between instructional goals, task choices, and anticipated 

strategies.  



	  

	  

	  

When selecting items to compare, all of the prospective teachers were observed 

selecting items that would be familiar to fifth grade students; 75% indicated it was a specific 

consideration in their responses on the questionnaire. Group F said, “We chose to have Capri-

Sun as our item to compare because many students drink it, so it is relevant to their lives. …” 

Similarly, Group B expressed, “We chose these two items because the students would be 

familiar with the item and would be able to visualize the 48 oz. carton [of ice cream]. …” 

According to Heller, Ahlegren, Post, Behr, and Lesh (1989), choosing a familiar item is a 

significant consideration because students tend to be more successful with proportional 

reasoning strategies when the context is familiar. 

Although all of the prospective teachers considered the numerical structure involved in 

the comparisons during the selection process, only five of the eight pairs examined the 

numerical structure in a significant way, by discussing the type of quantities or the relationship 

between the quantities involved. To this effect, Group D wrote, “We wanted to set up a simple 

problem so we looked for an easy comparison using the same units and easy numbers.” In 

their problem, students were asked to determine the better deal for toilet paper, 12 rolls for 

$6.99 or 24 rolls for $11. They explained that the numbers were easy because “to get from 12 

rolls to 24 rolls, you just need to multiply by two.” Three groups explained that they chose two 

ads with varying quantities, prices, and/or sizes, which was categorized as a numerical 

structure consideration. However, this reflection on numerical structure in absence of further 

thought regarding the relationship between the quantities was deemed insignificant. For 

instance, Group C said, “We chose to compare these two items because they are the same 

product but at varying sizes and different prices. This allows the students to be able to 

compare price and size and determine which deal is the better buy.” Similarly, Group H said, 

“We made sure there was a difference in price.” This type of rationale was not considered 

significant, because without some variation in price or quantity, the comparison would be 

trivial.  

Though the majority of the class considered the numerical structure present when 

determining which items to include within their comparison task, neither the instructional goal 

nor students’ thinking generally factored into the decision making process. Only three of eight 

groups mentioned a strategy students would use to compare rates in their expressed rationale 

for their task decision. The same three groups were the only ones to link their rationale to their 

instructional goal. For instance, Group B stated, “We chose the Breyer’s ice cream that had a 

price for one of the item [unit rate]. The price for the Hood ice cream is presented as a ratio [$5 



	  

	  

	  

for 2 cartons]. The students will have to determine the price of one carton.” Thus, Group B 

selected this comparison to encourage their students to find a single unit rate, which they also 

stated as their goal: “Students can compare prices of cartons of ice cream by dividing a 

fraction.” Similarly, Group A aimed for a unit rate with their choices. They communicated, “We 

considered the students’ prior knowledge in relation to division and fractions,” which was 

closely aligned with their goal, “for students to relate the problem to division.” All of the 

considerations of the prospective teachers are summarized in Table 1.  

According to the existing literature, we can predict the proportional reasoning strategies 

students are likely to use by examining the numerical structure of the proportion (e.g. Cramer, 

Post, & Currier, 1993; Miller & Fey, 2000; Singh, 2000; Weinberg, 2002). In all cases, the 

prospective teachers anticipated the strategy that is most consistent with the research 

findings. Table 2 illustrates the problems selected by the prospective teachers, identifies their 

numerical structure, and names the most likely strategy corresponding to the present 

numerical structure according to the literature.  

Implications 

The purpose of this research was to examine and improve instruction, as it relates to 

CGI. I wondered whether or not prospective teachers, at the end of the course in methods for 

teaching elementary mathematics, would plan lessons in a manner that is consistent with CGI. 

That meant that the prospective teachers would make instructional decisions based upon their 

students’ thinking. More specifically, the prospective teachers needed to be able to predict 

students’ strategies and analyze aspects of tasks that would influence those strategies.  

Many studies have shown that prospective teachers and new teachers struggle to 

identify the ways in which students will approach problems. According to Kastberg, 

D’Ambrosio, and Lynch-Davis (2012), “The thinking of teachers is shaped by an adult 

understanding of the problem and an algorithmic approach they have mastered often does not 

resemble the way in which the students approach the problem.” The results of this study imply 

that the methods employed to practice and develop this skill in the prospective teachers was 

effective. A concerted effort was aimed to provide several varied opportunities for the 

prospective teachers to think like a student: anticipating, interpreting and explaining students’ 

thinking. 

 

 



	  

	  

	  

Table 1 
The Prospective Teachers’ Considerations during the Task Selection Process 

Pairs Familiar Item 
Numerical Structure 

Strategies Goal Varying Quantities or 
Sizes* 

Relationship between 
the quantities 

A ü  ü ü ü 
B ü  ü ü ü 
C ü ü    
D ü  ü   
E  ü    
F ü ü    
G   ü ü ü 
H ü  ü   
 

Table 2 
Numerical Structure and Strategy Predictions by the Prospective Teachers 

   Numerical Structure   
 Comparison Ratios Unit rate 

provided 
Integer 
FOC -
within 

Integer FOC 
- across 

No 
Integer 
FOC 

Strategy 
corresponding 
to numerical 

structure 

Strategy 
Predicted 

A String Cheese: 
1 pkg for $3.99  
2 pkgs for $7 

 or  ü ü ü  Unit rate ü 

B Ice cream: 
1 carton for $3.99 
2 cartons for $5 

 or  ü ü ü  Unit rate ü 

C Cookies: 
20oz for $3.99  
2-13oz for $4 

 or     ü Comparison is 
obvious 

ü 

D Toilet Paper: 
12 rolls for $6.99 24 
rolls for $11 

 or    ü  FOC-across ü 

E Soda cans 
3-12 packs for $10 
24 pack for $4.99 

 or     ü Common 
denominator 
(12 cans) 

ü 

F Juice boxes: 
1 box for $1.77 
2 boxes for $4 

 or  ü ü ü  Unit rate ü 

G Yogurt: 
10 for $10 
4 for $3.89 

 or   ü   Unit rate ü 

H Soup cans: 
5 for $5 
2 for $4 
10 for $10 

 or   ü ü  Unit rate or 
FOC - across 

ü 

Note. FOC-within = factor of change within a single ratio, numerator to denominator; FOC-across = factor of change across ratios, 
numerator to numerator or denominator to denominator.  

On the other hand, this study demonstrates the need for further clarification related to 

lesson planning and considerations while planning. Reflection revealed that, although much 

time was dedicated to writing lesson plans (e.g. writing clear and measureable objectives, 



	  

	  

	  

incorporating transition statements, linking assessments to objectives, etc.) and completing 

lesson analyses, the process of developing a plan (e.g. selecting the major task or activity) was 

given less attention. On the topic of developing a plan, a few steps to planning, prior to writing 

a lesson plan, which included determining the instructional goal, selecting a task or activity, 

anticipating students’ strategies and difficulties, and identifying requisite knowledge were 

outlined. More attention could have been given to explicate that selecting a task should not be 

done without consideration given to the ways students may approach the task and the link 

between those approaches and the instructional goal. Additionally, practice could be improved 

by modeling the planning process in the methods course. For instance, we could complete a 

task selection activity similar to the comparison activity, where the instructional goal, tasks, 

and students’ strategies are considered simultaneously.  

Due to the cyclical nature of action research, this project will continue in subsequent 

iterations of my elementary mathematics methods course. I am currently using the results of 

this study to develop a new plan to improve and study my own teaching, which incorporates 

the aforementioned ideas. Although this research is not generalizable, the hope is that the 

results may encourage others to reflect on their own practice. 
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The purpose of this study was to understand teacher beliefs about teaching mathematics 

over the course of an elementary mathematics teaching methods course. The participants came 
from three groups of in-service and preservice teachers in master’s degrees programs at a 
university in New York: New York City Teaching Fellows, Teacher Education Assessment and 
Management program, and traditional preservice teachers. Findings revealed an increase in 
positive beliefs about teaching mathematics over the semester, but there were no differences in 
participants’ beliefs between the three programs.  

Introduction 

The purpose of this study was to understand teacher beliefs over the course of an 

elementary mathematics teaching methods course that emphasized problem solving and 

constructivism for teachers and to determine teacher beliefs. The participants in the study 

came from three unique groups of in-service and preservice teachers in master’s degrees 

programs at a medium-size university in New York: New York City Teaching Fellows (NYCTF) 

program, Teacher Education Assessment and Management (TEAM) program, and traditional 

preservice teachers enrolled in a graduate program at the university. The two-year graduate 

program for all three was designed to prepare teachers for work in urban schools with 

certification in childhood and special education.  

Background for Study 

The NYCTF program is an alternative certification program developed in 2000 by the 

New Teacher Project and the New York City Department of Education (Boyd, Lankford, Loeb, 

Rockoff, & Wyckoff, 2007). NYCTF’s goal was to bring career changers into education to fill the 

large teacher shortages in New York public schools. The TEAM program is a partnership 

between the TEAM organization and the partnering university. TEAM is an organization that 

facilitates partnerships with universities for its student members who receive a tuition discount 

due to the negotiated tuition rate (TEAM, 2012). Cohorts generally consist of 12 to 20 Orthodox 

Jewish teachers. Traditional preservice teachers were enrolled in the university’s graduate 

program that required extensive fieldwork. Participants in the program were required to 

participate in 10 hours of fieldwork for each three-credit class in which they were enrolled.  

 

 



	  

	  

Research Questions 

1. Were there differences in beliefs about teaching mathematics over the course of a 

semester in a reformed-based mathematics methods course? 

2. Were there differences in beliefs about teaching mathematics between the NYCTF, 

TEAM, and traditionally prepared teachers? 

Theoretical Framework 

This study is grounded in sociocultural theory (Vygotsky, 1987), which proposes 

individual learning is framed by experiences in learning socially among others. In the classroom 

context this interaction occurs between instructor and student and also among the students. 

The methods course was framed by teaching mathematics from a problem solving perspective, 

as proposed by the National Council of Supervisors of Mathematics (NCSM) (1978) and 

National Council of Teachers of Mathematics (NCTM) (2000). NCTM (2000) said, “Problem 

solving is not only a goal of learning mathematics but also a major means of doing so” (p. 52). 

Mathematics should be taught in a manner so that students are solving unfamiliar problems 

using their previously acquired knowledge, skills, and understanding to satisfy the demands of 

unfamiliar situations (Krulik & Rudnick, 1989).  

Methodology 

The methodology for this study was quantitative and the sample consisted of 115 

preservice and new in-service teachers in which NYCTF teachers were all in-service teachers 

and TEAM and traditional teachers were preservice teachers, with several TEAM participants 

teaching in Yeshiva and Hebrew Academies. There were 84 NYCTF teachers, 16 TEAM 

teachers, and 15 traditional preservice teachers. Participants were enrolled in an inquiry- and 

reformed-based elementary mathematics methods course in the 2011/2012 academic year 

that involved both pedagogical and content instruction and was aligned with the NCTM 

Principles and Standards for School Mathematics (2000).  

Teachers were given the Mathematics Beliefs Instrument (MBI) at the beginning and 

end of the semester, which was created by Hart (2002) and measured participants’ beliefs 

about teaching mathematics. The MBI is a 30-item 5-point Likert scale instrument that solicits 

participant beliefs about reformed-based methods of mathematics instruction such as problem 

solving, conceptual understanding, and student-centered teaching including active student 

participation. 

 



	  

	  

Results 

Paired-samples t-test was conducted to answer research question one in order to 

determine differences in the MBI scores over the course of the semester. A statistically 

significant difference was found at the 0.05 level between the pretest (M = 3.56, SD = 0.333) 

and the posttest (M = 3.66, SD = 0.350) with t(114) = -3.970, p < 0.001, d = 0.29, two-tailed. 

This indicated an increase in positive beliefs about teaching mathematics with a small effect 

size.  

Descriptive statistics were also used to answer research question one. Results 

indicated teachers felt most positively about the study of mathematics including opportunities 

of using mathematics in other curriculum areas; mathematics must be an active process; and 

mathematics can be thought of as a language that must be meaningful, if students are to 

communicate and apply mathematics productively. Teachers felt positively about beliefs 

generally considered negative by reform-oriented mathematics educators, such as 

emphasizing clue words (key words) to determine which operation to use in problem solving; 

some people being good at mathematics and some people not being good at mathematics; 

and mathematics as a process in which students absorb information, storing it in easily 

retrievable fragments as a result of repeated practice and reinforcement.  

One-way ANOVA was conducted to answer research question two in order to 

determine differences in MBI scores between NYCTF, TEAM, and traditional teachers. No 

statistically significant differences were found between NYCTF, TEAM, and traditional teachers.  

Discussion 

Findings revealed an increase in positive beliefs about teaching mathematics, but there 

were no differences in participants’ beliefs between the three programs. Teacher beliefs 

included using mathematics in other curriculum areas, mathematics as an active process, and 

the communication aspects of mathematics as a language.  

It was found teachers felt most positively about the study of mathematics including 

opportunities of using mathematics in other curriculum areas; mathematics must be an active 

process; and mathematics can be thought of as a language that must be meaningful, if 

students are to communicate and apply mathematics productively. While it is important 

teacher educators continue to encourage teachers in these areas, it is more important that 

teacher educators work with teachers in areas in which they felt less positively. Teachers 

believed in emphasizing clue words (key words) to determine which operation to use in 



	  

	  

problem solving; some people being good at mathematics and some people not being good at 

mathematics; and mathematics as a process in which students absorb information, storing it in 

easily retrievable fragments as a result of repeated practice and reinforcement.  

