Problems

Ted Eisenberg, Section Editor

This section of the Journal offers readers an opportunity to exchange interesting mathematical problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics, Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions can be sent e-mail to eisenbt@013.net. Solutions to previously stated problems can be seen at http://www.ssma.org/publications.

Solutions to the problems stated in this issue should be posted before
June 15, 2017

- 5445: Proposed by Kenneth Korbin, New York, NY

Find the sides of a triangle with exradii $(3,4,5)$.

- 5446: Proposed by Arsalan Wares, Valdosta State University, Valdosta, GA

Polygons $A B C D, C E F G$, and $D G H J$ are squares. Moreover, point E is on side $D C, X=D G \cap E F$, and $Y=B C \cap J H$. If $G X$ splits square $C E F G$ in regions whose areas are in the ratio 5:19. What part of square $D G H J$ is shaded? (Shaded region in $D G H J$ is composed of the areas of triangle $Y H G$ and trapezoid $E X G C$.)

- 5447: Proposed by Iuliana Trască, Scornicesti, Romanai

Show that if x, y, and z is each a positive real number, then

$$
\frac{x^{6} \cdot z^{3}+y^{6} \cdot x^{3}+z^{6} \cdot y^{3}}{x^{2} \cdot y^{2} \cdot z^{2}} \geq \frac{x^{3}+y^{3}+z^{3}+3 x \cdot y \cdot z}{2} .
$$

- 5448: Proposed by Yubal Barrios and Ángel Plaza, University of Las Palmas de Gran Canaria, Spain

Evaluate: $\lim _{n \rightarrow \infty} \sqrt[n]{\sum_{\substack{0 \leq i, j \leq n \\ i+j=n}}\binom{2 i}{i}\binom{2 j}{j}}$.

- 5449: Proposed by José Luis Díaz-Barrero, Barcelona Tech, Barcelona, Spain

Without the use of a computer, find the real roots of the equation

$$
x^{6}-26 x^{3}+55 x^{2}-39 x+10=(3 x-2) \sqrt{3 x-2} .
$$

- 5450: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

Let k be a positive integer. Calculate

$$
\int_{0}^{1} \int_{0}^{1}\left\lfloor\frac{x}{y}\right\rfloor^{k} \frac{y^{k}}{x^{k}} d x d y
$$

where $\lfloor a\rfloor$ denotes the floor (the integer part) of a.

Solutions

5427: Proposed by Kenneth Korbin, New York, NY
Rationalize and simplify the fraction

$$
\frac{(x+1)^{4}}{x\left(2016 x^{2}-2 x+2016\right)} \text { if } x=\frac{2017+\sqrt{2017-\sqrt{2017}}}{2017-\sqrt{2017-\sqrt{2017}}} .
$$

Solution 1 by David E. Manes, SUNY at Oneonta, Oneonta, NY

Let $F=(x+1)^{4} /\left(x\left(2016 x^{2}-2 x+2016\right)\right)$ and let $y=\sqrt{2017-\sqrt{2017}}$. Then $y^{2}=2017-\sqrt{2017}$ and $y^{4}=2017(2018-2 \sqrt{2017})$. Moreover,

$$
x=\frac{2017+y}{2017-y}, \quad \frac{1}{x}=\frac{2017-y}{2017+y}, \quad x+1=\frac{2(2017)}{2017-y} \quad \text { and }
$$

$$
\begin{aligned}
x^{2}+1 & =\left(\frac{2017+y}{2017-y}\right)^{2}+1=\frac{(2017+y)^{2}+(2017-y)^{2}}{(2017-y)^{2}} \\
& =\frac{2\left(2017^{2}+y^{2}\right)}{(2017-y)^{2}}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
2016\left(x^{2}+1\right)-2 x & =2\left[\frac{2016\left(2017^{2}+y^{2}\right)}{(2017-y)^{2}}-\frac{2017+y}{2017-y}\right] \\
& =2\left[\frac{2016\left(2017^{2}+y^{2}\right)-\left(2017^{2}-y^{2}\right)}{(2017-y)^{2}}\right] \\
& =2\left[\frac{2015 \cdot 2017^{2}+2017 y^{2}}{(2017-y)^{2}}\right] \\
& =2(2017)\left[\frac{2015(2017)+y^{2}}{(2017-y)^{2}}\right]
\end{aligned}
$$

Substituting these values into the fraction F and simplifying, we obtain

$$
\begin{aligned}
F & =\frac{\left(\frac{2(2017)}{2017-y}\right)^{4}(2017-y)}{(2017+y)\left(2(2017)\left(\frac{2015(2017)+y^{2}}{(2017-y)^{2}}\right)\right.} \\
& =\frac{(2(2017))^{3}}{\left(2017^{2}-y^{2}\right)\left(2015 \cdot 2017+y^{2}\right)} \\
& =\frac{8(2017)^{3}}{2015 \cdot 2017^{3}+2 \cdot 2017(2017-\sqrt{2017})-2017(2018-2 \sqrt{2017})} \\
& =\frac{8(2017)^{2}}{2015 \cdot 2017^{2}+2016} \\
& =\frac{32546312}{8197604351} \\
& \approx 0.003970222349
\end{aligned}
$$

Solution 2 by Anthony J. Bevelacqua, University of North Dakota, Grand Forks, ND

For notational convenience we set $d=2017-\sqrt{2017}, y=2017+\sqrt{d}$, and $z=2017-\sqrt{d}$. Thus our x is y / z. We have

$$
\begin{aligned}
\frac{(x+1)^{4}}{x\left(2016 x^{2}-2 x+2016\right)} & =\frac{\left(\frac{y}{z}+1\right)^{4}}{\left(\frac{y}{z}\right)\left(2016\left(\frac{y}{z}\right)^{2}-2\left(\frac{y}{z}\right)+2016\right)} \cdot \frac{z^{4}}{z^{4}} \\
& =\frac{(y+z)^{4}}{y z\left(2016 y^{2}-2 y z+2016 z^{2}\right)}
\end{aligned}
$$

Now

$$
y+z=2 \cdot 2017
$$

$$
\begin{aligned}
y z & =2017^{2}-d \\
& =2017^{2}-2017+\sqrt{2017} \\
& =2017 \cdot 2016+\sqrt{2017},
\end{aligned}
$$

and

$$
\begin{aligned}
2016 y^{2}-2 y z+2016 z^{2} & =2016\left(y^{2}+z^{2}\right)-2 y z \\
& =2016\left((y+z)^{2}-2 y z\right)-2 y z \\
& =2016(y+z)^{2}-2 \cdot 2017 y z \\
& =2016(2 \cdot 2017)^{2}-2 \cdot 2017(2017 \cdot 2016+\sqrt{2017}) \\
& =2 \cdot 2017(2017 \cdot 2016-\sqrt{2017}) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\frac{(y+z)^{4}}{y z\left(2016 y^{2}-2 y z+2016 z^{2}\right)} & =\frac{2^{4} \cdot 2017^{4}}{2 \cdot 2017\left(2017^{2} \cdot 2016^{2}-2017\right)} \\
& =\frac{2^{3} \cdot 2017^{2}}{2017 \cdot 2016^{2}-1} \\
& =\frac{32546312}{8197604351} .
\end{aligned}
$$

