
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
June 15, 2017

• 5445: Proposed by Kenneth Korbin, New York, NY

Find the sides of a triangle with exradii (3, 4, 5).

• 5446: Proposed by Arsalan Wares, Valdosta State University, Valdosta, GA

Polygons ABCD,CEFG, and DGHJ are squares. Moreover, point E is on side
DC,X = DG ∩ EF , and Y = BC ∩ JH. If GX splits square CEFG in regions whose
areas are in the ratio 5:19. What part of square DGHJ is shaded? (Shaded region in
DGHJ is composed of the areas of triangle Y HG and trapezoid EXGC.)
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• 5447: Proposed by Iuliana Trască, Scornicesti, Romanai

Show that if x, y, and z is each a positive real number, then

x6 · z3 + y6 · x3 + z6 · y3

x2 · y2 · z2
≥ x3 + y3 + z3 + 3x · y · z

2
.

• 5448: Proposed by Yubal Barrios and Ángel Plaza, University of Las Palmas de Gran
Canaria, Spain

Evaluate: lim
n→∞ n

√√√√ ∑
0≤i,j≤n
i+j=n

(
2i

i

)(
2j

j

)
.

• 5449: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Without the use of a computer, find the real roots of the equation

x6 − 26x3 + 55x2 − 39x+ 10 = (3x− 2)
√

3x− 2.

• 5450: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let k be a positive integer. Calculate∫ 1

0

∫ 1

0

⌊
x

y

⌋k yk
xk

dxdy,

where bac denotes the floor (the integer part) of a.

Solutions

5427: Proposed by Kenneth Korbin, New York, NY

Rationalize and simplify the fraction

(x+ 1)4

x(2016x2 − 2x+ 2016)
if x =

2017 +
√

2017−
√

2017

2017−
√

2017−
√

2017
.

Solution 1 by David E. Manes, SUNY at Oneonta, Oneonta, NY

Let F = (x+ 1)4/(x(2016x2 − 2x+ 2016)) and let y =
√

2017−
√

2017. Then
y2 = 2017−

√
2017 and y4 = 2017(2018− 2

√
2017). Moreover,

x =
2017 + y

2017− y
,

1

x
=

2017− y
2017 + y

, x+ 1 =
2(2017)

2017− y
and
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x2 + 1 =
(2017 + y

2017− y

)2
+ 1 =

(2017 + y)2 + (2017− y)2

(2017− y)2

=
2(20172 + y2)

(2017− y)2
.

Therefore,

2016(x2 + 1)− 2x = 2
[2016(20172 + y2)

(2017− y)2
− 2017 + y

2017− y

]
= 2
[2016(20172 + y2)− (20172 − y2)

(2017− y)2

]
= 2
[2015 · 20172 + 2017y2

(2017− y)2

]
= 2(2017)

[2015(2017) + y2

(2017− y)2

]
Substituting these values into the fraction F and simplifying, we obtain

F =

(
2(2017)
2017−y

)4
(2017− y)

(2017 + y)(2(2017)
(
2015(2017)+y2

(2017−y)2

)

=
(2(2017))3

(20172 − y2)(2015 · 2017 + y2)

=
8(2017)3

2015 · 20173 + 2 · 2017(2017−
√

2017)− 2017(2018− 2
√

2017)

=
8(2017)2

2015 · 20172 + 2016

=
32546312

8197604351

≈ 0.003 970 222 349.

Solution 2 by Anthony J. Bevelacqua, University of North Dakota, Grand
Forks, ND

For notational convenience we set d = 2017−
√

2017, y = 2017 +
√
d, and

z = 2017−
√
d. Thus our x is y/z. We have

(x+ 1)4

x(2016x2 − 2x+ 2016)
=

(y
z

+ 1
)4

(y
z

)(
2016

(y
z

)2
− 2

(y
z

)
+ 2016

) · z4
z4

=
(y + z)4

yz(2016y2 − 2yz + 2016z2)

Now
y + z = 2 · 2017,
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yz = 20172 − d
= 20172 − 2017 +

√
2017

= 2017 · 2016 +
√

2017,

and

2016y2 − 2yz + 2016z2 = 2016(y2 + z2)− 2yz

= 2016((y + z)2 − 2yz)− 2yz

= 2016(y + z)2 − 2 · 2017yz

= 2016(2 · 2017)2 − 2 · 2017(2017 · 2016 +
√

2017)

= 2 · 2017(2017 · 2016−
√

2017).