The emphasis of clue words for finding solutions to word problems does not lead to 

true conceptual understanding that students need to solve unfamiliar problems, which is the 

primary component of authentic mathematical problem solving. Teachers who emphasize clue 

words are assisting students to rely on procedures demonstrated by the teacher without actual 

student understanding. Teacher educators must help their preservice and in-service teachers 

foster an environment of true understanding by instead assisting their students to use their 

previously obtained skills, knowledge, and understanding to satisfy the demands of an 

unfamiliar situation (Krulik & Rudnick, 1989). This can be modeled through problem solving in 

teacher preparation classes using multiple types of problems and unfamiliar situations for the 

teachers, which they can bring into the classroom.  

Teacher beliefs are an important component of teacher quality, and teacher educators 

can influence teacher beliefs to help them become better teachers; which leads to higher 

student achievement and success. It is not enough for teacher educators to focus only on 

content knowledge and pedagogical skills. They are certainly important variables for student 

achievement and success, but there must be emphasis on understanding teacher beliefs and 

challenging and shaping those beliefs. This will consequently lead to higher student 

achievement and success.  
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The components of Mathematics Teacher TPACK Development Level has been successful 

in helping pre-service teachers by identifying them as teachers of mathematics instead of learners 
of mathematics, but there are few of evidences about what the better approaches are for 
enhancing pre-service teachers’ Mathematics TPACK Development Level. Based on the result of 
this study, the ASSURE Model (a model that leads educators to plan systematically for effective 
use of technology and media) is recommended as an effective approach to enhance pre-service 
teachers’ Mathematics TPACK Development Level (a developmental framework that examines 
mathematics teachers’ levels toward the integration between technological, pedagogical, and 
content knowledge).  

Introduction 

Driscoll (2002) suggests that the impact of technology in mathematical classrooms 

depends on teachers’ ability to integrate technological, pedagogical, and content knowledge 

into mathematics curriculum. Although there have been increasing numbers of studies 

investigating the importance of technological integration, few studies have clearly uncovered 

how pre-service teachers (PSTs) acquire this capacity to integrate technology when designing 

curriculum; there are also not many studies that demonstrate what teaching models serve to 

promote pre-service teachers’ design ability with technological integration. This study 

represents an effort to discern how pre-service teachers increase their TPACK and effectively 

integrate technology into their math teaching by looking at a case study of one pre-service 

teachers’ experience using the ASSURE Model. 

Objectives of the Study 

This research is part of a larger study investigating how PSTs increase in their ability to 

integrate TPACK, especially when lesson designing. This study investigates how the ASSURE 

model (Baran, 2010; Russell, 1994) influences the PST’s development of TPACK integration. 

The data and findings presented in this article answer the following questions through a case 

study of a PST, Megan:(a) What was the status of Megan’s level of Mathematics TPACK 

Development before she received the ASSURE model intervention? (b) What was the status of 

Megan’s level of Mathematics TPACK Development after she received the ASSURE model 

intervention? 

 



	  

	  

Theoretical Framework  

Technological pedagogical content knowledge (TPACK) refers to focusing on 

instructors’ ability to integrate technological knowledge, pedagogical knowledge, and content 

knowledge, matching students’ needs and preferences (Harris & Hofer, 2011; Koehler & 

Mishra, 2009). TPACK was systematically introduced to mathematics education to help clarify 

what knowledge was needed to specifically teach mathematics with technology (Holmes, 2009; 

Landry, 2010; Mitchell & Laski, 2013). This resulted in Mathematics Teacher TPACK Standards, 

which were developed to guide teachers in thinking about the interconnection and intersection 

of technology, pedagogy, and content knowledge related to math teaching and learning. The 

standards also provide a framework that support teacher educators preparing mathematics 

teachers to incorporate technology into their instruction (Niess, Ronau, Shafer, Driskell, Harper, 

Johnston, Browning, Özgün-Koca, & Kersaint, 2009).  

The framework includes two main components, which combine together to help 

teachers in their mathematical teaching. The first component is the Mathematics Teacher 

TPACK Model, which includes curriculum & assessment, learning, teaching, and access (Niess 

et al., 2009). The second component is a five-stage developmental process for integrating 

technology in teaching and learning mathematics. The five-stage developmental process is 

used for describing and examining how a person makes a decision to adopt or reject a new 

technology in mathematical teaching and learning. The five stages include the following 

processes (Niess et al., 2009, p.9): 

• Recognizing (Knowledge), where teachers are able to use the tech and 

recognize the alignment of the technology with mathematics content yet do not 

integrate the technology in teaching and learning of mathematics.  

• Accepting (persuasion), where teachers form a favorable or unfavorable attitude 

toward teaching and learning mathematics with an appropriate technology.  

• Adapting (decision), where teachers engage in activities that lead to a choice to 

adopt or reject teaching and learning mathematics with an appropriate 

technology.  

• Exploring (implementation), where teachers actively integrate teaching and 

learning of mathematics with an appropriate technology.  

• Advancing (confirmation), where teachers evaluate the results of the decision to 

integrate teaching and learning mathematics with an appropriate technology. 



	  

	  

Although Mathematics Teacher TPACK has set goals for the use of technology in math 

instruction, the standards do not provide strategic directions about how pre-service teachers 

integrate technology into their mathematical instruction (Landry, 2010). In order to help 

mathematics pre-service teachers adequately implement TPACK integration, the ASSURE 

model was introduced (Russell, 1994). This model has been verified to have the potential to 

help pre-service teachers think and plan for effective instruction with technology (Lim & Chai, 

2008), as it acts as a procedural guide for planning and conducting instruction that incorporate 

technological media (Heinich, Moldena, Russell, & Samldino, 1999). In other words, the 

ASSURE model is like a road map to guide pre-service teachers in how to use media and 

technology in classroom teaching (Xu, 2011). The model includes six systematic processes 

outlined in its acronym (Heinich et al., 1999; Smaldino, Lowther, & Russell, 2012): (a) Analyze 

learners; (b) State the standards and objectives; (c) Select strategies, technology, media, and 

materials; (d) Utilize technology, media, and materials; (e) Require learner participation; and (f) 

Evaluate and revise.  

Methodology 

TThhee  PPaarrtt iicciippaanntt  

Ninety-seven participants all of whom were pre-service teachers (PSTs) enrolled in a 

four-year teacher education program at a public university in the northwest taking an 

educational technology course across five semesters, this study focuses on the experience of 

one student, Megan. Megan was an undergraduate student in Early Childhood Education. She 

was admitted to the College of Education in fall 2011. She was a senior while taking the course 

in which this study is set (Foundations of Education Technology). Megan was chosen for this 

case study because her views of her abilities with technology and the understandings she had 

about technological integration in curriculum design initially appeared to be unrelated, isolated 

ideas.  

TThhee  CCoonntteexxtt  

 The context in which this study was conducted was during an educational technology 

course, Foundations of Educational Technology, which emphasized applying the ASSURE 

model to foster the PSTs’ ability in TPACK integration. The PSTs wrote a reflection about the 

application of educational technology based on the assigned subject at the beginning of the 

course. Then, they followed the steps of the ASSURE model to design a lesson with TPACK 

integration after they decided on a teaching topic or concept. During the process of designing 



	  

	  

the TPACK lesson, the PSTs learned technological knowledge and how to manipulate 

technological tools, so that they knew what things should be integrated and what ways could 

be more effective in the integration. At the end of the course, the PSTs used an electronic 

poster (e.g., Glogster) to share their work and write a post-reflection paper to assess their 

learning. 

SSoouurrcceess  ooff  DDaattaa  

Each PST’s work in the Educational Technology class, including Megan’s, was 

collected and placed into a personal, individualized folder. The first work sample was a pre-

reflection, which was collected at the beginning of the course. The second work sample was 

the PSTs TPACK lesson plan, which became a crucial document for the researchers to 

examine participants’ capacity of TPACK integration. Third, each PST submitted a class 

review, which helped the teacher-researcher understand the students’ perspectives about 

TPACK integration. Fourth, in order to understand the effects of the course activities, the PSTs 

wrote post-reflections. Finally, the PSTs shared their final multimedia learning presentations, 

which were electronic posters (e.g., Glogster).  

DDaattaa  AAnnaallyyssiiss  

Analysis of the data followed the constant comparative method (Lincoln & Guba, 1985). 

The raw materials were read and reread by the researchers. The researches independently 

noted emergent categories. Researchers then compared the categories and developed 

agreement for the possible themes. Based on the agreement, the researchers reread and 

coded the data. All coded data were read by another person to verify the accuracy of coding.  

Results and Discussion 

Reviewing Megan’s pre-reflection paper, it showed that she has some basic knowledge 

in mathematical content, instructional strategies, and technological capability. Megan’s levels 

of mathematics TPACK development, the descriptions in her pre-reflection showed that her 

thoughts about technological integration toward mathematics teaching fell into the level of 

recognizing and accepting (See Table 1). Simply put, she was a novice in integrating 

technology into mathematical instruction.  

After passing the intervention ASSURE Model, Megan’s mathematics TPACK 

development expressed growing. Her perspectives toward themes of “Curriculum & 

Assessment” and “Teaching” changed from the recognizing and accepting level to the level of 

covering recognizing, accepting, adapting, exploring, and advancing. At the themes of 



	  

	  

“Learning” and “Access” her perspectives moved from just covering the level of recognizing 

and accepting to covering recognizing, accepting, and adapting (See Table 2). The results 

imply that the ASSURE model has been impacting Megan’s TPACK implementation on her 

curriculum design and has been extending her mathematic TPACK development.  

Table 1.  

Megan’s TPACK Development: Themes, Levels, & Examples (before intervention) 
 Curriculum and 

Assessment 
Learning Teaching Access 

Recognizing  o Tech can be a 
great resource for 
teachers  

o Tech will 
impact their thinking 
skills. 
o Age may 
impact learning 
effectiveness.  

o Tech can offer 
many creative and 
fun ways for children 
to get involvement.  

 
 

N/A 
 
 
 
 

Accepting  o Curriculum could 
be centered 
completely around 
technology 
o Worksheets and 
tests to the students 
by way of technology 
o Tech will be in 
almost all lesson 
plans and activities. 

 o Use tech to 
keep in contact with 
families and other 
faculty. 
o Slowly 
introduce technology 
o Integrate tech 
in classroom for 
short periods of time  

 
 

o Would like to 
have computers or I-
Pads in my 
classroom that the 
children are free to 
access 
o Access the 
technology will be 
based on how 
student treat it and 
what age group I am 
working with 
o Barriers: 
Students are not 
familiar with tech or 
students mistreat 
Tech. 
o Young children 
could learn tech as 
well.  
•  

Adapting  N/A N/A N/A N/A 
 

Exploring  N/A N/A N/A N/A 
 

Advancing  N/A N/A N/A N/A 
 

Implications 

This study’s goal was to demonstrate one PST’s Mathematic TPACK Development 

Level before she received instruction in the ASSURE Model and to also show the effects of 

what this instructional practice had on her beliefs. Based on the results, it does appear that the 

ASSURE Model elevated her ability to think critically about TPACK. In the beginning of the  

 



	  

	  

Table 2.  

Megan’s TPACK Development: Themes, Levels, & Examples (After intervention) 
 Curriculum and 

Assessment 
Learning Teaching Access 

Recognizing  o Some barriers 
for using technology 
in curriculum: a 
program might not 
work or something 
shuts down.  

o Tech can help 
engage students. 
o This generation 
has adapted to using 
technology and finds 
it engaging. 

o Realizes there 
are many ways to 
implement 
technology in a 
classroom. 
 

o Doesn’t know 
how to use a specific 
program properly. 

 
 
 
 

Accepting   
 
 

N/A 

o Integrates 
different types of 
technology 
curriculum that 
would be beneficial 
to the student’s 
learning. 

o Tech allows 
teachers to create 
lessons with various 
approaches to meet 
every student’s 
needs.  

 

o Technology 
should be monitored 
and kept to a 
minimum. 

Adapting  o Knows different 
technologies  
o Decides to find 
new and creative 
ways to integrate 
tech when designing 
a math lesson 
 

o Glogster is 
useful in creating 
things to engage 
students. 

o Uses a 
Promethean Board 
for teaching 
fractions. 

o Availability will 
depend on how my 
students treat 
technology in the 
classroom. 

 
 

Exploring  o Setting up a 
timer for managing 
students’ 
performances when 
using computer 
programs 

 
 
 

N/A 

o Take away or 
put back pieces and 
ask them to write on 
the interactive white 
board to show what 
fraction the pizza is 
at. 
 

 
 
 

N/A 

Advancing  o Will have a 
backup plan for 
when unable to use 
technology during 
the class. 

 
N/A 

o Decided that 
using an interactive 
whiteboard is a 
sufficient want to 
teach fractions.  

 
N/A 

 

study, her reflections indicated that she was in the “recognizing” and “accepting” phases but 

later progressed to phases of “adapting”, “exploring”, and “advancing”. This is especially 

helpful for math teacher educators, who are looking for a systematic approach to foster TPACK 

in their students. For future study, implementing experimental study would be particularly 

revealing how ASSURE model impact pre-service teachers’ Mathematics TPACK Development 

Level. In addition, conducting more in-depth case studies at various grade levels and within 

different contexts (schools, regions, urban/rural) would enable this study to provide more 

insight on necessity of TPACK and effectiveness of the ASSURE model. 
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Reproducible Research methodologies have become popular in the analysis of quantitative 
data. However, these methodologies are not much used in the field of qualitative data analysis. 
Recent advances in analysis software offer social science researchers computing tools for the 
processing and analysis of this type of data. These resources enable us to implement reproducible 
research protocols for qualitative data. As an additional benefit, we are able to analyze large 
amounts of textual data by restricting our reading to procedurally preselected portions of the texts. 
We present our adaptation of these tools to the qualitative analysis of STEM education policy. 