Solution 3 by Jeremiah Bartz, University of North Dakota, Grand Forks, ND

Let $y=2017$ and $w=\sqrt{y-\sqrt{y}}$. Observe

$$
\begin{aligned}
x & =\frac{y+w}{y-w} \\
x+1 & =\frac{2 y}{y-w} \\
w^{2} & =y-\sqrt{y} \\
w^{4} & =y^{2}+y-2 y \sqrt{y} .
\end{aligned}
$$

Then

$$
\begin{aligned}
\frac{(x+1)^{4}}{x\left(2016 x^{2}-2 x+2016\right)} & =\frac{2^{4} y^{4}}{(y-w)^{4}} \cdot \frac{y-w}{y+w} \cdot \frac{1}{2016\left(\frac{y+w}{y-w}\right)^{2}-2\left(\frac{y+w}{y-w}\right)+2016} \\
& =\frac{2^{4} y^{4}}{2016(y+w)^{3}(y-w)-2(y+w)^{2}(y-w)^{2}+2016(y+w)(y-w)^{3}} \\
& =\frac{2^{4} y^{4}}{2\left(2015 y^{4}+2 y^{2} w^{2}-2017 w^{4}\right)} \\
& =\frac{2^{3} y^{3}}{2015 y^{3}+2 y w^{2}-w^{4}} \\
& =\frac{8 y^{3}}{2015 y^{3}+2 y(y-\sqrt{y})-\left(y^{2}+y-2 y \sqrt{y}\right)} \quad \text { using } y=2017 \\
& =\frac{8 y^{3}}{2015 y^{3}+y^{2}-y} \\
& =\frac{8 y^{2}}{2015 y^{2}+y-1}
\end{aligned}
$$

so that

$$
\frac{(x+1)^{4}}{x\left(2016 x^{2}-2 x+2016\right)}=\frac{8(2017)^{2}}{2015(2017)^{2}+2016}=\frac{32546312}{8197604351}
$$

Solution 4 by Arkady Alt, San Jose, CA

Let $x=\frac{a+\sqrt{a-\sqrt{a}}}{a-\sqrt{a-\sqrt{a}}}$. Then, $x+\frac{1}{x}=\frac{a+\sqrt{a-\sqrt{a}}}{a-\sqrt{a-\sqrt{a}}}+\frac{a-\sqrt{a-\sqrt{a}}}{a+\sqrt{a-\sqrt{a}}}=$ $\frac{(a+\sqrt{a-\sqrt{a}})^{2}+(a-\sqrt{a-\sqrt{a}})^{2}}{a^{2}-a+\sqrt{a}}=\frac{2\left(a^{2}+a-\sqrt{a}\right)}{a^{2}-a+\sqrt{a}}=\frac{2\left(-a^{2}+a-\sqrt{a}+2 a^{2}\right)}{a^{2}-a+\sqrt{a}}=$
$-2+\frac{4 a^{2}}{a^{2}-a+\sqrt{a}} \Longleftrightarrow x+\frac{1}{x}+2=\frac{4 a^{2}}{a^{2}-a+\sqrt{a}}$ and, therefore,
$\frac{(x+1)^{4}}{x\left((a-1) x^{2}-2 x+(a-1)\right)}=\frac{(x+1)^{4}}{x^{2}\left((a-1)\left(x+\frac{1}{x}+2\right)-2 a\right)}=$
$\frac{\left(x+\frac{1}{x}+2\right)^{2}}{(a-1)\left(x+\frac{1}{x}+2\right)-2 a}=\frac{\left(\frac{4 a^{2}}{a^{2}-a+\sqrt{a}}\right)^{2}}{(a-1) \cdot \frac{4 a^{2}}{a^{2}-a+\sqrt{a}}-2 a}=$
$\frac{16 a^{4}}{\left((a-1) \cdot 4 a^{2}-2 a\left(a^{2}-a+\sqrt{a}\right)\right)\left(a^{2}-a+\sqrt{a}\right)}=\frac{16 a^{4}}{2 a\left(a^{2}-a-\sqrt{a}\right)\left(a^{2}-a+\sqrt{a}\right)}=$ $\frac{8 a^{3}}{\left(a^{2}-a\right)^{2}-a}=\frac{8 a^{2}}{a(a-1)^{2}-1}$.
For $a=2017$ we get $\frac{(x+1)^{4}}{x\left(2016 x^{2}-2 x+2016\right)}=\frac{8 \cdot 2017^{2}}{2017 \cdot 2016^{2}-1}$.

Solution 5 by Kee-Wai Lau, Hong Kong, China

We show that

$$
\begin{equation*}
\frac{(x+1)^{4}}{x\left(2016 x^{2}-2 x+2016\right)}=\frac{32546312}{8197604351} \tag{1}
\end{equation*}
$$

Firstly we have

$$
\begin{aligned}
x+\frac{1}{x} & =\frac{2017+\sqrt{2017-\sqrt{2017}}}{2017-\sqrt{2017-\sqrt{2017}}}+\frac{2017-\sqrt{2017-\sqrt{2017}}}{2017+\sqrt{2017-\sqrt{2017}}} \\
& =\frac{(2017+\sqrt{2017-\sqrt{2017}})^{2}+(2017-\sqrt{2017-\sqrt{2017}})^{2}}{(2017-\sqrt{2017-\sqrt{2017}})^{2}+(2017+\sqrt{2017-\sqrt{2017}})^{2}} \\
& =\frac{2(4070306-\sqrt{2017})}{4066272+\sqrt{2017}} \\
& =\frac{2(4070306-\sqrt{2017})(4066272-\sqrt{2017})}{(4066272+\sqrt{2017})(4066272-\sqrt{2017})}
\end{aligned}
$$

$$
=\frac{2(8205736897-4034 \sqrt{2017})}{8197604351} .
$$

Next, we have

$$
\left(x+\frac{1}{x}+2\right)^{2}=\frac{131291822608(8197604353-4032 \sqrt{2017})}{67200717095534131201}
$$

and

$$
2016\left(x+\frac{1}{x}\right)-2=\frac{4034(8197604353-4032 \sqrt{2017})}{8197604351} .
$$

Since $\frac{(x+1)^{4}}{x\left(2016 x^{2}-2 x+2016\right)}=\frac{\left(x+\frac{1}{x}+2\right)^{2}}{2016\left(x+\frac{1}{x}\right)-2}$, so (1) follows.
Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland Beach, FL; Telman Rashidov, Azerbaijan Medical University, Baku Azerbaijan; Boris Rays, Brooklyn, NY; Albert Stadler, Herrliberg, Switzerland; Toshihiro Shimizu, Kawasaki, Japan; David Stone and John Hawkins, Georgia Southern University, Statesboro, GA, and the proposer.

5428: Proposed by Nicusor Zlota, "Traian Vuia" Technical College, Focsani, Romania
If $x>0$, then $\frac{[x]}{\sqrt[4]{[x]^{4}+([x]+2\{x\})^{4}}}+\frac{\{x\}}{\sqrt[4]{\{x\}^{4}+([x]+2\{x\})^{4}}} \geq 1-\frac{1}{\sqrt[4]{2}}$, where $[$.$] and$
$\{$.$\} respectively denote the integer part and the fractional part of x$.