Hence

(y + z)4

yz(2016y2 − 2yz + 2016z2)
=

24 · 20174

2 · 2017(20172 · 20162 − 2017)

=
23 · 20172

2017 · 20162 − 1

=
32546312

8197604351
.

Solution 3 by Jeremiah Bartz, University of North Dakota, Grand Forks, ND

Let y = 2017 and w =
√
y −√y. Observe

x =
y + w

y − w

x+ 1 =
2y

y − w
w2 = y −√y
w4 = y2 + y − 2y

√
y.

Then

(x+ 1)4

x(2016x2 − 2x+ 2016)
=

24y4

(y − w)4
· y − w
y + w

· 1

2016
(
y+w
y−w

)2
− 2

(
y+w
y−w

)
+ 2016

=
24y4

2016(y + w)3(y − w)− 2(y + w)2(y − w)2 + 2016(y + w)(y − w)3

=
24y4

2(2015y4 + 2y2w2 − 2017w4)

=
23y3

2015y3 + 2yw2 − w4
using y = 2017

=
8y3

2015y3 + 2y(y −√y)− (y2 + y − 2y
√
y)

=
8y3

2015y3 + y2 − y

=
8y2

2015y2 + y − 1
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so that
(x+ 1)4

x(2016x2 − 2x+ 2016)
=

8(2017)2

2015(2017)2 + 2016
=

32546312

8197604351
.

Solution 4 by Arkady Alt, San Jose, CA

Let x =
a+

√
a−
√
a

a−
√
a−
√
a
. Then, x+

1

x
=
a+

√
a−
√
a

a−
√
a−
√
a

+
a−

√
a−
√
a

a+
√
a−
√
a

=(
a+

√
a−
√
a
)2

+
(
a−

√
a−
√
a
)2

a2 − a+
√
a

=
2
(
a2 + a−

√
a
)

a2 − a+
√
a

=
2
(
−a2 + a−

√
a+ 2a2

)
a2 − a+

√
a

=

−2 +
4a2

a2 − a+
√
a
⇐⇒ x+

1

x
+ 2 =

4a2

a2 − a+
√
a

and, therefore,

(x+ 1)4

x((a− 1)x2 − 2x+ (a− 1))
=

(x+ 1)4

x2((a− 1)

(
x+

1

x
+ 2

)
− 2a)

=

(
x+

1

x
+ 2

)2

(a− 1)

(
x+

1

x
+ 2

)
− 2a

=

(
4a2

a2 − a+
√
a

)2

(a− 1) · 4a2

a2 − a+
√
a
− 2a

=

16a4

((a− 1) · 4a2 − 2a (a2 − a+
√
a)) (a2 − a+

√
a)

=
16a4

2a (a2 − a−
√
a) (a2 − a+

√
a)

=

8a3

(a2 − a)2 − a
=

8a2

a (a− 1)2 − 1
.

For a = 2017 we get
(x+ 1)4

x(2016x2 − 2x+ 2016)
=

8 · 20172

2017 · 20162 − 1
.

Solution 5 by Kee-Wai Lau, Hong Kong, China

We show that
(x+ 1)4

x(2016x2 − 2x+ 2016)
=

32546312

8197604351
(1)

Firstly we have

x+
1

x
=

2017 +
√

2017−
√

2017

2017−
√

2017−
√

2017
+

2017−
√

2017−
√

2017

2017 +
√

2017−
√

2017

=

(
2017 +

√
2017−

√
2017

)2
+
(

2017−
√

2017−
√

2017
)2

(
2017−

√
2017−

√
2017

)2
+
(

2017 +
√

2017−
√

2017
)2

=
2(4070306−

√
2017)

4066272 +
√

2017

=
2(4070306−

√
2017)(4066272−

√
2017)

(4066272 +
√

2017)(4066272−
√

2017)
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=
2(8205736897− 4034

√
2017)

8197604351
.

Next, we have (
x+

1

x
+ 2

)2

=
131291822608(8197604353− 4032

√
2017)

67200717095534131201

and

2016

(
x+

1

x

)
− 2 =

4034(8197604353− 4032
√

2017)

8197604351
.