Introduction 

The concept of reproducible research (RR) is related to the ideas of reproducibility and 

replication, that is the repetition or the reproduction of an experiment or a study either over 

time and place (reproduction) or in parallel (replication). This principle is, of course, one of the 

cornerstones of the scientific method. An experimental result that cannot be replicated is not 

considered to be valid. This is especially important in the fields of medicine and pharmacology 

for obvious reasons, but the principle holds for all sciences. 

One of the prerequisites for the reproduction or replication of an experiment is the 

control of the experimental conditions (see e.g. Shadish, Cook, & Campbell, 2002, pp. 7-9), the 

uniformity of the experimental subjects and, ideally, randomization and the presence of a 

suitable control sample. Such control of the experimental conditions is only possible in the 

strict sense in physics and chemistry and, in a more relaxed sense, in biology. 

Replication of a tightly controlled experiment with randomization of a sufficiently large 

sample of identical subjects is considered to be necessary to consider a study to be 

generalizable. Hence, the results are considered valid and applicable to all cases where similar 

conditions exist. A study that is not applicable beyond the confines of its experimental subjects 

has little utility and thus is of limited interest. In the social sciences, such as educational 

research where human beings are the subjects of study, it is impossible to control the 

experimental environment, to have uniform subjects, or to have complete randomization. 

Hence, strictly speaking, no study in the social sciences is generalizable. Indeed, a more 

appropriate term for an experimental study in the social sciences is a quasi-experiment 

(Shadish et al., 2002). 



	  

	  

We have thus seen that even though replicability is central to the scientific method and 

thus an integral part of the process of increasing scientific knowledge, it is often difficult to 

implement due to the conditions of the experimental subjects and environment. To this 

situation we have to add more "mundane" issues such as the availability of funding and logistic 

constraints. 

Objectives of the Study 

The authors intended to address an imbalance in the field of educational research 

between the clear benefits of reproducible research, as we will show here below, and the 

paucity of examples of its use in this field. We intended to investigate whether RR would allow 

us to (1) significantly increase the amount of textual research data that we could analyze; (2) 

introduce procedures by which we could, at least partially, bracket our subjective approach to 

qualitative research, and (3) improve the presentation of qualitative research data and the 

results of its analysis through descriptive statistics and graphics. At the same time we would 

evaluative the limitations of RR. 

Theoretical Framework 

The first mention of reproducible research as a concept is in Schwab, Karrenbach, & 

Claerbout (2000) even though the term itself was coined later (Fomel & Claerbout, 2009). In 

educational research this concept has not been widespread and there are only a few examples 

of this kind of research, e.g. Wessa (2009). There are a few mentions of reproducible research 

in the social sciences, though mainly methodological papers such as Miguel et al. (2014). Thus, 

there is still very little actual work published in the social sciences even though there are 

initiatives such as the Berkeley Initiative for Transparency in the Social Sciences 

(http://bitss.org) that are promoting this methodology. 

Partly based on the above discussed constraints of the methodology of the scientific 

enterprise, as well as the advances in scientific computations, data gathering and their storage 

in electronic form, the concept of reproducibility rather than replicability has become popular 

especially in the "hard" sciences (Fomel & Claerbout, 2009). Reproducible research is 

implemented by making available all research data and code used to manipulate and analyze 

the data in addition to the traditional publication of the results of the study. This availability 

allows the research community to independently look at the research data and re-run the 

analyses. Even though reproducible research does not reach the high standard of independent 

replication of the study it has several remarkable positive aspects: 



	  

	  

• The research data are released and thus increasing transparency whereby 

confidence in the raw data is increased. 

• The cost of re-running the analyses is usually negligible. 

• Mistakes in the gathering and analysis of the data can be detected. 

• The use of sub-optimal data analysis tools such as spreadsheets and point-and-

click statistical analysis is discouraged in favor of script-based analyses. 

• Opening and searching the data and code files is easy. 

• Faster computation is possible. 

Regarding the first point we would like to remark that other researchers can, besides 

verifying the analyses performed by the original researchers, use these data to apply different 

analyses and discover additional knowledge. The availability of the code for analyses likewise 

accelerates discovery by allowing other researchers to use, adapt, and extend existing code 

without the need to "re-invent the wheel." Recently, there have been significant efforts to make 

research data available (Pampel et al., 2013), especially by libraries of research universities. For 

a large listing of online data repositories see http://databib.org and, specifically for the social 

sciences, http://thedata.org. Research data that are placed online will also generally be vetted 

for accuracy and documented, unlike spreadsheets stored on a hard drives or flash drives. 

Having access to the raw data is only half of what is necessary to implement RR. 

Researchers need also to share their analysis code. A popular way to do so is to use 

repositories that provide revision control such as Google Code, BitBucket, and GitHub. These 

services are free and provide a safe and secure way to not only make code available to the 

research community, but also allow to track revisions and to establish worldwide research 

groups. 

Finding errors is usually easier because the researcher can check the code by use of 

debugging tools. Code can, and should be, documented using comments. Point-and-click 

statistical analysis is much harder to check, even by the same researcher. Statistical analysis 

scripts can be easily read to see their "inner workings," but spreadsheets hide their 

calculations in cryptic formulas that operate on data ranges. 

Another reason that RR code and data are easier to understand and check is that 

usually the file format is plain text that is easily searched and loaded in various applications. 

Proprietary software applications such as SAS, SPSS and Excel save their files in closed, 

undocumented, or poorly documented formats. On the contrary, RR utilizes open software that 



	  

	  

usually saves data in a plain text format called "comma separated values" (csv extension) and 

the code itself also in plain text format. This allows researchers that do not have funding to 

purchase expensive software to use free software that is just as capable. Collaboration is 

easier by using scripts because by reading the code it is relatively easy to understand what a 

team member has done, unlike a series of right-clicks and left-clicks in menus and lists. 

A fairly dramatic illustration of the importance of reproducible research is an influential 

study published in 2010 by Harvard economists Carmen Reinhart and Kenneth Rogoff (2010). 

Other researchers tried to replicate the study, but were not able to obtain the same results. 

When the spreadsheets used by Reinhart and Rogoff were examined it was discovered that a 

calculation excluded values that should instead have been included (Konkzal, 2013). 

There are technical and organizational drawbacks to the use of RR. Obviously it 

requires more sophisticated knowledge of computing. It necessitates web and file servers and 

safe storage, which are expensive unless a public service is used. There are also issues of 

confidentiality of the data and copyright of computer code. The data need to be checked for 

confidential information such as personal names and social security numbers. Computer code 

may contain proprietary code that needs to be released appropriately or kept confidential. 

Qualitative data may contain information that should be kept private. 

An apparent drawback is that use of scripted statistical analysis is more difficult than by 

using point-and-click statistical applications such as SPSS. However, the greater difficulty 

involved in writing statistical analysis code forces the researcher to better understand his or her 

analysis. Nowadays it is easy to generate vast amounts of statistical results, but the software 

itself is not able to check whether these results are appropriate and applicable to the specific 

research situation. 

Methodology 

We developed a procedure for analyzing large amounts of textual data based on the 

confluence of theory and trial runs. This procedure consisted of several steps where the data 

were obtained and processed by using UNIX and R scripts that were constructed so that the 

output of an "upstream" script was the input of its "downstream" one. 

The data sources for the study consisted of the transcripts of 127 Congressional 

Hearings and 87 Presidential speeches on the topic of math and science education, from the 

years 1997 - 2011. These transcripts were available for free public access from FDsys, the 

Federal Digital System of the U.S. Government Printing Office, and were selected using 



	  

	  

relevant keywords in the search function of the website. The search created a web page with a 

listing of relevant governmental documents with embedded URLs for HTML pages containing 

the transcripts of Presidential speeches or Congressional Hearings. A series of UNIX scripts 

isolated the URLs and then created a script that downloaded the HTML files from the 

governmental repository and converted them into plain text. Some downstream UNIX scripts 

then "scrubbed" the files to remove extraneous information and divided the texts into 

paragraphs. At this point an R script loaded the scrubbed files into a SQLite database. Each 

file was a row (record) in a database table and the text was contained in one of the columns 

(fields). Then we added meta-data that specified the composition dates, authorship, political or 

institutional affiliation of the author, audience such as Senate or House Committee, and so on. 

The meta-data were contained in text files that were read by R scripts and used to populate 

additional fields in the SQLite database tables. 

At this point we performed the Qualitative Data Analysis according to Creswell (2007). 

The core of the qualitative analysis is the application of qualitative data analysis (QDA) codes to 

the paragraphs (2007, pp. 150-155), which traditionally has been a labor intensive and slow 

process. We developed, based on theory and pilot studies, a series of 39 QDA codes. We 

designed these QDA codes to correspond to answers to our research questions and to be as 

orthogonal as possible, i.e. with minimal semantic overlap. Based on QDA codes that were 

narrowly and precisely specified, we created an extensive list of words and word patterns for 

each of these QDA codes. The QDA code application function created several false positives 

and a few false negatives, thus a reading of all text was still necessary. However, this process 

was greatly speeded up because most of the work was to remove codes, which was much 

quicker than applying missing ones. 

The next stage of the analysis was text mining where the unit of analysis were the 

words of the text themselves. Text mining has been used in the analysis of policy texts by 

Monroe & Schrodt (2008). We wrote scripts that selected all the coded paragraphs and then 

"distilled" from them words that possessed "high content." The distillation was done by 

removing punctuation, numbers and "stopwords" such as "a(n)", "the", "that", and "and" that 

provide little if any information. We also performed trial runs of the distillation to supplement 

the list of stopwords. We wrote scripts that would convert synonyms of words that were of 

interest to a single term and converted terms composed of two words separated by a space or 

hyphen to a single composite term. We also changed all letters to lowercase and finally 

"stemmed" the words. The process of stemming converts related words to their base semantic 



	  

	  

value. For example, the words achievement, achieve, and achieving were all reduced to achiev. 

We decided to perform text mining only on the text of the coded paragraphs to isolate the texts 

that we found relevant to our research. The selected presidential speeches and congressional 

hearings often contained a preponderance of text not relevant to the study. 

The R software is able to calculate descriptive statistics of the paragraph codings and 

the high-content words. We also wrote scripts that generated time plots and other types of 

graphs. In the next section we provide some details. However, these descriptive statistics were 

secondary to the most important product of the data analysis. We queried the data based on 

the theory and the research questions. We structured our questions based on set theory 

operations of union, intersect and negation, which we translated into SQL and incorporated 

into R scripts that queried the database and generated lists of relevant paragraphs arranged in 

chronological order. Then we wove those paragraphs into narratives. 

Discussion 

Our semi-automated procedures processed 214 files and generated 23,292 codings 

over 6,605 coded paragraphs and 13,977 significant words. In addition, the scripts produced 

several dozens of tables, timeline graphs, word clouds, dendrograms, and correlation plots. 

Our scripts generated tabulations of (1) number of codings for each code, (2) average number 

of characters in codings for each code, (3) number of files coded for each code, and (4) 

number of codings for each document. We created frequency tables where we show for each 

QDA code the number of codings, rank and proportion. A high rank indicated the importance 

of a concept in the discourse. Also, closeness in rank is relevant. These ranks allowed us to 

perform the Wilcoxon signed rank test and thus have an inferential test for differences between 

collections (Glass & Hopkins, 1996, pp. 303–304). Similarly, we compiled frequency tables for 

the high-content words for both stemmed and unstemmed words. A more interesting 

descriptive statistic was the cross-code frequency, which is an upper triangular matrix where 

the columns and rows correspond to the QDA codes and the cells to the number of times that 

the two codes are applied to the same paragraph. A high number is a sign that in our research 

context certain QDA codes are closely related. 

Based on the research questions we prepared a list of terms and found the words in the 

documents with the highest correlation based on the Spearman's rank correlation coefficients 

(Glass & Hopkins, 1996, pp. 129–130). A visual representation of these correlations is done 

with dendrograms, treelike graphs. A different type of plot that we prepared was a correlation 



	  

	  

plot. The last type of plot that we prepared was a timeline plot where we show the number of 

codings over time. This type of plot shows how over time a certain type of discourse has 

changed. 

Implications 

In our study we have shown how the use of scripting enabled us to retrieve and analyze 

a large amount of textual data. Qualitative analysis of textual data is usually very time 

consuming, but the use of computer automation allowed us to download and process more 

than 200 files, code more than 6,600 paragraphs, most of them with multiple codes, and 

tabulate about 14,000 significant words. Such a volume of textual data, even with the 

assistance of QDA software such as NVivo would have taken a sizable team or considerable 

time. An additional consideration is the high cost of such commercial software. 

The R software has sophisticated graphical capabilities where scripts take the output of 

the statistical analyses and produce plots and other types of graphs of publication quality 

without the need to spend a long time manually creating them. The ease of generating all these 

tables, plots and graphs created an embarrassment of riches that forced us to make choices 

and reduce our output. 

Since we performed our research RR has kept on growing in popularity and new more 

powerful tools have been developed. With the use of markdown, an easy to use formatting 

language, and the utility pandoc it is possible to quickly generate docx, odt, and html 

documents. Alternatively, one can generate sophisticated publication quality pdf documents 

using markdown with pandoc and LaTeX. 

Even considering all the benefits for the researcher him- or herself as outlined 

previously, one may still wonder why to share practically all details of one’s efforts. However 

Piworar (2007) found that in a specific field of cancer research when data was made available 

with the publications those were significantly more cited. A recent metastudy of metastudies 

done by Swan (2010) showed that out of 31 metastudies that compared publications with and 

without openly available source data, 27 metastudies found that there was a statistically 

significant citation advantage. In the field of political science the increase of citations was 86% 

and in philosophy 45%. 
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The engineering practices of the Next Generation Science Standards add a new layer of 

expertise for many elementary teachers. This study investigated the effect of an engineering 
education curriculum on elementary preservice teachers’ (PSTs; N = 40) (a) knowledge and 
perceptions of engineering and (b) self-efficacy of teaching engineering. Two sections of 
elementary science methods at a Midwestern university received training; however, the engineer 
led part of the curriculum and interacted with one section (n = 20). Findings indicated that the 
curriculum had positive impacts on the PSTs. The authors present the curriculum as a broader 
impacts model for researchers. 