Solution 1 by Soumava Chakraborty, Kolkata, India

Case 1: $0<x<1 \quad[x]=0$. Therefore,

$$
L H S=\frac{\{x\}}{\sqrt[4]{17\{x\}^{4}}}=\frac{1}{\sqrt[4]{17}}>1-\frac{1}{\sqrt[4]{2}}
$$

Case 2: $[x] \geq 1$ and $\{x\}=0$. Therefore,

$$
\text { LHS }=\frac{[x]}{\sqrt[4]{2[x]^{4}}}=\frac{1}{\sqrt[4]{2}}>1-\frac{1}{\sqrt[4]{2}}
$$

Case 3: $[x] \geq 1$ and $0<\{x\}<1$. Therefore,

$$
\begin{aligned}
\{x\}<1 \leq[x] & \Rightarrow\{x\}<[x](2\{x\}+[x])^{4}+[x]^{4}<82[x]^{4} \\
& \Rightarrow \frac{[x]}{\sqrt[4]{[x]^{4}+([x]+2\{x\})^{4}}}>\frac{1}{\sqrt[4]{82}} \text {, and } \frac{\{x\}}{\sqrt[4]{\{x\}^{4}+([x]+2\{x\})^{4}}}>0, \text { and therefore } \\
\text { LHS } & >\frac{1}{\sqrt[4]{82}}>1-\frac{1}{\sqrt[4]{2}} .
\end{aligned}
$$

Combining the 3 cases, the $L H S$ is always $>\frac{1}{\sqrt[4]{82}}$ which is $>1-\frac{1}{\sqrt[4]{2}}$

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

Since $x=[x]+\{x\}$ and $[x] \leq x<[x]+1$, we have that $[x]+2\{x\}=x+\{x\}$ and $\{x\}=x-[x]<1$, so $[x]+2\{x\}=x+\{x\} \leq x+x=2 x$ and, thus, since $x>0$, $(x+\{x\})^{4}<(2 x)^{4}$; hence, $[x]^{4}+(x+\{x\})^{4}<x^{4}+16 x^{4}$ and $\{x\}^{4}+(x+\{x\})^{4}<x^{4}+16 x^{4}$.

It follows that $0<\sqrt[4]{[x]^{4}+(x+\{x\})^{4}}<\sqrt[4]{17 x^{4}}$ and $0<\sqrt[4]{\{x\}^{4}+(x+\{x\})^{4}}<\sqrt[4]{17 x^{4}}$ So
$0<\frac{1}{\sqrt[4]{[x]^{4}+(x+\{x\})^{4}}} \leq \frac{1}{\sqrt[4]{17} x}$ and $0<\frac{1}{\sqrt[4]{\{x\}^{4}+(x+\{x\})^{4}}} \leq \frac{1}{\sqrt[4]{17} x}$ and hence, $\frac{[x]}{\sqrt[4]{\{x]\}^{4}+(x+\{x\})^{4}}} \leq \frac{[x]}{\sqrt[4]{17} x}$ with equality iff $[x]=0$ and $0<\frac{\{x\}}{\sqrt[4]{\{x]\}^{4}+(x+\{x\})^{4}}} \leq \frac{\{x\}}{\sqrt[4]{17} x}$ with equality iff $\{x\}=0$, so

$$
\begin{aligned}
& \frac{[x]}{\sqrt[4]{[x]^{4}+([x]+2\{x\})^{4}}}+\frac{\{x\}}{\sqrt[4]{\left[\{x\}^{4}+([x]+2\{x\})^{4}\right.}}=\frac{\{x]}{\sqrt[4]{[x]^{4}+(x+\{x\})^{4}}}+\frac{\{x\}}{\sqrt[4]{\left[\{x\}^{4}+(x+\{x\})^{4}\right.}} \\
\geq & \frac{[x]}{\sqrt[4]{17} x}+\frac{\{x\}}{\sqrt[4]{17} x}=\frac{[x]+\{x\}}{\sqrt[4]{17} x}=\frac{x}{\sqrt[4]{17} x}=\frac{1}{\sqrt[4]{17}}
\end{aligned}
$$

with equality iff $[x]=0$ and $\{x\}=0$, that is, iff $0<x<1$ and $x \in N$, with is impossible.
Hence, we have proved the more general and strict inequality

$$
\frac{[x]}{\sqrt[4]{[x]^{4}+([x]+2\{x\})^{4}}}+\frac{\{x\}}{\sqrt[4]{\{x\}^{4}+([x]+2\{x\})^{4}}}>\frac{1}{\sqrt[4]{17}}
$$

(which implies, because $\frac{1}{\sqrt[4]{17}}+\frac{1}{\sqrt[4]{2}}=1.33338 \cdots>1$, the initial result.)
Also solved by Moti Levy, Rehovot, Israel; Nirapada Pal-India, and the proposer.

5429: Proposed by Titu Zvonaru, Comănesti, Romania and Neculai Stanciu, "George Emil Palade" School, Buzău, Romania

Prove that there are infinitely many positive integers a, b such that $18 a^{2}-b^{2}-6 a-b=0$.
Solution 1 by Ulrich Abel, Technische Hochschule Mittelhessen, Germany

Define

$$
g(a, b)=18 a^{2}-6 a-b^{2}-b
$$

and

$$
f(a, b)=(577 a+136 b-28,2448 a+577 b-120) .
$$

By direct computation we see that $g(f(a, b))=g(a, b)$. If $g\left(a_{0}, b_{0}\right)=0$ with $a_{0}, b_{0} \in N$ then the iterates $\left(a_{n}, b_{n}\right)=f\left(a_{n-1}, b_{n-1}\right)$ are in $N \times N$ and satisfy $g\left(a_{n}, b_{n}\right)=0$, for all $n \in N$.

Since $g(1,3)=0$, starting with $\left(a_{0}, b_{0}\right)=(1,3)$ we obtain the infinite sequence of solutions

$$
\begin{aligned}
& (1,3), \quad(957,4059),(1104185,4684659),(1274228341,5406093003), \\
& (1470458401137,6238626641379), \ldots
\end{aligned}
$$

Since $g(5,20)=0$, starting with $\left(a_{0}, b_{0}\right)=(5,20)$ we obtain another infinite sequence of solutions:

$$
\begin{aligned}
& (5,20), \quad(5577,23660), \quad(6435661,27304196), \quad(7426747025,31509019100), \\
& (8570459630997,36361380737780), \ldots
\end{aligned}
$$

Solution 2 by Trey Smith, Angelo State University, San Angelo, TX

Solution by Trey Smith, Angelo State University, San Angelo, TX 76909
We start by observing that

$$
18 a^{2}-b^{2}-6 a-b=0 \Rightarrow(2 b+1)^{2}-2(6 a-1)^{2}=-1
$$

which is suspiciously close to being Pell's Equation. Our particular equation is of the form

$$
x^{2}-2 y^{2}=-1
$$

Notice that $(7,5)(x=7$ and $y=5)$ is a solution to $x^{2}-2 y^{2}=-1$. We will now create a sequence of solutions starting with $\left(c_{0}, d_{0}\right)=(7,5)$ in the following recursive manner. For $n \geq 0$, let

$$
c_{n+1}=c_{n}^{3}+6 c_{n} d_{n}^{2}, \quad d_{n+1}=3 c_{n}^{2} d_{n}+2 d_{n}^{3}
$$

We prove the following facts regarding this sequence.
Fact 1. For all $n,\left(c_{n}, d_{n}\right)$ is a solution to $x^{2}-2 y^{2}=-1$.
Proof: We use induction to prove this. In the ground case, it is clear that $\left(c_{0}, d_{0}\right)=(7,5)$ is a solution to $x^{2}-2 y^{2}=-1$.