Introduction 

Historically, researchers have found that elementary teachers are inadequately 

prepared to teach science and elementary science education programs are sparse and of low 

quality (e.g., Czerniak & Haney, 1998; Duschl, 1983; Hone, 1970; Westerback, 1982). A national 

2013 survey indicated that elementary teachers still perceive that they are not well prepared to 

teach science (Trygstad, Smith, Banilower, & Nelson, 2013). The arrival of the Next Generation 

Science Standards ([NGSS], NGSS Lead States, 2013), with the included engineering 

practices, add a new layer of required expertise to the elementary classroom that many 

teachers may not know how to address. Although the National Science Teachers Association 

(2003) recommends that elementary teachers establish proficiency in life science, physical 

science, and Earth science, only one-third of elementary teachers have completed coursework 

in all three of these content areas (Trygstad et al., 2013).  

In addition to science content and processes, the NGSS and many state science 

standards (i.e., Oklahoma) incorporate the engineering design process throughout the grade 

levels. With fewer than five percent of elementary teachers reporting completion of college 

coursework in engineering (Trygstad et al., 2013), professional development for science 

teachers will be greatly needed to address the NGSS and to train teachers on how to 

incorporate engineering practices into the classroom (Wilson, 2013). Further, elementary 



	  

	  

teacher preparation must adjust in order to prepare elementary teachers to teach engineering 

practices in the classroom.  

At the K-12 level, engineering has been defined as a “body of knowledge about the 

design and creation of human-made products and a process for solving problems” (National 

Research Council, 2009, p. 17). Further, Brophy, Klein, Portsmore, and Rogers (2008) 

emphasized that “engineering requires applying content knowledge and cognitive processes to 

design, analyze and troubleshoot complex systems in order to meet society’s needs” (p. 371). 

Therefore, teachers will need a firm grasp of science and mathematics content in addition to a 

working knowledge of the engineering design process to be effective at implementing 

engineering practices in the classroom. 

Objectives of the Study 

Engineering is Everywhere (E2): STEM Career Outreach, is a collaborative enterprise 

between engineering and STEM education faculty. The faculty members developed E2 curricula 

to supplement 5th grade science curriculum and to encourage student-driven explorations of 

engineering in their everyday lives. The developed curricula kit coupled career awareness 

videos led by an engineer, hand-held microscopes, and an activity guide based on the 5E 

model for teachers.  

Measures of success for video lessons and scientist outreach efforts requires asking 

questions about what is beneficial about these learning experiences, and for whom and when. 

This article reviews the training of preservice teachers (PSTs) in the E2 curriculum, one 

component of the broader research project efforts to understand how 5th grade students and 

teachers come to know about engineering as a potential STEM career. Our goal for this 

research study was to understand how these E2 kits enhance PSTs (1) self-efficacy of teaching 

engineering and (2) knowledge and perceptions regarding the work of engineers. Further, this 

study also asks if the level of interaction (expert visit or virtual) made an impact on these 

outcomes. 

Related Literature 

This research aims to contribute to the newly emerging dialogue about best practices 

for preservice teachers (PSTs) in engineering education, as well as efforts to maximize the 

broader impacts of engineer engagements in K-12 education contexts (Katzenmeyer & 

Lawrenz, 2006). This section synthesizes literature on the need to increase elementary STEM 



	  

	  

career explorations and theorizes the implications for such efforts on PST professional 

development.   

EEnnggiinneeeerr iinngg  TTeeaacchhiinngg  SSeell ff--EEff ff iiccaaccyy    

Personal teaching self-efficacy is understood as a person’s belief in ability to effectively 

teach (Bandura, 1977). Teaching self-efficacy scales focus on teaching and learning outcomes 

associated within specific contexts (e.g. the Science Teaching Efficacy Belief Instrument) and 

theorize that self-efficacy influences teacher level of classroom engagement (Enochs, 

Scharmann, & Riggs, 1995; Riggs & Enochs, 1990). Exploratory work in the motivations of 

elementary teachers to engage in engineering education suggests that individual 

understanding is a mediator of teacher engagement (Hsu, Purzer, & Cardella, 2011). One study 

by Woolfolk, Rosoff, and Hoy (1990) provided evidence that self-efficacy beliefs could be 

changed during PST training to improve teacher attitudes and anxieties about science. An 

instrument has been developed and validated to measure engineering teaching efficacy (Yoon, 

Evans, & Strobel, 2014). Engineering teacher training has the potential to increase a teacher’s 

confidence to teach science while increasing their interest in and knowledge of engineering 

practices (Nugent, Kunz, Rilett, & Jones, 2010). 

EElleemmeennttaarryy  EEnnggiinneeeerr iinngg  CCaarreeeerr  AAwwaarreenneessss  

While a great deal on literature exists on career awareness, very little addresses the 

emerging need for elementary STEM career awareness. Dispelling long-held career theories 

suggesting that young children are developmentally limited in identifying career aspirations 

(Hartung, Profeli, & Vondracek, 2005), contemporary research in career development strongly 

supports the need to introduce career exploration activities in elementary and middle school 

(Auger, Blackhurst, & Wahl, 2005; Clewell & Campbell, 2002). The introduction of elementary 

initiatives will require the preparation of teachers to guide students in exploring career interests 

and workforce skills (Sun & Strobel, 2013). Designed-based learning is increasingly promoted 

as a tool for raising student interest in engineering careers (Reynolds, Mehalik, Lovell, & 

Schunn, 2009; Yilmaz, Ren, Custer, & Coleman, 2010). In terms of engineering career 

awareness, the abilities of teachers to recognize, understand, and communicate engineering 

ideas are considered to be crucial to the developmental career experiences of students 

(Duncan, Diefes-‐‑dux, & Gentry, 2011). 

 

 



	  

	  

Methodology 

During the elementary science methods course, 40 preservice teachers (PST) received 

training on the E2 curriculum (http://www.engineeringiseverywhere.com/) as part of their normal 

course work. The curriculum consists of three lessons that begin with a video featuring the 

engineer who provides an engineering context for each lesson. There were two classes, each 

with 20 PST. Both classes received similar training on the curriculum; however, one group 

(Expert Visit) received a visit from the engineer who led them through the first lesson in the 

series. The second group (Virtual) only experienced the engineer through the lesson videos. For 

both groups, the lesson sequence included (a) an exploratory activity to guide student thinking, 

(b) a video segment featuring the engineer, and (c) a challenge activity to encourage student-

led exploration of the concepts explored in the video. 

A variety of measures assessed changes in PST’s self-efficacy of teaching engineering 

and knowledge and perceptions regarding the work of engineers. This study focuses on the 

instruments that measured treatment effect by the end of the curriculum training. First, 

researchers administered the What is Technology? Instrument (Lachapelle, Hertel, Jocz, & 

Cunningham, 2013) to measure changes in the participants’ understanding of the human-

designed world. Researchers also used the What is an Engineer? (Capobianco, Diefes-dux, 

Mena, & Weller, 2011) instrument to gauge changes in participants understanding of the work 

of engineers. Researchers scored both of these instruments for the percentage of correct 

responses. Additionally, administration of the Teaching Engineering Self-efficacy Scale (TESS) 

(Yoon et al., 2014) measured changes in the PSTs levels self-efficacy regarding the teaching of 

engineering. The TESS is a 23-item, 6-point Likert-scale instrument that consists of four 

factors: (1) Engineering content knowledge self-efficacy (KS; 9 items) – personal belief in 

knowledge of engineering to be used in a teaching context; (2) Engagement self-efficacy (ES; 4 

items) – personal belief in ability to engage students during the teaching of engineering, (3) 

Disciplinary self-efficacy (DS; 5 items) – personal belief in ability to address student behavior 

while teaching engineering, and (4) Outcome expectancy (OE; 5 items) – personal belief on 

effect of teaching students’ learning of engineering. The TESS has an overall reliability of 

Cronbach’s α = 0.98. Scores for each subscale are the average of responses. Although most 

self-efficacy instruments do not provide an overall score, the test developers prescribe an 

overall self-efficacy in teaching engineering (TES) score that is the sum of the subscales. 

Data was deidentified, coded, and entered in to SPSS version 21.0 for statistical 

analysis. Researchers used the nonparametric Wilcoxon Signed-Ranks Tests (Siegel, 1956) 



	  

	  

due to the small sample size of the subgroups and the heteroscedasticity of the data. All 

analyses were considered significant at p < .05. 

Results and Discussion 

TTeeaacchhiinngg  EEnnggiinneeeerr iinngg  SSeell ff--EEff ff iiccaaccyy  

Analysis for all PSTs (N = 40) indicates that overall teaching engineering self-efficacy (z 

= -3.441, p = .001) increased after training and participation in engineering activities. 

Furthermore, analysis of test subscales revealed that PSTs made significant gains in their 

pedagogical knowledge self-efficacy (z= -4,708, p < .001) and their engineering outcome 

expectancies (z = -3.359, p = .001). These findings suggest that the curriculum made positive 

impacts on PST self-efficacy with regard to teaching engineering (see Table 1).  

Additionally, PST in both treatments made significant gains in these same areas: 

overall, pedagogical knowledge self-efficacy, and engineering outcome expectancies. 

However, the PSTS in the expert visit subgroup also made significant gains in their 

engagement self-efficacy (z = -2.066, p = .039). Thus, having an engineer involved with the 

delivery of the curriculum appears to have made an impact on PST beliefs in their ability to 

engage students in engineering activities.  
Table 1 
Changes in preservice teachers’ scores on the Teaching Engineering Self Efficacy Scales 

Measures 
Pre Post 

z p Min Max Mdn Min Max Mdn 
All Preservice Teachers (N=40)         

Overall 4.78 23.29 18.68 4.00 24.00 20.20 -3.441 .001 
KS 1.78 5.89 4.11 1.00 6.00 5.06 -4.708 <.001 
ES 1.00 6.00 5.00 1.00 6.00 5.50 -1.580 .114 
DS 1.00 6.00 4.90 1.00 6.00 5.10 -0.895 .371 
OE 1.00 6.00 4.40 1.00 6.00 5.00 -3.359 .001 
         

Virtual (n=20)         
Overall 13.18 23.29 19.28 15.33 24.00 20.06 -2.539 .011 
KS 1.78 5.89 4.06 3.33 6.00 4.78 -3.456 .001 
ES 3.00 6.00 5.63 4.00 6.00 5.38 -0.211 .833 
DS 3.40 6.00 5.40 3.60 6.00 5.00 -0.601 .548 
OE 2.80 5.40 4.40 3.80 6.00 4.80 -2.738 .006 
         

Expert Visit (n=20)         
Overall 4.78 23.04 18.11 4.00 24.00 20.06 -2.539 .011 
KS 1.77 5.44 4.17 1.00 6.00 5.22 -3.269 .001 
ES 1.00 6.00 4.50 1.00 6.00 5.63 -2.066 .039 
DS 1.00 6.00 4.70 1.00 6.00 5.20 -1.600 .110 
OE 1.00 6.00 4.30 1.00 6.00 5.00 -2.023 .043 

Note: KS – Engineering content knowledge self-efficacy; ES – Engagement self-efficacy; DS—Disciplinary self-efficacy; and OE-- 
Outcome expectancy  
  



	  

	  

IInnddiiccaattoorrss  ooff   PPSSTT  UUnnddeerrssttaannddiinngg  ooff  EEnnggiinneeeerr iinngg    

 Researchers analyzed responses to the What is Technology? and What is an Engineer? 

surveys to gain an understanding of their knowledge of the human designed world and the 

work of engineers, respectively. Overall, the PSTs (N=40) made significant gains on their 

scores on the What is Technology? instrument (z = -3.009, p = .003); however, no significant 

gains were made on the What is an Engineer? measure (see Table 2). These findings suggest 

that PSTs gained a better understanding of what constitutes a technology after learning from 

the engineer with the E2 curriculum regardless if the treatment used only the videos or a 

combination of the videos and a personal visit from the engineer. However, as a whole, the 

teachers did not make gains on their understanding of the work of engineers. 

An examination of findings by the different treatment groups indicates that an expert 

visit with the engineer had a positive influence on PST understanding of the work of an 

engineer (What is an Engineer?) (z= -2.362, p = .018) and the human-designed world (What is 

Technology?) (z = -2.698, p = .007). Again, having an engineer participate in the delivery of the 

curriculum appears to have made an impact on PST’s understanding of technology and the 

work of engineers. 
Table 2 

Changes in preservice teachers’ scores on the What is Technology? and What is Engineering? 

Measures 

Pre Post 

z p Min Max Mdn Min Max Mdn 

What is Technology? (N=40) 45.00 100.00 70.00 45.00 100.00 80.00 -3.009 .003 
Virtual (n=20) 45.00 100.00 70.00 45.00 100.00 77.50 -1.657 .098 

Expert Visit (n=20) 45.00 100.00 70.00 45.00 100.00 80.00 -2.698 .007 
         
What is an Engineer? (N=40) 52.63 100.00 68.42 57.89 100.00 68.42 -1.424 .154 

Virtual (n=20) 52.63 100.00 71.05 57.89 100.00 65.79 -.673 .501 
Expert Visit (n=20) 52.63 89.47 65.79 57.59 100.00 71.05 -2.362 .018 

 

Implications 

The findings of this study suggest several important implications for PST training in 

engineering curriculum. First, education-engaged engineers should seek PST audiences for 

broader impacts initiatives. These groups are concentrated and available on university 

campuses and can be easily arranged with science education faculty. Preservice teachers can 

be agents of change as we begin reforms to normalize NGSS engineering practices in 

elementary classrooms. Additionally, helping to educate PST on the work of engineers has the 



	  

	  

potential to indirectly reach more elementary students. Further, visits by engineers to PST 

university classrooms may be more feasible than visits to individual elementary schools. 

Second, in the case of this research, face-to-face interactions with the engineer increased PST 

understanding of engineering and the designed world. Indeed, it is the ubiquity of 

engineering—that it is everywhere—which makes transparent the immense importance of 

engineers to society (Brophy et al., 2008). A visit from a local engineer adds a distal and socio-

cultural layer to teacher understanding of engineering and its importance to a 21st century 

workforce (Bybee & Fuchs, 2006). Finally, a virtual format (i.e., videos) allows for a novel 

approach for researchers to share their research and passion for engineering with many 

individuals. Whereas the strains of academia do not encourage researchers to visit countless 

classrooms, a virtual experience can be distributed to a broader audience with minimum time 

to be invested by the researcher. Thus, this model of engaging engineers in PST education has 

potential to make broad impacts for dissemination of the work of engineers into the elementary 

classroom.  
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This mixed-methods study investigates elementary and secondary preservice teachers’ 
(PSTs) (n=4) science content knowledge and conceptions of nature of science (NOS) following the 
first year implementation of a STEM site-based professional development (PD) program. The 
VNOS-C instrument was utilized to collect data regarding participants’ perceptions of NOS before 
and after the intervention. Pre- and post-test data from a science content exam was used to 
assess changes in content knowledge. Findings in this study may offer insight into how to foster 
and develop PSTs content knowledge and understanding of NOS in future PD programs. 

Introduction 

The shortage of STEM middle school teachers, especially those in low income and high 

minority schools, is exacerbated by the fact that many of the teachers are not adequately 

prepared or supported to foster success and interest in science, technology, engineering, and 

mathematics (STEM) (Boyd, Lankford, Loeb, Ronfeldt, & Wyckoff, 2011; Stronge, 2007). While 

generalist elementary education degrees are among the most completed in the U.S. (NCES, 

2012), many of these teachers have limited preparation for effectively teaching mathematics 

and science as they have usually completed only 1-3 content courses in generalist education 

programs (CMBS, 2012). A possible solution to this challenge is to use the pool of grades 4-8 

STEM teachers who are elementary generalist to recruit STEM elementary STEM teachers, 

assisting them with the certification process by augmenting their STEM content knowledge. 

South Texas University (STU - pseudonym) is testing an unconventional preservice strategy for 

bolstering the elementary to middle levels STEM certification and teaching pathway. The TEX 

(pseudonym) initiative is supported by a 3-year $1.5 million grant from a national funding 

agency. As a research-based effort, a team of investigators are studying the impact of the TEX 

initiative by using a mixed methods matched-group research design addressing students, pre- 

and inservice-teachers in relation to views on the nature of science (NOS), as well as self-

efficacy, interest, and achievement in STEM as indicators of the quantity, quality, and diversity 

of grades 4-8 mathematics and science teachers. This report outlines a pilot study using case 



	  

	  

based studies to investigate preservice teachers’ (PSTs) changes in science knowledge and 

views of the NOS through the use of site-based professional development (PD) programs.  

Objectives of the Study 

Starting in Fall 2013, the 30-year teacher preparation partnership consisting of the 

largest school district and university in a mid-sized U.S. southern city, began implementing the 

new TEX program at three participating schools, including one middle school and two 

elementary feeder schools serving a combined 1,900 students annually. Given the deficits 

identified in the effectiveness of traditional, externally designed PD and the lack of authenticity 

in college preservice field-based experiences, STU investigators created a new model for 

science and mathematics content instruction by incorporating site- and content-specific PD 

with field-based experiences, using inquiry and other tools to increase authenticity. Questions 

arose during the planning phases of this grant such as: What do we really know about PD and 

verifiable improvements in student learning? How can more connections be made in the PSTs’ 

field-based experiences to increase content knowledge and self-efficacy in science and 

mathematics, and cause changes in perceptions in NOS?  

Theoretical Framework 

Teachers, both experienced and novice, often complain that the learning experiences 

that take place outside of the classroom are too removed from the authentic context of day-to-

day teaching to have real impact (Putnam & Borko, 2000). A problem that often arises within 

traditional teacher education programs is the lack of connections between university-based 

teacher education courses and K-12 field experiences (Zeichner, 2007). Student teachers 

usually do not have opportunities to observe, try out and receive focused feedback about their 

teaching of methods learned in college courses. Darling-Hammond (2009) identified this lack of 

connection as the Achilles’ heel of teacher education. PSTs typically are left to work alone with 

little if any guidance in relating what they are doing to coursework. Furthermore, it is often 

assumed that good teaching practices are personally identified as they occur, rather than 

taught in an authentic, situated context (Darling-Hammond, 2009; Valencia, Martin, Place, & 

Grossman, 2009).  

Investigators determined that workshops would implement research-based instructional 

practices incorporating active-learning experiences for participants, using strategies specific 

for each classroom situation. Large national teacher education studies have revealed that 

carefully coordinated field experiences that connect with college courses are more influential in 



	  

	  

supporting teacher learning then the typical disconnected field experiences that dominate 

American teacher education (Darling-Hammond, 2006). Engaging PSTs in authentic, situated 

practices of science and science teaching is also important because it provides a productive 

context to learn about NOS (Schwartz, Lederman, & Crawford, 2004).        

Methodology 

To create more authentic experiences and address Darling-Hammond’s (2009) Achilles’ 

heel in teacher education, authentic activities were developed that fostered different kinds of 

thinking and problem-solving skills that are important outside of the classroom (Putnam & 

Borko, 2000). The PD efforts centered directly on enhancing PSTs’ content knowledge and 

their pedagogic content knowledge (Shulman, 1986). In addition, because educators struggle 

to adapt new curricula and new instructional techniques in their unique classroom contexts, 

just-in-time, job-embedded assistance was identified as crucial (Guskey & Yoon, 2009). 

Student teachers are generally not provided with the kind of preparation and support they need 

to practice teaching (Darling-Hammond et al., 2005; Valencia et al., 2009). Therefore, the 

science and math education faculty remained on-site to provide lesson planning and follow-up 

activities before and after the teaching experience. These efforts created what has been called 

a third space, or a “hybrid” space where PST education programs bring together school and 

university-based teacher educators and practitioner and academic knowledge in new ways to 

enhance the learning of prospective teachers (Ziechner, 2009). 

The nature of scientific knowledge refers to the understanding of science as a way of 

knowing. Past studies have revealed that many teachers do not hold adequate views of NOS 

(Abd-El-Khalick, Bell, & Lederman, 1998). Studies highlighted the need for well-designed PD to 

engage PSTs in inquiry-based experiences and provide support for them in articulating their 

views regarding inquiry and the NOS (Capps & Crawford, 2013). Therefore, the researchers 

used a combination of methods and instruments to analyze PSTs’ conceptions of NOS and 

content knowledge in science after participating in a STEM site-based PD program. This pilot 

study addressed the following research questions: 

1. To what extent did preservice teachers’ views of NOS change over the program 

period (from October 2013 through May 2014)? 

2. To what extent did preservice teachers’ science content knowledge change over 

the program period (from October 2013 through May 2014)? 

 



	  

	  

 

PPaarrtt iicciippaannttss  aanndd  SSeetttt iinngg  

For the purposes of this case study approach, 4 out of 12 PSTs, all female, were 

randomly selected as a representative sample of the original PST (also referred to as TEX 

Fellows) study population participating in the TEX program. Two participants were prospective 

elementary teachers seeking an EC-6 generalist teaching certification, and two were 

prospective secondary teachers seeking a 4-8 math teaching certification. The PSTs were 

enrolled in an undergraduate teacher preparation program at STU and participated in this 

research study during their required year-long field experience. 

This study centered on two of the three TEX program partner schools. The experiences 

of PSTs at the middle school campus (Grades 6-8), where the site-based PD took place 

(treatment group), were compared to the experiences of PSTs at one of the elementary school 

campuses that serve grades K-5 students (control group).  

Control group: The control group was representative of PSTs at the elementary school. 

The PSTs did not receive explicit teachings on NOS or the 5-E inquiry-based instructional 

model. In preparation for STEM Thursday activities: (a) science lessons were given to PSTs, (b) 

PSTs taught lessons once in 4th and 5th grade classrooms, (c) TEX program staff developed and 

led the lesson lessons, and (d) PSTs acted more in a supporting role. 

Intervention Group: The treatment group was representative of PSTs at the middle 

school. The site-based PD consisted of: monthly planning meetings, enhanced STEM 

Thursdays, onsite support, and materials and resources. PSTs received explicit teachings on 

science content, NOS and 5-E inquiry-based instructional models. In preparation for STEM 

Thursday activities: (a) PSTs and TEX program staff collaboratively planned and created 5-E 

science lessons, (b) PSTs led lessons and TEX program staff acted in supporting role, (c) PSTs 

taught lessons in consecutive periods in 6th and 7th grade classrooms, (d) PSTs and the TEX 

program staff met 3-4 weeks every month, (e) There were multiple email exchanges between 

PSTs and TEX program staff, sharing resources, as well as, components of instructional 

materials, and (f) PSTs practiced teaching their lessons prior to STEM Thursday, and reflected 

afterwards. An additional advantage to the treatment group was that on-site support from a 

science education professor was available twice per week. 

DDaattaa  CCooll lleecctt iioonn  aanndd  IInnssttrruummeennttss  

Two instruments were utilized as sources of data: (a) VNOS-C questionnaire, and (b) 

Content test. To assess PSTs’ conceptions of NOS, we administered the 10-item, open-ended 



	  

	  

VNOS-C questionnaire (Lederman, Abd-El-Khalick, Bell, & Schwartz, 2002) before and after the 

TEX program. Analysis of the VNOS-C results entailed utilizing a rubric design based on 

previous research (Bargmann & McCollough, 2011). In addition, a pre/post multiple-choice 

content test was administered to measure PSTs changes in content knowledge by using an 

exam (Wynne, 2008) that was devised and tested to establish validity and reliability (Miles & 

Huberman, 1994).  

Results and Discussion 

Paula. Paula is a non-traditional student, pursuing teaching as a second career. English 

was not her native language and she lacked the cognitive academic language of science.  
 
  

   

Figure 1. Schematic of the treatment group and control group’s pre-test and post-test 

scores on the content exam. 
   

As Figure 1 shows, Paula’s content test post-score increased 150%. Paula’s VNOS-C 

responses showed growth in two out of the five questions that were analyzed, as shown in 

Table 1.  

Paula’s post-test response, as shown in Table 1, depicted an increased understanding 

that science was based on experimentation and the collection of data. In her pre-test, Paula 

held common misconceptions about theories and laws including the belief that a theory can be 

proved true; once it does, it turns into a law. In her post-test, Paula was able to provide an 

example using Mendel. 

Christine. Christine demonstrated strong leadership abilities and was extremely 

enthusiastic about teaching both math and science. Christine’s multiple choice question score 

increased 27%. Her VNOS-C scores also increased in two of the five questions. Christine had 

similar misconceptions as Paula when she began the program. In her post-test, Christine 



	  

	  

showed a more developed understanding and was able to give Newton’s Laws as a concrete 

example of a scientific law (see Table 1).  

Table 1 Pre and Post Responses on the VNOS-C 
Question Participant Pre-test response Post-test response 

Q1.What, in your view, is 
science? What makes science 
(or a scientific discipline such as 
physics, biology, etc.) different 
from other disciplines of inquiry 
(e.g., religion, philosophy)? (NOS 
aspect: empirically based) 
 

Paula Q1: Science is the study of nature (how 
things grow and form), human 
development, why individuals act the way 
they do. Science is different from religion in 
the way that science is what we see in our 
environment including our community, 
people, grow, or develop. Religion is what 
people think, how they create rules or 
beliefs to believe in something. 
Science=development; Religion=belief 

Q1: Science is the study of nature, 
how we evolve as humans how 
living things evolve on earth. 
Science is the study of the universe. 
The difference from religion and 
philosophy is that science is based 
on experiments data and studies 
from the results of the experiment. 

Q2. Is there a difference between 
a scientific theory and law? (NOS 
aspect: Theory versus law) 

Christine Q2: Scientific theory is based on ideas but 
have not been proven with 100% certainty. 
Scientific law has been proven or at least 
have (sic) not yet been disproved. 

Q2: Yes, scientific law has more 
evidence and support. A scientific 
law is considered more absolute. 
Newton laws in the scientific world 
are considered proved beyond a 
reasonable doubt not just a theory. 

 Paula Q2: Scientific theory is was (sic) a person 
has prove to be true (sic) by his 
experiments. Scientific law is when many 
individuals (sic) scientists have proved the 
same theory they prove (sic) such theory. 
Then the theory becomes a law. 
 
 

Scientific Theory- The study of 
Gregory Mandel is an example of 
scientific theory-We inherited 2 
traits from our parents. 

Question Participant Pre-test response Post-test response 
Q4. Do scientists use their 
creativity and imagination during 
their investigations? (NOS 
aspect: Creative and imaginative) 

Megan Q4: I am not sure. Q4: I think they use little creativity in 
coming up with hypothesis. 
 

Q5. Do social, cultural, and 
political issues influence science? 
(NOS aspect: Culturally and 
socially embedded) 

Christine Q5: Science is universal because regardless 
of political, social, or philosophical values, 
nature and life remain the same. Ex: stars 
do not change regardless of location 
animals behave equally 

Q5: Our culture impacts everything 
we do. Scientists are also 
influenced by their culture and that 
is why I believe that one is a 
reflection of the other a culture that 
believes in religion will have different 
explanations to the same event as a 
culture who does not believe in 
religion at all. 