Assume that $\left(c_{n}, d_{n}\right)$ is a solution.

$$
\begin{array}{cc}
& c_{n+1}^{2}-2 d_{n+1}^{2} \\
= & \left(c_{n}^{3}+6 c_{n} d_{n}^{2}\right)^{2}-2\left(3 c_{n}^{2} d_{n}+2 d_{n}^{3}\right)^{2} \\
= & c_{n}^{6}+12 c_{n}^{4} d_{n}^{2}+36 c_{n}^{2} d_{n}^{4}-2\left(9 c_{n}^{4} d_{n}^{2}+12 c_{n}^{2} d_{n}^{4}+4 d_{n}^{6}\right) \\
= & c_{n}^{6}+12 c_{n}^{4} d_{n}^{2}+36 c_{n}^{2} d_{n}^{4}-18 c_{n}^{4} d_{n}^{2}-24 c_{n}^{2} d_{n}^{4}-8 d_{n}^{6} \\
= & c_{n}^{6}-6 c_{n}^{4} d_{n}^{2}+12 c_{n}^{2} d_{n}^{4}-8 d_{n}^{6} \\
= & \left(c_{n}^{2}-2 d_{n}^{2}\right)^{3} \\
= & -1 .
\end{array}
$$

For the next two facts, we use the notation $q \equiv_{m} t$ to represent the statement $q \equiv t$ $(\bmod m)$.

Fact 2. For all $n, c_{n} \equiv_{3} 1$ and $c_{n} \equiv_{2} 1$.
Proof: We proceed by induction noting, first, that $c_{0} \equiv_{3} 1$ and $c_{0} \equiv_{2} 1$. Then assuming that $c_{n} \equiv{ }_{3} 1$ we have that

$$
c_{n+1}=c_{n}^{3}+6 c_{n} d_{n}^{2} \equiv_{3} 1^{3}+0=1
$$

Also, assuming that $c_{n} \equiv_{2} 1$, we have

$$
c_{n+1}=c_{n}^{3}+6 c_{n} d_{n}^{2} \equiv_{2} 1^{3}+0=1
$$

Fact 3. For all $n, d_{n} \equiv_{2} 1$.
Proof: Clearly $d_{0} \equiv_{2} 1$. Assuming that $d_{n} \equiv{ }_{2} 1$, we have

$$
d_{n+1}=3 c_{n}^{2} d_{n}+2 d_{n}^{3} \equiv_{2} 3 \cdot 1^{2} \cdot 1+0=3 \equiv_{2} 1
$$

Fact 4. For all $n, d_{2 n} \equiv_{3} 2$.
Proof: Certainly $d_{0} \equiv_{3} 2$. Assume that for $n, d_{2 n} \equiv{ }_{3} 2$. Then

$$
d_{2 n+1}=3 c_{2 n}^{2} d_{2 n}+2 d_{2 n}^{3} \equiv_{3} 0+2 \cdot 2^{3} \equiv_{3} 1
$$

so that

$$
d_{2(n+1)}=d_{2 n+2}=3 c_{2 n+1}^{2} d_{2 n+1}+2 d_{2 n+1}^{3} \equiv_{3} 0+2 \cdot 1^{3} \equiv_{3} 2
$$

Using the facts above, we show that there are infinitely many pairs (a, b) that satisfy $(2 b+1)^{2}-2(6 a-1)^{2}=-1$. Fix an even number m. Then $\left(c_{m}, d_{m}\right)$ satisfies $x^{2}-2 y^{2}=-1$. Since $c_{m} \equiv 21$ we have that $c_{m}-1$ is even (and greater than 0) so that

$$
b=\frac{c_{m}-1}{2}
$$

is an integer. Also, $d_{m} \equiv{ }_{3} 2$ which tells us that $d_{m}+1$ is divisible by 3 , and since $d_{m} \equiv 21, d_{m}+1$ is divisible by 2 . Hence $d_{m}+1$ is divisible by 6 . Then

$$
a=\frac{d_{m}+1}{6}
$$

is an integer. Thus, the pair (a, b) is a solution to $18 a^{2}-b^{2}-6 a-b=0$.

Observe two such solutions (a, b) are given by $(1,3)$ and $(5,20)$. We claim that if $\left(a_{i}, b_{i}\right)$ is a solution in positive integers, then so is $\left(a_{i+1}, b_{i+1}\right)$ where

$$
\begin{aligned}
a_{i+1} & =577 a_{i}+136 b_{i}-28 \\
b_{i+1} & =2448 a_{i}+577 b_{i}-120 .
\end{aligned}
$$

To see this, note that $\left(a_{i+1}, b_{i+1}\right)$ are clearly positive integers and

$$
\begin{aligned}
18 a_{i+1}^{2}-b_{i+1}^{2}-6 a_{i+1}-b_{i+1}= & 18\left(577 a_{i}+136 b_{i}-28\right)^{2}-\left(2448 a_{i}+577 b_{i}-120\right)^{2} \\
& \quad-6\left(577 a_{i}+136 b_{i}-28\right)-\left(2448 a_{i}+577 b_{i}-120\right) \\
= & 18 a_{i}^{2}-b_{i}^{2}-6 a_{i}-b_{i} \\
= & 0
\end{aligned}
$$

The solutions $(1,3)$ and $(5,20)$ are seeds which produce two infinite families of solutions. The first four solutions in each family is given below.

i	a_{i}	b_{i}	a_{i}	b_{i}
1	1	3	5	20
2	957	4059	5577	23660
3	1104185	4684659	6435661	27304196
4	1274228341	5406093003	7426747025	31509019100

Solution 4 by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain

 The proposed equation may be written as follows:$$
\begin{aligned}
18 a^{2}-b^{2}-6 a-b & =0 \\
18\left(a-\frac{1}{6}\right)^{2}-\frac{1}{2}-\left(b+\frac{1}{2}\right)^{2}+\frac{1}{4} & =0 \\
18\left(a-\frac{1}{6}\right)^{2}-\left(b+\frac{1}{2}\right)^{2} & =\frac{1}{4} \\
72\left(a-\frac{1}{6}\right)^{2}-4\left(b+\frac{1}{2}\right)^{2} & =1 \\
(2 b+1)^{2}-2(6 a-1)^{2} & =-1 .
\end{aligned}
$$

The last equation is a Pell-type equation $x^{2}-2 y^{2}=-1$, by doing $x=2 b+1$ and $y=6 a-1$. The smallest solution of $x^{2}-2 y^{2}=-1$ is $(1,1)$ and therefore all its solutions are given by $x_{i}+y_{i} \sqrt{2}=(1+\sqrt{2})^{2 i+1}$. Note that x_{i} and y_{i} are allways odd so b is an integer. Also $6 a=1+\sum_{k \geq 0}\binom{2 i+1}{2 k+1}$. Since the expression $1+\sum_{k \geq 0}\binom{2 i+1}{2 k+1}$ is even and multiple of 3 for i of the form $i=6 m-1$, for m integer, the proposed equation has infinitely many positive integral solutions.