 

Megan. Megan is an EC-6 major who was pursuing an add-on certificate in both math 

and science. She student taught in a self-contained fourth grade classroom. Her scores on the 

content exam remained the same for both administrations. As shown in Table 1, her VNOS-C 

response showed growth in only one NOS aspect, understanding of the role of creativity. 

Victoria. Victoria was assigned to a fifth grade Language Arts classroom for student 

teaching. She did participate in the planning and delivery of five STEM lessons during her 



	  

	  

experience. Her prior content knowledge measured 20% on the pre-test and grew to 40% 

during the year. Her VNOS-C scores did not show any growth in understandings of NOS. 

Table 2. Summaries of Scores on the Content Exam 

 
Overall, according to the pre-test results the six middle school students in TEX came 

into the PD program with greater science knowledge (M = 0.52, SD = .20) than the elementary 

group (M = 0.42, SD = .16). The post-test scores show a significant difference in gains between 

the two groups. As Table 2 shows, the treatment group increased showed normalized gains of 

29% while the control group showed normalized gains of 7%. A Mann-Whitney test revealed a 

significant difference exists in the distribution of the post-test scores (p = .015). For normalized 

gains, Cohen’s d = .71, producing a large effect size. Hence, it appears that the PD model 

used at the middle school had a significantly strong impact on the acquisition of content 

knowledge. 

The two groups had similar initial responses to the VNOS-C. Despite the PD 

experience, all the students spent the majority of their student teaching time with traditional 

Cooperating Teachers. The middle school group did show some modest gains in their 

understanding of NOS, but none of them responded with fully informed answers to any of the 

questions. 

Implications 

Preservice teachers benefit from having site-based PD and experts available to support 

them as they merge theory with practice in developing and implementing research-based 

science lessons. The TEX faculty needs to expand the PD model to engage PSTs in longer 

instructional units that integrate understandings of NOS as they experience the essential 

elements of the scientific discipline including: building theories and models, collecting and 

analyzing data, constructing arguments and using specialized ways of representing ideas 

(Duschl & Grandy, 2013). Involving recent graduates of the program to serve as mentors for 

PSTs as well as training Cooperating Teachers within the schools would strengthen the TEX 



	  

	  

initiative. This may lead to a transformation of the way that 4th-8th grade students, their 

teachers, and the PSTs understand NOS and are able to deepen their scientific knowledge. 
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There is a lot of negative advocacy that has caused a negative connotation towards the 

influence of video games on children’s cognitive, psychological, and social development, 
regardless of the type of video game. Multiple studies have been conducted on the influence of 
video games on children’s behavior, but not a lot of research exists to show connections between 
game playing and children’s cognitive development. In this study the effects of video games on 
middle school students’ math ability were investigated.  

Introduction 

Technology (this term refers to devices such as televisions, computers, tablets, phones, 

gaming consoles, and video games) is prevalent everywhere. Children grow up exposed to 

technology. Children’s environment influences their learning, Technology is part of their 

environment. With technology the new generation will learn and develop in a different way. One 

aspect of technology under scrutiny is video games. Though research on this topic is scarce, 

some research investigated a relationship between the skills needed to do math, and the skills 

gamers (individuals that play video- and computer games) use when playing video games 

(Temple University, 2012). Discovering a relationship between doing math and playing video 

games might provide insights into using gaming during the learning process.  

Related Literature 

Games are part of children’s development. The benefits of both board games and video 

games lie in the mental stimulation they provide either through social engagements, or the 

enhancement of memory (Miller, et al., 2012). Video games improve and promote problem 

solving, hand-eye coordination (Chuang & Chen, 2009), visual attention, (Chen, Liao, Cheng, 

Yeh, and Chan, 2011), reasoning and working memory (Baniqued, Lee, Voss, Basak, Cosman, 

Desouza, . . . and Kramer, 2012), social interaction, physical activity (Lieberman, Fisk, and 

Biely, 2009), imagination and creativity (Ball and Ball, 1979), fast reaction times, deeper 

thinking (Ip, Jacobs, and Watkins, 2008), accuracy (Dye, Green, and Bavelier, 2009), memory 

formation, and strategic planning (Max-Planck-Gesellschaft, 2013). In addition to the 

aforementioned skills, one specific cognitive skill enhanced by video game playing is spatial 

cognition (Max-Planck-Gesellschaft, 2013). This particular skill will be discussed in more detail 

and with more support in a later section. 



	  

	  

  Adverse effects of video games on behavior including addiction, aggression, violence 

(Ip, et al., 2008), and impulsiveness (Gentile, Swing, Lim, and Khoo, 2012) dominate the media, 

and provide a dissenting view of video games. Studies interested in negative implications 

usually look at action and/or violent video games in particular (Ewoldsen, Eno, Okdie, Velez, 

Guadagno, and DeCoster, 2012). Many researchers failed to establish a link between violent or 

non-violent video games and the diminishing of pro-social behavior (Ferguson et al., 2013; Tear 

and Nielsen, 2013). Other negative influences of video games include attention disorders such 

as attention deficit hyperactivity disorder (ADHD) (Gentile et al., 2012), lower academic grades 

(Ip et al., 2008), and even being numb to real-life experiences (Springer Science & Business 

Media, 2013). However, these effects were based on gaming frequency, and not the effect of 

the gaming experience itself. 

 “. . .they are here to stay. Let us use them wisely.” Those are words from Ball and Ball 

(1979) about the future of video games. In their article they promoted the use of video games in 

the classroom, even more than 30 years ago! The use of computers at an early age influence 

the connections formed in the brain, and therefore young children who use computers will 

learn differently than their counterparts (Vawter, 2010). Eow et al.( 2009) stated that it will be 

unrealistic to try to stop the expansion of video games, and the education system should try to 

incorporate computer games into the teaching and learning process. Since many students are 

interested in technology, it can motivate and engage students in learning (Chen et al., 2011), 

and it can help build skills, knowledge, and habits that cannot be provided in traditional 

classrooms (Buschang, Chung, & Kim, 2011). The digital era requires new ways of teaching 

and learning (Battro and Fischer, 2012).  

There has been a lot of interest lately in the potential effects of video games on 

perceptual and cognitive skills (Dye et al., 2009). A recent study by Green and Bavelier (Spence 

& Feng, 2010) found that spatial skills could be modified by playing action video games. Spatial 

reasoning is an essential field of study in mathematics, science, engineering (Temple 

University, 2012), meteorology, and architecture (Cherney, 2008.), and medicine, dentistry, and 

chemistry (Cherney, 2008). Math tasks and math performance have been positively correlated 

with spatial thinking and ability (Van Garderen, 2006). 

Spatial thinking refers to the ability to mentally generate, rotate, and transform visual 

images (Park, Lubinski, and Benbow, 2010), and includes capacities such as contrast 

sensitivity (ability to distinguish between an object and its background), spatial resolution 



	  

	  

(recognizing small details), visualization, tracking multiple objects, visuomotor coordination, 

and speed (Spence and Feng, 2010).  

Geometry involves spatial sense when comparing proportions and figures, matching 

disproportional pictures, and understanding relationships between objects (Boytchev, et al., 

2007). Mental rotation is an important element of spatial activities (Liesefeld and Zimmer, 

2013). Mental rotation involves rotating a visual object to indicate the original position of the 

object before it was rotated in space. Van Garderen (2006) conducted a study with students 

from varying abilities—students with learning disabilities, average achievers, and gifted 

students. The gifted students performed better on spatial visualization and visual imagery tasks 

than their lower and average ability counterparts.  

Purpose of this Study 

This study was not to determine if video games cause academic failure or success, but 

our goal was to see if gamers performed better in certain cognitive tasks than their non-gamer 

counterparts. Spatial activities were used to determine students’ spatial abilities which are 

prevalent in both math and computer games. We compared the results to student’s gaming 

ability. 

We wanted to compare the spatial ability of gamers playing any type of video games, 

and that of non-gamers in this study. The hypothesis for this study is that gamers will 

outperform non-gamers on spatial reasoning tests. If that is the case, the benefits of using 

video games in educational settings for the purpose of developing mathematical skills can be 

investigated more.  

Methodology 

Middle school students from a private- and public school in Central Oklahoma 

participated in this study. The demographics for the participants vary and are unknown. During 

the initial survey 22 gamers, 1 non-gamer and 8 “tablet gamers” were identified. Participants 

were categorized in three groups based on the results of the initial survey.  

DDaattaa  SSoouurrcceess  

The data were collected through two surveys and random interviews. The surveys were 

conducted through an online tool, Surveymonkey, in a controlled environment where teachers 

were present to supervise. The goal of the first survey was to gather data about students’ 

gaming habits: what type of games they play, how often, what platforms they use to play 

games, and how serious they take their game playing. In this survey students also state their 



	  

	  

grades they achieve in math. The second survey had students do four spatial activities 

categorized as logical reasoning, visualization, paper folding, and perception. Each activity had 

four possible answers and students had to choose the correct one. 

Students were randomly identified to be interviewed. The interviews were conducted to 

get a more in depth view of students’ exposure to spatial activities throughout their lives. 

Examples of such questions were, “Did you build puzzles growing up?,” “What type of board 

games did you play when you were younger?,” “Did you play with blocks/Lego’s when you 

were little?,” “Have you played Connect 4 or Sudoku before?” Some questions were slightly 

different depending on how students identified themselves in the initial survey (e.g. To a gamer, 

“Why do you play video games?” and to a tablet gamer, “Why do you not play video games?”). 

Results 

From 43 responses, only 31 were completed correctly and could be used towards the 

results and data analysis. Initially the researchers planned on having two groups of 

participants: students who play video games (gamers) and students who do not play video 

games (non-gamers). After receiving the data for the surveys, it was evident that there were 

three groups: video gamers, tablet gamers, and non-gamers. Students who only play games 

on tablets did not consider themselves as gamers, thus a third category emerged, tablet 

gamers. Since only 1 participant responded as non-gamer our data analysis will focus on two 

categories, gamers and tablet gamers.  

Survey results indicated that students either play video games (71%) and/or games on 

tablets (25%). From the gamer group, 72% usually achieves an A in math, and 22% achieves a 

B. All tablet gamers achieve As in math. 

Participants completed 4 spatial activities. Results are displayed in Table 1 below. 

Analysis 

Twenty five percent of participants who played video games scored 4 out of 4 when 

completing spatial activities whereas only 15 % of tablet gamers scored 4 out 4 when 

completing the spatial activities. Approximately 21% of tablet gamers completed 3 out of the 4 

activities correct compared to approximately 19% of video gamers. Approximately 31% of 

tablet gamers completed half of the activities correct, whereas approximately 30% of video 

gamers completed half of the activities correctly. Eleven percent of video gamers did not 

complete any of the 4 activities correctly whereas only 9% of the tablet gamers did not 



	  

	  

complete any of the activities correctly. Since only one participant was a non-gamer the 

researchers could not adequately address the original hypothesis.  

Table 1 

Results of Spatial Activities 
Answers correct Play video games No video games, but 

phone/tablet games 

4  25.0%  15.6% 
3 19.3% 21.9% 

2 29.6% 31.3% 

1 14.8% 21.9% 

0 11.4% 9.4% 

   

From the data collected a different category than what was expected emerged. Thus the 

analysis of data and conclusions are based on a small sample size and the emergence of 

“tablet gamers” category. The data indicates that gaming, whether video, tablet, or board, may 

enhance spatial abilities. 

Even though the researchers’ conclusion regarding the initial hypothesis is inconclusive, 

some other results emerged from the study. These results can possibly be used in a 

supplemental study regarding spatial abilities and gaming. As discussed previously, the level of 

a student’s spatial abilities plays a role in his/her math performance. Games, either video 

games or board games, can enhance these abilities. Some research specifically focused on 

first person shooter (FPS) and action games as games that can help students develop their 

spatial skills. However, upon analysis of the specific gaming genres (FPS and action games) in 

comparison to the answers correct for the spatial activities, no relationship could be found. For 

example, a few students who indicated playing FPS- and action games received high scores 

on the activities, but there were also some who played these games (individually or as a 

combination) who received poor scores on the spatial activities. The same was true for those 

who only played one type of genre (for example simulations) who received excellent scores on 

the spatial activities. The time students spent on video games did not have an effect on their 

scores either. More time spent on video games did not necessarily provide a higher score, or 

vice versa, which could support the research stating that playing games for only a few minutes 

can enhance certain skills.  

 



	  

	  

Implications 

As noted previously, a bigger sample size will make the results more significant, and will 

give this type of research a bigger impact in how parents and teachers perceive children’s 

development. If the results indicate that children understand spatial activities better when they 

are active video gamers, this change in how children learn can be incorporated in the 

classroom. It can completely change the way technology are utilized in schools from how it is 

currently done. This of course is not an easy change that can happen overnight. The transition 

will be time consuming and costly due to many variables that need to be investigated before 

implementing games in classrooms. Therefore a lot of research still needs to be done on the 

different aspects of this change before it can even be considered. 
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The purpose of this study was to examine to what extent two groups of preservice 

mathematics teachers (PSTs) were engaged addressing middle grade students’ misconceptions in 
algebra. The engagement of the PSTs was defined as an effective answer that could assist 
students to correct existing misconceptions. On a posttest, four open-ended problems were 
presented to 32 (treatment) and 27(comparison) PSTs, requesting them to assist middle grade 
students with a misconception. There was no statistically significant difference between the 
treatment and comparison groups. However, the proportion of engaged PSTs in the treatment 
group was two to four times greater than the comparison group. 