Solution 5 by David E. Manes, SUNY at Oneonta, NY

Solution. Writing the equation as a quadratic in b, one obtains $b^{2}+b-6 a(3 a-1)=0$ and, since we want positive integer solutions,

$$
b=\frac{-1+\sqrt{1+72 a^{2}-24 a}}{2}
$$

Note that the above fraction is a positive integer provided that $72 a^{2}-24 a+1=c^{2}$ for some integer c. This last equation is equivalent to a negative Pell equation $c^{2}-2 d^{2}=-1$, where $d=6 a-1$. This equation is solvable and the positive integer solutions are given by the odd powers of $1+\sqrt{2}$. More precisely, if n is a positive integer and $\left(c_{n}, d_{n}\right)$ is a solution of $c^{2}-2 d^{2}=-1$, then $c_{n}+d_{n} \sqrt{2}=(1+\sqrt{2})^{2 n-1}$. The problem is that not all the solutions for d_{n} yield solutions for a_{n}.

Observe: 1$)$ if $n \equiv 0(\bmod 4)$, then $c_{n} \equiv 5(\bmod 6)$ and $\left.d_{n} \equiv 1(\bmod 6), 2\right)$ if $n \equiv 1$ $(\bmod 4)$, then $\left.c_{n} \equiv d_{n} \equiv 1(\bmod 6), 3\right)$ if $n \equiv 2(\bmod 4)$, then $c_{n} \equiv 1(\bmod 6)$ and $\left.d_{n} \equiv 5(\bmod 6), 4\right)$ if $n \equiv 3(\bmod 4)$, then $c_{n} \equiv d_{n} \equiv 5(\bmod 6)$.
The above observations provide straightforward inductive arguments for the following consequences. If $n \equiv 0$ or $1(\bmod 4)$, then there are no solutions since $d_{n} \equiv 1(\bmod 6)$ implies no integer solution for a_{n}. On the other hand, if $n \equiv 2$ or $3(\bmod 4)$, then $a_{n}=\frac{d_{n}+1}{6}$ is a positive integer and $b_{n}=\left(-1+\sqrt{72 a_{n}^{2}-24 a_{n}+1}\right) / 2$. Since there are infinitely many positive integers congruent to 2 or 3 modulo 4 , the result follows.
Some of the infinitely many solutions are: if $n=2$, then $c_{2}=7, d_{2}=5$ and $\left(a_{2}, b_{2}\right)=(1,3)$; if $n=3$, then $c_{3}=41, d_{3}=29$ and $\left(a_{3}, b_{3}\right)=(5,20)$; if $n=6$, then $c_{6}=8119, d_{6}=5741$ and $\left(a_{6}, b_{6}\right)=(957,4059)$; if $n=7$, then $c_{7}=47321, d_{7}=33461$ and $\left(a_{7}, b_{7}\right)=(5577,23660)$; if $n=10$, then $c_{10}=9369319, d_{10}=6625109$ and $\left(a_{10}, b_{10}\right)=(1104185,4684659)$; if $n=11$, then $c_{11}=54608393, d_{11}=38613965$ and $\left(a_{11}, b_{11}\right)=(6435661,27304196)$.

Also solved by Arkady Alt, San Jose, CA; Hatef I. Arshagi, Guilford Technical Community College, Jamestown, NC; Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State University, San Angelo, TX; Anthony J. Bevelacqua, University of North Dakota, ND; Ed Gray, Highland Beach, FL; Moti Levy, Rehovot, Israel; Kenneth Korbin, NY, NY; Kee-Wai Lau, Hong Kong, China; Albert Stadler, Herrliberg, Switzerland; Toshihiro Shimizu, Kawasaki, Japan; David Stone and John Hawkins, Georgia Southern University, Statesboro, GA, and the proposer.

5430: Proposed by Oleh Faynshteyn, Leipzig, Germany

Let a, b, c be the side-lengths, α, β, γ the angles, and R, r the radii respectively of the circumcircle and incircle of a triangle. Show that

$$
\frac{a^{3} \cdot \cos (\beta-\gamma)+b^{3} \cdot \cos (\gamma-\alpha)+c^{3} \cdot \cos (\alpha-\beta)}{(b+c) \cos \alpha+(c+a) \cos \beta+(a+b) \cos \gamma}=6 \operatorname{Rr}
$$

Solution 1 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State University, San Angelo, TX

By the Law of Cosines,

$$
\cos \alpha=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
$$

and hence,

$$
(b+c) \cos \alpha=\frac{(b+c)\left(b^{2}+c^{2}-a^{2}\right)}{2 b c}=\frac{a(b+c)\left(b^{2}+c^{2}-a^{2}\right)}{2 a b c}
$$

Similarly,

$$
(c+a) \cos \beta=\frac{b(c+a)\left(c^{2}+a^{2}-b^{2}\right)}{2 a b c}
$$

and

$$
(a+b) \cos \gamma=\frac{c(a+b)\left(a^{2}+b^{2}-c^{2}\right)}{2 a b c}
$$

Therefore,

$$
\begin{align*}
& (b+c) \cos \alpha+(c+a) \cos \beta+(a+b) \cos \gamma \\
& =\frac{a(b+c)\left(b^{2}+c^{2}-a^{2}\right)+b(c+a)\left(c^{2}+a^{2}-b^{2}\right)+c(a+b)\left(a^{2}+b^{2}-c^{2}\right)}{2 a b c} \\
& =\frac{2 a^{2} b c+2 a b^{2} c+2 a b c^{2}}{2 a b c} \\
& =a+b+c . \tag{1}
\end{align*}
$$

If K is the area of the given triangle, then

$$
K=\frac{1}{2} a b \sin \gamma=\frac{1}{2} b c \sin \alpha=\frac{1}{2} c a \sin \beta
$$

and we have

$$
\sin \alpha=\frac{2 K}{b c}, \quad \sin \beta=\frac{2 K}{c a}, \quad \text { and } \quad \sin \gamma=\frac{2 K}{a b}
$$

Thus,

$$
\begin{aligned}
a^{3} \cos (\beta-\gamma) & =a^{3}[\cos \beta \cos \gamma+\sin \beta \sin \gamma] \\
& =a^{3}\left[\frac{\left(c^{2}+a^{2}-b^{2}\right)}{2 c a} \cdot \frac{\left(a^{2}+b^{2}-c^{2}\right)}{2 a b}+\frac{4 K^{2}}{(c a)(a b)}\right] \\
& =a\left[\frac{a^{4}-\left(b^{2}-c^{2}\right)^{2}+16 K^{2}}{4 b c}\right] \\
& =\frac{a^{2}}{4 a b c}\left[a^{4}-\left(b^{2}-c^{2}\right)^{2}+16 K^{2}\right]
\end{aligned}
$$

By Heron's Formula,

$$
\begin{aligned}
16 K^{2} & =(a+b+c)(a+b-c)(b+c-a)(c+a-b) \\
& =\left[(a+b)^{2}-c^{2}\right]\left[c^{2}-(a-b)^{2}\right] \\
& =2\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)-\left(a^{4}+b^{4}+c^{4}\right)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
a^{3} \cos (\beta-\gamma) & =\frac{a^{2}}{4 a b c}\left[a^{4}-\left(b^{2}-c^{2}\right)^{2}+2\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)-\left(a^{4}+b^{4}+c^{4}\right)\right] \\
& =\frac{a^{2}}{4 a b c}\left[-2 b^{4}-2 c^{4}+2\left(a^{2} b^{2}+2 b^{2} c^{2}+c^{2} a^{2}\right)\right] \\
& =\frac{a^{2}}{2 a b c}\left(-b^{4}-c^{4}+a^{2} b^{2}+2 b^{2} c^{2}+c^{2} a^{2}\right)
\end{aligned}
$$

Similarly,

$$
b^{3} \cos (\gamma-\alpha)=\frac{b^{2}}{2 a b c}\left(-c^{4}-a^{4}+a^{2} b^{2}+b^{2} c^{2}+2 c^{2} a^{2}\right)
$$

and

$$
c^{3} \cos (\alpha-\beta)=\frac{c^{2}}{2 a b c}\left(-a^{4}-b^{4}+2 a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right) .
$$

As a result,

$$
\begin{align*}
& a^{3} \cos (\beta-\gamma)+b^{3} \cos (\gamma-\alpha)+c^{3} \cos (\alpha-\beta) \\
& =\frac{a^{2}}{2 a b c}\left(-b^{4}-c^{4}+a^{2} b^{2}+2 b^{2} c^{2}+c^{2} a^{2}\right)+\frac{b^{2}}{2 a b c}\left(-c^{4}-a^{4}+a^{2} b^{2}+b^{2} c^{2}+2 c^{2} a^{2}\right) \\
& +\frac{c^{2}}{2 a b c}\left(-a^{4}-b^{4}+2 a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right) \\
& =\frac{1}{2 a b c} \cdot 6 a^{2} b^{2} c^{2} \\
& =3 a b c . \tag{2}
\end{align*}
$$

By (1) and (2),

$$
\begin{equation*}
\frac{a^{3} \cos (\beta-\gamma)+b^{3} \cos (\gamma-\alpha)+c^{3} \cos (\alpha-\beta)}{(b+c) \cos \alpha+(c+a) \cos \beta+(a+b) \cos \gamma}=\frac{3 a b c}{a+b+c} . \tag{3}
\end{equation*}
$$

Finally, if $s=\frac{a+b+c}{2}$, then

$$
R=\frac{a b c}{4 K} \quad \text { and } \quad K=r s
$$

and we get

$$
\begin{align*}
6 R r & =6\left(\frac{a b c}{4 K}\right)\left(\frac{K}{s}\right) \\
& =\frac{3 a b c}{2 s} \\
& =\frac{3 a b c}{a+b+c} \tag{4}
\end{align*}
$$

Conditions (3) and (4) yield the desired result.

Solution 2 by Moti Levy, Rehovot, Israel

After substituting $R r=\frac{a b c}{2(a+b+c)}$ in the right hand side of the original inequality, it becomes

$$
\frac{\sum_{c y c} a^{3} \cos (\beta-\gamma)}{\sum_{c y c}(b+c) \cos \alpha}=\frac{3 a b c}{a+b+c} .
$$

Thus, we actually need to prove two identities (which appeared many times before in the literature):

$$
\begin{align*}
\sum_{c y c}(b+c) \cos \alpha & =a+b+c, \tag{1}\\
\sum_{c y c} a^{3} \cos (\beta-\gamma) & =3 a b c . \tag{2}
\end{align*}
$$

Dropping a perpendicular from C to side c, it divides the triangle into two right triangles, and c into two pieces $c=a \cos \beta+b \cos \alpha$, and similarly for all sides:

$$
\begin{aligned}
c & =a \cos \beta+b \cos \alpha \\
a & =b \cos \gamma+c \cos \beta \\
b & =c \cos \alpha+a \cos \gamma .
\end{aligned}
$$

To prove (1), we add the three equations, and get immediately:

$$
a+b+c=a \cos \beta+b \cos \alpha+b \cos \gamma+c \cos \beta+c \cos \alpha+a \cos \gamma=\sum_{c y c}(b+c) \cos \alpha
$$

To prove (2), we use the following trigonometric identity

$$
\cos (x-y)=\frac{\sin x \cos x+\sin y \cos y}{\sin (x+y)}
$$

and the triangle identity

$$
\begin{gathered}
\frac{a}{\sin \alpha}=\frac{b}{\sin \beta}=\frac{c}{\sin \gamma} \\
a^{3} \cos (\beta-\gamma)= \\
=a^{3} \frac{\sin \beta \cos \beta+\sin \gamma \cos \gamma}{\sin (\beta+\gamma)} \\
=a^{3} \frac{\sin \beta \cos \beta+\sin \gamma \cos \gamma}{\sin \alpha} \\
=a^{3} \frac{b \cos \beta+c \cos \gamma}{a}=a^{2} b \cos \beta+a^{2} c \cos \gamma
\end{gathered}
$$

$$
\begin{aligned}
\sum_{c y c} a^{3} \cos (\beta-\gamma) & =\sum_{c y c}\left(a^{2} b \cos \beta+a^{2} c \cos \gamma\right) \\
& =a b(a \cos \beta+b \cos \alpha)+a c(c \cos \alpha+a \cos \gamma)+b c(b \cos \gamma+c \cos \beta) \\
& =3 a b c
\end{aligned}
$$

Also solved by Arkady Alt, San Jose, CA; Hatef I. Arshagi, Guilford Technical Community College, Jamestown, NC; Bruno Salgueiro Fanego, Viveiro, Spain; Kee-Wai Lau, Hong Kong, China; Kevin Soto Palacios, Huarmey, Peru; Neculai Stanciu, "Geroge Emil Palade" School Buzău, Romania and Titu Zvonaru, Comănesti, Romania; Nicusor Zlota, "Traian Vuia" Technical College, Focsani, Romania, and the proposer.

5431: Proposed by José Luis Díaz-Barrero, Barcelona Tech, Barcelona, Spain
Let F_{n} be the $n^{\text {th }}$ Fibonacci number defined by $F_{1}=1, F_{2}=1$ and for all $n \geq 3$, $\mathrm{F}_{n}=F_{n-1}+F_{n-2}$. Prove that

$$
\sum_{n=1}^{\infty}\left(\frac{1}{11}\right)^{F_{n} F_{n+1}}
$$

is an irrational number and determine it (*).
The asterisk $(*)$ indicates that neither the author of the problem nor the editor are aware of a closed form for the irrational number.

Solution 1 by Moti Levy, Rehovot, Israel

It is well known that

$$
\begin{equation*}
F_{n} F_{n+1}=\sum_{k=1}^{n} F_{k}^{2}, \tag{1}
\end{equation*}
$$

hence $x:=\sum_{n=1}^{\infty}\left(\frac{1}{11}\right)^{F_{n} F_{n+1}}$ can be expressed as

$$
x=\frac{1}{11^{F_{1}^{2}}}+\frac{1}{\left(11^{F_{1}^{2}}\right)\left(11^{F_{2}^{2}}\right)}+\frac{1}{\left(11^{F_{1}^{2}}\right)\left(11^{F_{2}^{2}}\right)\left(11^{F_{3}^{2}}\right)}+\cdots,
$$

or

$$
\begin{equation*}
x=\sum_{k=1}^{\infty} \frac{1}{a_{1} a_{2} \cdots a_{k}}, \quad a_{k}=11^{F_{k}^{2}} . \tag{2}
\end{equation*}
$$

The series (2) is the Engel expansion of the positive real number x. See [1] for definition of Engel expansion.

In 1913, Engel established the following result (See [2] page 303):
Every real number x has a unique representation $c+\sum_{k=1}^{\infty} \frac{1}{a_{1} a_{2} \cdots a_{k}}$, where c is an integer and $2 \leq a_{1} \leq a_{2} \leq a_{3} \leq \cdots$ is a sequence of integers. Conversely, every such sequence is convergent and its sum is irrational if and only if $\lim _{k \rightarrow \infty} a_{k}=\infty$. Therefore, by Engel's result, $\sum_{n=1}^{\infty} \frac{1}{11^{F_{n} F_{n+1}}}$ is irrational, since $\lim _{k \rightarrow \infty} 11^{F_{k}^{2}}=\infty$.