Introduction 

An important goal for teachers is to help students form mathematical understandings of 

concepts and procedures. However, during their learning of arithmetic, students may develop 

misconceptions about key concepts and procedures. These misconceptions are usually 

resistant to change and affect students’ success and progress in algebra. It is, therefore, 

essential that teachers be able to recognize specific misconceptions and know strategies to 

address them. Unfortunately, some teachers themselves have some of the same 

misconceptions as their students, or have not learned effective approaches to assist their 

students, resulting in the students’ misconception becoming more robust and difficult to 

correct. Thus, it is very important in preservice mathematics education to address the issues of 

students’ misconceptions and to provide future teachers with strategies for correcting their 

own misconceptions and support their students’ learning with deeper understanding. 

Objectives of the Study 

The purpose of this study was to explore the effectiveness of activities designed to 

develop preservice teachers’ abilities to recognize and address student misconceptions in 

algebra. The activities were a part of a required problem solving course for middle grades 

certification. A second purpose was to compare the participants’ knowledge and strategies in 

addressing misconceptions with a group who only studied problem solving. In this study, the 

key measure of the participants’ knowledge of how to address misconceptions was whether 



	  

	  

they engaged the student in thinking about the concept or procedure. The research questions 

were: (1) how well do preservice teachers, who have studied student misconceptions in the 

context of problem solving, engage students in thinking about mathematics? (2) How do 

preservice teachers who have studied student misconceptions compare with a group who only 

studied problem solving strategies? 

Related Literature 

Algebra is one of the critical mathematical subjects and often serves as either a 

gateway or barrier to more advanced courses (West, 2013). From the early grades the 

importance of algebra is recognized and, even if the students do not specifically know it as 

“algebra”, the introduction of algebra is expected to be taught at preK-2 (NCTM, 2000). Thus, 

algebra is very crucial mathematics content because it provides a generalization of arithmetic, 

helps students to understand relationships and formulate rules, besides being a foundation for 

other mathematical content (Usiskin, 1995). Middle school students’ proficiency in algebra 

concepts and procedures including ratios, proportions, equations, and functions is critical for 

later academic success and career growth (Bush & Karp, 2013; Capraro & Joffrion, 2006; 

Edwards, 2000; Powell, 2012; Stephens, 2005; Welder, 2012). 

Even though algebra is taught beginning in the early grades, it is not an easy subject for 

students and they often develop misconceptions. Algebraic misconceptions have long been 

widespread among students and even their teachers (Davis, 1995; Huang & Kulm, 2012). 

Researchers have found typical mistakes committed by students in solving problems of 

algebra or linear equations (e.g., Powell, 2012; Welder, 2012). Based on studies about 

misconceptions, we found that students were unable to correctly represent an equation with a 

graph, or confused the differences between equations and expressions (Bush & Karp, 2013). 

They did not have accurate knowledge of direct and inverse proportions (Dogan & Cetin, 2009). 

For the students writing a ratio and finding the proportion was problematic (Kaplan, Isleyen, & 

Ozturk, 2011). They also had difficulty understanding the concepts of function and equation (Li, 

2006), variables, constants, and unknowns (Kocakaya Baysal, 2010; Li, 2006).  

Assisting students effectively is important and depends on teachers’ knowledge. 

Students’ misconceptions can be persistent if the teachers themselves have misconceptions 

and it was found that preservice teachers have difficulties determining students’ 

misconceptions (Şandir & Aztekin, 2013). Studies have revealed that preservice teachers could 

not properly define functions with one-to-one and onto properties (Dede & Soybas, 2011), had 



	  

	  

difficulties with linear equations (Li, 2007), were not very successful in worded multi-step ratio 

questions (Livy & Vale, 2011), did not have full understanding of the conditions of functions and 

of multiple representations of functions (Dede & Soybas, 2011), and had problems in 

differentiating functions and equations (Aydin & Kogce, 2008). 

In order to better assist students, teachers should have deep understanding of 

mathematical concepts and should not have misconceptions about these concepts. If teachers 

are well-prepared, they should be more successful in correcting students’ misconceptions. It 

has been known for decades that there is a direct correlation between teacher quality and 

student outcomes. Shulman (1987) included pedagogical content knowledge (PCK) and 

knowing students in the categories of teachers’ knowledge base. He identified PCK as a 

decisive category to distinguish experts from their colleagues. With PCK teachers can tailor 

content and pedagogy to meet diverse learners’ needs for understanding mathematics 

content. An, Kulm and Wu (2004) further proposed that the major part of PCK is the knowledge 

of students’ thinking, which includes their understanding of mathematical conceptions and 

possible underlying misconceptions. 

Bush and Karp (2013) suggested that teacher education should equip preservice 

teachers with knowledge of strategies to address students’ misconceptions. The instructional 

technique of erroneous examples was employed by McLaren et al. (2012) to target students’ 

misconceptions. In the study, mathematical mistakes were intentionally imbedded in the 

detailed solution of the problems to challenge students to find, explain, and fix. Another 

proposed strategy to foster knowledge of students’ thinking by An and Wu (2004) was to 

examine students’ homework. Teachers needed to go through a 4-step process: detecting 

mistakes, analyzing reasons, creating solutions, and correcting them.  

Methodology 

SSaammppllee  

There were 33 participants in the experimental and 28 participants in the comparison 

group. The demographics of the participants reflected the overall population of the preservice 

teachers at the university. There were 55 females, 51 White, 8 Hispanic, one African American, 

and one Asian preservice mathematics teachers. Both groups were enrolled in a required 

three-credit Mathematics Problem Solving course. The treatment group consisted of PSTs who 

attended the treatment course where as control group was comprised of PSTs who were 

willing to take the test from other instructors’ course. 



	  

	  

PPrroocceedduurree  

The experimental group was taught by the first author and the comparison group by an 

experienced clinical professor. The experimental course included problem solving heuristics 

(Polya, 2004), strategies for teaching diverse students (Ellis, 2008), presentations by experts on 

diversity and algebra misconceptions, and the opportunity to tutor and teach middle grade 

students in a virtual environment. Problem solving heuristics were developed in the context of 

three Problem Solving Equity Challenge assignments on the topics of proportions, linear 

graphs, and percents (Kulm, Merchant, Ma, Oner, Davis, & Lewis, under review). These 

Challenges presented a culturally relevant (Ladson-Billings, 1995) problem to solve, followed 

by activities in which the participants developed a similar problem for students, responded to 

possible student misconceptions about the algebraic concepts and procedures in the problem, 

planned a problem solving lesson, and answered questions about the algebra concepts and 

procedures that students might ask. The presentation by the fifth author on algebra 

misconceptions included the meaning of misconception, how to correct misconceptions, what 

to do and what not to do while assisting students, and examples of student misconception 

from previous studies. The comparison group studied mathematical problem solving heuristics, 

completed assigned problem sets, and discussed and presented problem solutions in class. 

IInnssttrruummeenntt  

Participants completed a posttest of the Knowledge for Algebra Teaching for Equity 

(KATE) test developed by the authors. The KATE test contained 19 open-ended mathematics 

problems to assess algebra content and teaching knowledge. Four of the 19 problems asked 

how to assist a middle grade student who had a misconception. The first problem required 

finding a linear equation, given a table of values; the second problem required using 

information from a linear graph to draw another graph; the third problem required simplifying a 

linear expression; and the fourth problem required finding and solving a system of two linear 

equations, given a table of data. 

AAnnaallyyssiiss  

For the first problem, 32 experiment and 27 comparison group PSTs’ answers were 

completed. Problems two, three, and four were answered by 31 experiment and 27 

comparison group PSTs. The participants’ answers to the four problems were independently 

coded for engagement by the first and third authors. We defined engagement as assisting 

students by asking questions to guide students, providing broad definitions of the concept, or 

giving examples that help students’ understanding of the concept rather than just explaining or 



	  

	  

telling how to do the procedure or solve the problem. Engagement was coded as one 

(engaged) or zero (not engaged). The inter-rater reliability of the coding was 81%. An examples 

of a PST who was effective in engaging a student on problem two was the following: 

I would ask the child to pick two numbers to represent the slope, m, and the y-

intercept, b. Once he/she did so I would ask them to plug those numbers into each 

equation and then try to graph them. They would hopefully see that their answer is 

incorrect. I would point out to them that the y=mx+b line is graphed so that the y-

intercept equals zero, and then I would ask them which two numbers would make that 

line true. Once we found that out, we would move on to the next equation with the 

same numbers and see what happens. 

On the other hand, the following answer was typical of a participant who did not engage the 

student: 

The original intercept is 0 so if you place that before x the line will always have a slope 

of zero and be a straight line. 

Results and Discussion 

We classified the treatment and comparison groups for engagement for each of the four 

problems. Then we performed a Chi-square (χ2) 2-sample test for equality of proportions with 

continuity correction for each of the four responses. The results for the first problem are shown 

in  

Table 1 

The First Problem 2×2 Contingency Table 
 Treatment Comparison 

Engaged 6 3 

Not engaged 26 24 

Total students 32 27 

Proportion 0.1875 0.1111 

 

The value of the χ2 statistic was 0.2022 with one degree of freedom and a probability 

value of 0.653. Hence we concluded that there was no statistically significant difference in 

engagement between the treatment and comparison groups. Because of the number of 

participants it was unlikely to get statistical significance. Thus, we calculated effect size. The 

effect size was estimated by the odds ratio, which is “a measure of how many times greater 

the odds are that a member of a certain population will fall into a certain category than the 



	  

	  

odds are that a number of another population will fall into that category” (Grissom & Kim, 2005, 

p. 188). This ratio showed the odds of being engaged in the treatment group was 1.68 times 

higher than being in control group. 

For the second problem, there was not a statistically significant difference in 

engagement between treatment and comparison group PSTs at the 5% significance level 

(p=.063). The χ2 statistic was 3.433. However, as shown in Table 2, the odds of being engaged 

was 2.05 times higher in the treatment group than in comparison group. 

Table 2 

The Second Problem 2×2 Contingency Table 
 Treatment Comparison 

Engaged 17 7 

Not engaged 15 20 

Total students 32 27 

Proportion 0.532 0.259 

 

For both problems three and four, the number of engaged PSTs’ was the same: 9 in the 

treatment group and 2 in the comparison group (see Table 3). There was no statistically 

significant difference between the groups (p=.089, χ2=2.89) at the 5% significance level. The 

odds were 3.79 times higher if PSTs received instruction and practice in dealing with 

misconceptions.  

Table 3 
The Third and Fourth Problems 2×2 Contingency Table 

 Treatment Control 

Engaged 9 2 

Not engaged 23 25 

Total students 32 27 

Proportion 0.282 0.074 

 

Implications 

 It is important in preservice education to provide as much authentic practice as 

possible before the PSTs start to teach. A high-quality teacher education program should 

include an integration of content and pedagogy aimed at teaching in today’s diverse 

classrooms. If teachers have deep knowledge of the mathematics that they will teach, it is 



	  

	  

more likely they will be able to help their students to understand and solve mathematics 

problems.  

We have previously identified misconceptions as one of the key factors in PSTs’ 

development of teaching diverse students (Kulm et al., under review). If preservice teachers are 

exposed to instruction on how to identify and address misconceptions, they can learn how to 

assist students and correct their own misconceptions. In this study, we showed how important 

and difficult it is for PSTs to learn how to engage students in thinking about typical 

mathematics misconceptions. The results for the first research question indicate that even 

given extensive instruction and practice, most of these PSTs did not do well in engaging 

students. Only one of the four problems had a majority of the participants able to ask students 

to think about the problem. We are continuing to explore our data to find explanations and 

intervening variables that might account for this finding. One obvious possibility is the heavy 

cognitive challenge of simultaneously learning problem solving, strategies for teaching diverse 

students, and approaches to dealing with student misconceptions.  

For the second research question, we found some evidence that the treatment was 

effective due to the effect size estimate. Even though the differences between treatment and 

comparison groups in three of the four math problems were not statistically significant, the 

results showed large effect sizes. Hence, we believe that there was indeed evidence of the 

benefit of being introduced to misconceptions in the context of culturally relevant math 

problem solving. The proper balance of learning problem solving heuristics and learning about 

how diverse students think and solve problems is an ongoing challenge in preservice 

mathematics education. We believe, however, that the activities that we have developed are a 

reasonable first step in addressing this challenge. 
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Creating integrative approaches and fostering connections between science, technology, 

engineering and mathematics (STEM) continues to be a challenge for educators. Whole class 
discussion might be a way to bridge these disciplines subjects. In this session, we explore the 
questions two elementary school teachers asked while they orchestrated a whole class discussion 
during an interdisciplinary lesson. More specifically, we investigated the kinds of questions that 
students were asked in terms of their cognitive demand and explored whether these questions 
lead to convergent or divergent answers. We were also interested to know the kinds of knowledge 
and processes that these questions elicited. 

Introduction  

Many studies underline the challenges faced by educators to maintain students’ interest 

and achievement in mathematics (M), science (S) and technology (T) courses (Davis, 2003; 

Gibson & Chase, 2002). It is therefore important to develop MS&T teaching practices that 

connect to the students' daily reality. As mentioned by the Conseil de la science et de la 

technologie (CST, 2004), when teaching science courses, it is important to use approaches 

that are based on “discovery and production pedagogy, experimental and contextualized 

learning situations” (p. 68). Making sense of the different concepts presented in a complex 

contextualized learning situation might contribute to develop the disciplinary content for more 

than one disciplinary (Fourez, 1997; Savard, 2011). Thus, an interdisciplinary approach may 

improve the integration of M in S&T courses and vice versa. These approaches support the 

Ministry of Education of Québec’s (MEQ, 2004; MELS, 2007) current expectations to promote 

contextualized teaching methods as well as open and integrated situations, but the Ministry 

does not indicate how to implement these teaching strategies.  