I do not know how to express x in closed form. However, it can be shown that it is transcendental. To this end, I rely on a result given in [2] (on page 315):

Let $(f(n))_{n \geq 1}$ be a sequence of positive integers such that $\lim _{n \rightarrow \infty} \frac{f(n+1)}{f(n)}=\mu>2$. Then for every integer $d \geq 2$, the number $x=\sum_{n=1}^{\infty} \frac{1}{d^{f(n)}}$ is transcendental.
In our case, $d=11$ and $f(n)=F_{n} F_{n+1}$. We check that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{f(n+1)}{f(n)} & =\lim _{n \rightarrow \infty} \frac{F_{n+1} F_{n+2}}{F_{n} F_{n+1}}=\lim _{n \rightarrow \infty} \frac{F_{n+2}}{F_{n}}=\lim _{n \rightarrow \infty} \frac{F_{n+1}+F_{n}}{F_{n}} \\
& =1+\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}}=\frac{3+\sqrt{5}}{2} \cong 2.618>2 .
\end{aligned}
$$

Then $x=\sum_{n=1}^{\infty} \frac{1}{11^{F_{n} F_{n}+1}}$ is transcendental.

References:

[1] Wikipedia "Engel expansion".
[2] Ribenboim Paulo, "My Numbers, My Friends: Popular Lectures on Number Theory", Springer 2000.

Solution 2 by Ulrich Abel, Technische Hochschule Mittelhessen, Friedberg, Germany

Let p be a prime. For the sake of brevity put $c_{k}=F_{k} F_{k+1}$. We prove that the number

$$
s=\sum_{k=1}^{\infty}\left(\frac{1}{p}\right)^{c_{k}}
$$

is transcendental, in particular irrational.
The partial sum

$$
s_{n}=\sum_{k=1}^{n}\left(\frac{1}{p}\right)^{c_{k}}=\frac{a_{n}}{b_{n}}
$$

with positive integers a_{n} and $b_{n} \leq p^{c_{n}}$ satisfies

$$
\begin{aligned}
0 & <s-s_{n}=\sum_{k=n+1}^{\infty}\left(\frac{1}{p}\right)^{c_{k}} \leq\left(\frac{1}{p}\right)^{c_{n+1}} \sum_{k=0}^{\infty}\left(\frac{1}{p}\right)^{k} \\
& =\frac{1}{p-1}\left(\frac{1}{p}\right)^{c_{n+1}-1} \leq \frac{1}{\left(p^{c_{n}}\right)^{\frac{c_{n+1}-1}{c_{n}}}},
\end{aligned}
$$

because $c_{k+1}-c_{k}=F_{k+1} F_{k+2}-F_{k} F_{k+1}=F_{k+1}^{2} \geq 1$. Since
$\lim _{n \rightarrow \infty} \frac{c_{n+1}-1}{c_{n}}=\lim _{n \rightarrow \infty} \frac{F_{n+1} F_{n+2}-1}{F_{n} F_{n+1}}=\lim _{n \rightarrow \infty}\left(\frac{F_{n+1}}{F_{n}} \cdot \frac{F_{n+2}}{F_{n+1}}\right)=\left(\frac{1+\sqrt{5}}{2}\right)^{2}=\frac{3+\sqrt{5}}{2}>2$
By the theorem of Thue, Siegel and Roth, for any (fixed) algebraic number x and $\varepsilon>0$, the inequality

$$
0<\left|x-\frac{a}{b}\right|<\frac{1}{b^{2+\varepsilon}}
$$

is satisfied only by a finite number of integers a and b. Hence, s is transcendental.

Also solved by the Kee-Wai Lau, Hong Kong, China (first part of the problem), and the proposer, (first part of the problem)

5432: Proposed by Ovidiu Furdui and Alina Sîntămărian, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

Find all differentiable functions $f:(0, \infty) \rightarrow(0, \infty)$, with $f(1)=\sqrt{2}$, such that

$$
f^{\prime}\left(\frac{1}{x}\right)=\frac{1}{f(x)}, \forall x>0
$$

Solution 1 by Arkady Alt, San Jose, CA

First note that $f^{\prime}\left(\frac{1}{x}\right)=\frac{1}{f(x)}, \forall x>0 \Longleftrightarrow f^{\prime}(x)=\frac{1}{f\left(\frac{1}{x}\right)}, \forall x>0$.
Then, since $f^{\prime \prime}(x)=\left(\frac{1}{f\left(\frac{1}{x}\right)}\right)^{\prime}=-\frac{f^{\prime}\left(\frac{1}{x}\right)\left(-\frac{1}{x^{2}}\right)}{f^{2}\left(\frac{1}{x}\right)}$ and
$\frac{1}{f^{2}\left(\frac{1}{x}\right)}=\left(f^{\prime}(x)\right)^{2}, f^{\prime}\left(\frac{1}{x}\right)=\frac{1}{f(x)}$,
we obtain $f^{\prime \prime}(x)=\frac{1}{x^{2}}\left(f^{\prime}(x)\right)^{2} \frac{1}{f(x)} \Longleftrightarrow \frac{f(x) f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{2}}=\frac{1}{x^{2}} \Longleftrightarrow$ $\frac{\left(f^{\prime}(x)\right)^{2}-f(x) f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{2}}-1=-\frac{1}{x^{2}} \Longleftrightarrow$

$$
\left(\frac{f(x)}{f^{\prime}(x)}\right)^{\prime}=1-\frac{1}{x^{2}} \Longleftrightarrow \frac{f(x)}{f^{\prime}(x)}=x+\frac{1}{x}+c \Longleftrightarrow \frac{f^{\prime}(x)}{f(x)}=\frac{x}{x^{2}+c x+1} .
$$

Since $f^{\prime}(1)=\frac{1}{f(1)}=\frac{1}{\sqrt{2}}$ then $\frac{f(1)}{f^{\prime}(1)}=1+\frac{1}{1}+c \Longleftrightarrow 2=2+c \Longleftrightarrow c=0$.
Therefore, $\frac{f(x)}{f^{\prime}(x)}=x+\frac{1}{x} \Longleftrightarrow \frac{f^{\prime}(x)}{f(x)}=\frac{x}{x^{2}+1} \Longleftrightarrow \ln f(x)=\frac{1}{2} \ln \left(x^{2}+1\right)+d$ and, using $f(1)=\sqrt{2}$
again, we obtain $\ln f(1)=\frac{1}{2} \ln \left(1^{2}+1\right)+d \Longleftrightarrow \ln \sqrt{2}=\frac{1}{2} \ln 2+d \Longleftrightarrow d=0$.
Thus, $f(x)=\sqrt{x^{2}+1}$.

Solution 2 by Albert Stadler, Hirrliberg, Switzerland

The differential equation $f^{\prime}(x)=\frac{1}{f\left(\frac{1}{x}\right)}$ shows that f is differentiable infinitely often in $x>0$. We differentiate the equation $f^{\prime}(x) f\left(\frac{1}{x}\right)=1$ and get
$f^{\prime \prime}(x) f\left(\frac{1}{x}\right)-f^{\prime}(x) f^{\prime}\left(\frac{1}{x}\right) \frac{1}{x^{2}}=\frac{f^{\prime \prime}(x)}{f^{\prime}(x)}-\frac{f^{\prime}(x)}{f(x)} \frac{1}{x^{2}}=0$,
or equivalently
$\frac{f^{\prime \prime}(x) f(x)}{\left(f^{\prime}(x)\right)^{2}}=\frac{1}{x^{2}}$.
By assumption $f(1)=\sqrt{2}$ and thus $f^{\prime}(1)=\frac{1}{f(1)}=\frac{\sqrt{2}}{2}$.
We integrate (1) and apply partial integration to get

$$
\begin{aligned}
1-\frac{1}{x}=\int_{1}^{x} \frac{d t}{t^{2}} & =\int_{1}^{x} \frac{f^{\prime \prime}(t) f(t)}{\left(f^{\prime}(t)\right)^{2}} d t \\
& =\int_{1}^{x} \frac{d}{d t}\left(\frac{-1}{f^{\prime}(t)}\right) f(t) d t \\
& =-\left.\frac{f(t)}{f^{\prime}(t)}\right|_{1} ^{x}+\int_{1}^{x} \frac{f^{\prime}(t)}{f^{\prime}(t)} d t \\
& =\frac{f(1)}{f^{\prime}(1)}-\frac{f(x)}{f^{\prime}(x)}+x-1 \\
& =1-\frac{f(x)}{f^{\prime}(x)}+x .
\end{aligned}
$$

So $\frac{f(x)}{f^{\prime}(x)}=\frac{1}{x}+x$ or equivalently $\frac{f^{\prime}(x)}{f(x)}=\frac{x}{1+x^{2}}$.

We integrate again and get
$\ln f(x)-\ln f(1)=\int_{1}^{x} \frac{f^{\prime}(t)}{f(t)} d t=\int_{1}^{x} \frac{t}{1+t^{2}} d t=\frac{1}{2} \ln \left(1+x^{2}\right)-=\frac{1}{2} \ln 2$.
Therefore $f(x)=\sqrt{1+x^{2}}$.

Solution 3 by Bruno Salgueiro Fanego, Viveiro, Spain

Let $f:(0,+\infty) \rightarrow(0,+\infty)$ be a differentiable function that satisfies the hypothesis of the problem and let $g:(0,+\infty) \rightarrow(0,+\infty)$ be the differentiable function defined by $g(x)=\frac{1}{x}$. Since f is differentiable, and by the hypothesis $f^{\prime}(x)=\frac{1}{(f \circ g)(x)}, \forall x>0$, we conclude that f^{\prime} is also differentiable and, differentiating both side of the equality $f^{\prime}(x) f\left(\frac{1}{x}\right)=1$, we obtain that $f^{\prime \prime}(x) f\left(\frac{1}{x}\right)+f^{\prime}(x) f^{\prime}\left(\frac{1}{x}\right) \frac{-1}{x^{2}}=0$, and since $f\left(\frac{1}{x}\right)=\frac{1}{x^{2}}$, or equivalently, $\frac{\left(f^{\prime}(x)\right)^{2}-f^{\prime \prime}(x) f(x)}{\left(f^{\prime}(x)\right)^{2}}=1-\frac{1}{x^{2}}$, or what is the same, $\left(\frac{f}{f^{\prime}}\right)^{\prime}(x)=1-\frac{1}{x^{2}}, \forall x>0$.

Integrating both sides, we conclude that $\frac{f(x)}{f^{\prime}(x)}=x+\frac{1}{x}+C, \forall x>0$, for some $C \in \Re$. If we take $x=1$ at the start of the inequality, and since $f(1)=\sqrt{2}$, we obtain that $f^{\prime}(1)=\frac{1}{\sqrt{2}}$ and $\frac{f(1)}{f^{\prime}(1)}=2+C$, from where $C=0$, which implies, because $f(x)>0 \forall x>0$ by hypothesis and $\frac{f(x)}{f^{\prime}(x)}=x+\frac{1}{x}+0$ and $\frac{f^{\prime}(x)}{f(x)}=\frac{x}{x^{2}+1}, \forall x>0$. Integrating both sides of this last equality, we conclude that $\ln (f(x))=\log \left(\sqrt{x^{2}+1}\right)+D, \forall x>0$ for some $D \in \Re$. Taking $x=1$ in this equality and using the fact that $f(1)=\sqrt{2}$, we find that $D=0$ and therefore $f(x)=\sqrt{x^{2}+1}, \forall x>0$.

Since the function $f:(0,+\infty) \rightarrow(0,+\infty)$ defined by $f(x)=\sqrt{x^{2}+1}, \forall x>0$, is differentiable with $f^{\prime}(x)=\frac{x}{\sqrt{x^{2}+1}}$ and satisfies that $f(1)=\sqrt{2}$, and that $f\left(\frac{1}{x}\right)=\frac{\frac{1}{x}}{\sqrt{\frac{1}{x^{2}}+1}}=\frac{1}{f(x)}, \forall x>0$, we conclude that the only differentiable function that satisfies the conditions of the problem is the function $f(x)=\sqrt{x^{2}+1}, \forall x>0$.

Solution 4 by Toshihiro Shimizu, Kawasaki, Japan

We have $f^{\prime}\left(\frac{1}{x}\right) f(x)=1$. Letting x to $\frac{1}{x}$ we also have $f^{\prime}(x) f\left(\frac{1}{x}\right)=1 \quad(*)$. Thus,

$$
\begin{aligned}
\frac{d}{d x}\left(f(x) f\left(\frac{1}{x}\right)\right) & =f^{\prime}(x) f\left(\frac{1}{x}\right)+\left(-x^{-2}\right) f(x) f^{\prime}\left(\frac{1}{x}\right) \\
& =1-x^{-2}
\end{aligned}
$$

Integrating it, we have

$$
f(x) f\left(\frac{1}{x}\right)=x+\frac{1}{x}+C
$$

Letting $x=1$, we have $2=2+C$ or $C=0$. Therefore $f(x) f\left(\frac{1}{x}\right)=x+\frac{1}{x}$. Multiplying $f(x)$ to (*), we have

$$
\begin{aligned}
\left(x+\frac{1}{x}\right) f^{\prime}(x) & =f(x) \\
\frac{f^{\prime}(x)}{f(x)} & =\frac{1}{x+\frac{1}{x}}
\end{aligned}
$$

Integrating again, we have

$$
\begin{aligned}
\log f(x) & =\int \frac{d x}{x+\frac{1}{x}} \\
& =\int \frac{x}{x^{2}+1} d x \\
& =\frac{1}{2} \int \frac{\left(x^{2}+1\right)^{\prime}}{x^{2}+1} d x \\
& =\frac{1}{2} \log \left(x^{2}+1\right)+D
\end{aligned}
$$

Thus, we can write $f(x)=D \sqrt{x^{2}+1}$ where D is some constant. Letting $x=1$, we have $D=1$. Therefore, we have $f(x)=\sqrt{x^{2}+1}$, this function actually satisfies the condition.

Also solved by Abdallah El Farsi, Bechar, Algeria; Hatef I. Arshagi, Guilford Technical Community College, Jamestown, NC; Michael N. Fried, Ben-Gurion University, Beer-Sheva, Israel; Moti Levy, Rehovot, Israel; Ravi Prakash, New Delhi, India, and the proposers.