New MS&T programs in elementary and secondary schools promote an interdisciplinary 

approach while Quebec universities offer teachers a monodisciplinary approach (Samson, 

2013). Moreover, some teachers of MS&T seem to experience difficulty with the changes 

brought about by educational reform, especially regarding new approaches to support 

students’ learning. The complexity of these approaches and their relevance in students’ lives 

are both factors to consider in MS&T integration. We consider that complex interdisciplinary 

learning situations provide a context for tasks of high cognitive demand. As Stein, Schwan 

Smith, Henningsen, & Silver (2009) pointed out, a mathematical task might have four levels of 



	  

	  

cognitive demand. Memorization tasks and activities without connections tasks are considered 

low cognitive demand tasks. By contrast, activities with connection tasks and doing 

mathematics tasks are considered high cognitive demand tasks. These tasks involve 

developing a deeper understanding of mathematics by making connections or by exploring 

some concepts or processes. The level of cognitive demand is higher. Thus, it is a great 

opportunity to develop mathematical and scientific/technical understanding. 

Objectives of the study 

The objectives of this study are to examine the questions two elementary school 

teachers used in an interdisciplinary learning situation that they created. More specifically, we 

wanted to know the kinds of questions that were asked of elementary students in term of 

cognitive demand. We were interested to know the kinds of knowledge and processes were 

required of the students as a result of these questions and whether the questions were closed 

or open. We were also interested to find out whether the questions lead to convergent or 

divergent answers by the students. 

Theoretical Framework and Related Literature 

Whole class discussions are seen as a productive tool for learning mathematics (Ball, 

2009; Lampert, 2010) and science & technology (Thompson, 2013). Thus, discussing important 

ideas in mathematics might get students to understand them (Lampert, 2012). Teachers 

facilitate a whole class discussion by eliciting students’ thinking in order to construct 

knowledge:  

In the back-and-forth routine dialogue among students and teacher that occurs in these 

kinds of routine interactions, the work of the teacher is to deliberately maintain focus 

and coherence as key mathematical concepts get ‘explained’ in a way that is co-

constructed rather than produced by the teacher alone. (Lampert et al., 2012, p. 131) 

Eliciting students’ thinking is mainly done by questioning them, by asking them to voice 

what they think. When a student tells his/her ideas or solution, the teacher may consider 

pressing the student to get him/her and other students to think deeper about an idea or 

unpack it further (Ghousseini, 2009). The teacher might also want to have more students 

participate in the discussion and might ask another student to restate an important 

contribution or add onto what was said (Stein, 2009). A teacher’s actions in order to orient a 

student’s thinking to support the construction of new mathematical ideas has been termed, 

ambitious teaching practices (Ball, 2009; Kazemi, 2009). Four keys ambitious practices have 



	  

	  

been identified in science & technology (Thompson, 2009; Thompson, 2013). The first practice, 

selecting big ideas/models, refers to a teacher’s ability to identify and select concepts instead 

of topics in the curriculum. This practice is important, because it creates clear instructional 

goals focused on specific concepts and thus teachers will be able to guide students learning. 

The second practice, working with science ideas, refers to a teacher’s ability to support his/her 

students in understanding that science is constructed with models and theories instead of a 

set of facts. The third practice, pressing students for evidence-based explanations, refers to a 

teacher’s ability to guide his/her students on connecting causes of events and processes 

instead of only looking for trends and patterns in the data. Thus, the teacher supports students 

to use observation to give causal explanations (Windschitl, 2011). The fourth practice, working 

on students’ ideas, refers to a teacher’s ability to elicit students’ thinking and use of this 

information to make decision about his/her interventions.  

Methodology 

For this study, we used a multiple case studies method (Merriam, 1998; Stake, 2000). 

Two elementary school teachers agreed to be video-recorded when teaching an 

interdisciplinary learning situation that they individually created. Both teachers were aware of 

our research focus of teacher questioning. The teachers were not at the same school and 

chose the concepts to be learnt by students independently. We conducted interviews before 

and after each learning situation. However, in this paper, we will not present the data from 

these interviews. Rather, we will focus on the video data. Our first case, Helen, taught a Grade 

5/6 split classroom. She had 7 students in Grade 5 and 17 students in Grade 6. Helen wanted 

students to learn about capacity in science, because she was disappointed with her students’ 

performance on a math test on volume. Our second case, Marta, taught a Grade 3/4 split 

classroom. She had 12 students in Grade 3 and 9 students in Grade 4. Marta wanted students 

to learn scientific concepts (e.g., reproduction, abiotic and biotic factors and mass) through a 

unit investigation on a clementine. Marta also wanted her students to use mathematics 

concepts in investigating the clementine (e.g., circumference, volume, fraction and statistics).  

We watched the videos many times and studied the accompanying transcripts by 

analyzing the teachers’ questions and whole class discussions. We started first by identifying 

which kind of knowledge the questions were aimed for: declarative, procedural or conditional 

knowledge (Samson, 2004). According to many authors (e.g., Tardif, 1997; Samson, 2004), 

the learning process implies linking declarative knowledge (What?), procedural 



	  

	  

knowledge (How?) and conditional knowledge (Where? When? and Why?). Often, it is 

declarative knowledge that is taught in schools at the expense of conditional knowledge. 

Yet it is the latter that promotes the transfer of learning between home and school or 

between disciplines as is the case here with mathematics and science and technology. A 

reflection is needed on the type of question and the expected conditional knowledge to 

promote particular responses. Knowing the different kinds of knowledge helped us to identify 

the cognitive demand of the question. Then, we looked at their degree of openness (Maulini, 

2005) and we determined whether each question was open or closed. A closed question (e.g., 

In which town was the scientist who…born?) has a limited number of answers, whereas an 

open question (e.g., Which method can you use to find the density of this object?) is aimed 

more at reasoning and often has many possible answers. Open questions also require students 

to reflect and mobilize a variety of resources. Finally, we examined whether the questions 

asked for a convergent or divergent answer (Maulini, 2005).  

Results and Discussion 

At the beginning of the whole class discussion, Helen was standing in front of the 

classroom holding a transparent bag filled with water. Swimming in the water were two 

goldfish. She then explained to the students that she bought the fish to put in the class’ 

aquarium where two turtles already lived. Helen told her students that she had bought the fish 

to be eaten by the turtles, but she did not know how many fish to buy given the amount of 

water in the aquarium. Helen then asked the students to calculate how many fish she could put 

in the aquarium. She started the discussion with a leading question that connected with topics 

in the science curriculum: “How many fish can we put in the classroom’s aquarium?” One 

student responded: “One fish per 1 cubic decimeter”. The teacher then continued to question 

the student by focusing on her mathematical knowledge: “What is a cubic decimeter?” The 

student replied that it was 10 centimeters. Helen then asked the rest of the class if someone 

might help complete the student’s answer. The teacher led a whole class discussion on how to 

find the volume of the aquarium. Thus, in this episode, the students had to estimate the 

capacity of the aquarium, measure the aquarium, multiply the measurements (which were in 

decimal numbers) and then round the answer to the nearest whole number. The kinds of 

questions that Helen asked her students required a combination of low and high cognitive 

demand. Questions requiring low cognitive demand focused on students’ declarative 

knowledge, which were based on memorization. Conversely, questions requiring high cognitive 



	  

	  

demand focused on students’ procedural knowledge. Table 1 presents examples of questions 

asked by Helen and the kinds of answers expected based on the kind of questions that she 

posed. 

Table 1 

Some examples of Helen’s questions 
Cognitive Demand  Cognitive Process 

Dimension 
Kind of question Examples of questions 

asked by the teacher 
Lead to convergent or 

divergent answers 

Low: Memorization Declarative knowledge Closed question on 
previous knowledge 

She launched the task 

What is a dm3? Convergent 

Low: 

Procedures without 
connections 

Procedural knowledge Closed question on 

previous knowledge 
She guided students 

process 

Is there something you 

learned that you could 
use? 

Convergent 

High: 

Procedures with 
connections 

 

Procedural knowledge Open question on 

procedure 
She elicited students 

thinking 

You think that with a 

ruler we can know it? 
How can we do that? 

Convergent with some 

room of divergence on 
the procedures 

 

Helen did not ask questions that allowed students to explore volume on their own. 

Given the fact that this lesson was presented in the last third of the year, students had already 

covered the concept. Thus, she was able to ask mathematics question that required a higher 

cognitive demand. However, Helen pressed the students by asking clarification questions (Is 

this what you meant?) and by orienting students to each other (Do you agree with Ellie?) (Can 

you rectify what we are going to write?). After finding the answer 30 dm3, Helen came back to 

the initial answer 2 fish /dm3 and asked if they could put 60 goldfish in the aquarium. She then 

brought the students back to the context of science by guiding the students to think about 

living space for their turtles and the oxygen needed. Helen asked her students to make a 

hypothesis on the number of fish that could live in the aquarium. She used the fourth ambitious 

teaching practice on working on students’ ideas to elicit students thinking and used this 

information to make a decision about her intervention. In the case of Helen, we noticed that 

she pressed on some hypotheses, but she did not come with a final conclusion on her leading 

question. She ended the lesson without having a common understanding on what correct 

answers might be for the initial problem that she posed. In general, the questions Helen asked 

her students were mostly open according to the typology of Maulini (1995). These are 

reasoning questions (requiring observation, the mobilisation of different resources, etc.), open 



	  

	  

questions (many possible answers, eliciting reflexion, stimulating research, expressing ideas, 

judgments, etc.) and guided questions (connected to the learners approach and process, etc.). 

Furthermore, she asked very few open or divergent questions that would allow analogies, 

syntheses, deductions and evaluations (allowing the implementation of inference operations, of 

high conceptualization, etc.) or even less questions based on the four high cognitive levels; 

apply, analyse, synthetize and evaluate. The only time she asked high cognitive demand 

questions was in the context of science. Marta, on the other hand, based her activity on a 

document call Opération Clémentine (in French). Each student had this document, which 

contains different tasks in mathematics and science. Marta launched the task with a leading 

question on how to calculate the cost of clementine. Then, she gave one clementine to each 

pair of students. Students were asked to observe and sketch their fruit using words on the 

handout. Then, still working in pairs, the students were asked to answer the written questions 

on their sheet on mass and volume using circumference. Different materials were available for 

students to use, such as a ruler, a scale, and bowls. Students were also asked to peel the fruit 

and count the slices. They had to record this data on a table and record other students’ 

answers as well. As the students were working, Marta walked around in the classroom and 

asked open and closed questions to make students think (Do you have the right measurement 

tool?) and make sure they were using a correct procedure (Which problem do you have with 

the bowl?). After a while, Marta led a whole class discussion on how to find the circumference 

of the clementine. While some students calculated the volume with a bowl, others completed 

their calculations by using a ruler. The kinds of questions Marta asked her students might be 

considered as low and high cognitive demands. Marta used questions that required low 

cognitive demand and elicited on students’ declarative knowledge, which were based on 

memorization, as well as questions that required a high cognitive demand and elicited on 

students’ procedural knowledge. Table 2 of questions asked by Marta and the kinds of 

answers expected based on the kind of question that she posed. 

In the case of Marta, she ran out of time thus did not conclude properly the lesson. She 

pressed on some hypotheses, but she did not come with a final conclusion on her leading 

question. Marta ended the lesson without having a common understanding on what correct 

answers on defining mass and volume and on procedures about mass and volume using 

circumference. In general, Marta asked more closed questions (Maulini, 1995) than Helen. But 

these closed questions were in fact guiding questions for students to find the answers using 



	  

	  

the resources provided, including their peers. The whole class worked as a community of 

learners. 

Table 2 

Some examples of Marta’s questions 
Cognitive Demand  Cognitive Process 

Dimension 
Kind of question Examples of questions 

asked by the teacher 
Lead to convergent or 

divergent answers 

Low: Memorization Declarative knowledge Closed question on 
previous knowledge 

She launched the task 

Does your answer will 
be in meters? 

Convergent 

Low: 

Procedures without 
connections 

Procedural knowledge Closed question on 

previous knowledge 
She guided students 

process 

What did you want to 

do at the beginning? 

Convergent 

High: 

Procedures with 
connections 

 

Procedural knowledge Open question on 

procedure 
She elicited students 

thinking 

How can you share your 

clementine in two if you 
have 11 slices? 

Convergent with some 

room of divergence on 
the procedures 

 

 Like Helen, Marta asked very few open or divergent questions that would allow analogies, 

syntheses, deductions and evaluations (allowing the implementation of inference operations, of 

high conceptualization, etc.) or even less questions based on the four high cognitive levels; 

apply, analyse, synthetize and evaluate. The only time she asked high cognitive demand 

questions was within the context of mathematics. In both cases, the teachers mainly asked 

questions on declarative or procedural knowledge. Helen and Marta asked very few questions 

requiring conditional knowledge, mainly by asking why to students. It is interesting to observe 

that because both teachers were teaching two grades of students in one classroom: Helen 

(Grades 5 & 6) and Marta ( Grades 3 & 4), they used their questioning in a way such that the 

older students might support younger students in the same classroom. Thus, the questions 

were asked to support students, not for the purpose of summative assessment. 

Implications 

This study will support future professional development initiatives for teachers. Our 

participants were interested in developing their questioning skills. They wanted to know if they 

asked good questions and whether they asked too many or not enough questions. Teaching 

science and mathematics concepts within the same lesson also concerned them. The teachers 

appreciated an interdisciplinary approach to teaching and wanted to do more of it. This was 

even true for the teacher who felt insecure about her knowledge of science. The continued 



	  

	  

interest by our teachers and the need for additional professional development and support 

points to a need to continue our work in researching, developing or adapting a framework on 

questioning in an interdisciplinary context. As our results suggest that the “weight” of the 

discipline could influence the type of questioning, we want to find out if one discipline 

dominates the other and why. 
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