Since
(x+ 1)4

x(2016x2 − 2x+ 2016)
=

(
x+

1

x
+ 2

)2

2016

(
x+

1

x

)
− 2

, so (1) follows.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland
Beach, FL; Telman Rashidov, Azerbaijan Medical University, Baku
Azerbaijan; Boris Rays, Brooklyn, NY; Albert Stadler, Herrliberg,
Switzerland; Toshihiro Shimizu, Kawasaki, Japan; David Stone and John
Hawkins, Georgia Southern University, Statesboro, GA, and the proposer.

5428: Proposed by Nicusor Zlota, “Traian Vuia” Technical College, Focsani, Romania

If x > 0, then
[x]

4
√

[x]4 + ([x] + 2{x})4
+

{x}
4
√
{x}4 + ([x] + 2{x})4

≥ 1− 1
4
√

2
, where [.] and

{.} respectively denote the integer part and the fractional part of x.

Solution 1 by Soumava Chakraborty, Kolkata, India

Case 1: 0 < x < 1 [x] = 0. Therefore,

LHS =
{x}

4
√

17{x}4
=

1
4
√

17
> 1− 1

4
√

2
.

Case 2: [x] ≥ 1 and {x} = 0. Therefore,

LHS =
[x]

4
√

2[x]4
=

1
4
√

2
> 1− 1

4
√

2
.

Case 3: [x] ≥ 1 and 0 < {x} < 1. Therefore,

{x} < 1 ≤ [x] ⇒ {x} < [x]
(

2{x}+ [x]
)4

+ [x]4 < 82[x]4

⇒ [x]
4
√

[x]4 + ([x] + 2{x})4
>

1
4
√

82
, and

{x}
4
√
{x}4 + ([x] + 2{x})4

> 0, and therefore

LHS >
1

4
√

82
> 1− 1

4
√

2
.
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Combining the 3 cases, the LHS is always >
1

4
√

82
which is > 1− 1

4
√

2

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

Since x = [x] + {x} and [x] ≤ x < [x] + 1, we have that [x] + 2{x} = x+ {x} and
{x} = x− [x] < 1, so [x] + 2{x} = x+ {x} ≤ x+ x = 2x and, thus, since x > 0,
(x+ {x})4 < (2x)4; hence, [x]4 + (x+ {x})4 < x4 + 16x4 and
{x}4 + (x+ {x})4 < x4 + 16x4.

It follows that 0 < 4
√

[x]4 + (x+ {x})4 < 4
√

17x4 and 0 < 4
√
{x}4 + (x+ {x})4 < 4

√
17x4

so

0 <
1

4
√

[x]4 + (x+ {x})4
≤ 1

4
√

17x
and 0 <

1
4
√
{x}4 + (x+ {x})4

≤ 1
4
√

17x
and hence,

[x]
4
√
{x]}4 + (x+ {x})4

≤ [x]
4
√

17x
with equality iff [x] = 0 and

0 <
{x}

4
√
{x]}4 + (x+ {x})4

≤ {x}
4
√

17x
with equality iff {x} = 0, so

[x]
4
√

[x]4 + ([x] + 2{x})4
+

{x}
4
√

[{x}4 + ([x] + 2{x})4
=

[x]
4
√

[x]4 + (x+ {x})4
+

{x}
4
√

[{x}4 + (x+ {x})4

≥ [x]
4
√

17x
+
{x}
4
√

17x
=

[x] + {x}
4
√

17x
=

x
4
√

17x
=

1
4
√

17

with equality iff [x] = 0 and {x} = 0, that is, iff 0 < x < 1 and x ∈ N , with is impossible.

Hence, we have proved the more general and strict inequality

[x]
4
√

[x]4 + ([x] + 2{x})4
+

{x}
4
√
{x}4 + ([x] + 2{x})4

>
1

4
√

17

(which implies, because
1

4
√

17
+

1
4
√

2
= 1.33338 · · · > 1, the initial result.)

Also solved by Moti Levy, Rehovot, Israel; Nirapada Pal-India, and the
proposer.

5429: Proposed by Titu Zvonaru, Comănesti, Romania and Neculai Stanciu, “George
Emil Palade” School, Buzău, Romania

Prove that there are infinitely many positive integers a, b such that 18a2− b2−6a− b = 0.

Solution 1 by Ulrich Abel, Technische Hochschule Mittelhessen, Germany

Define
g (a, b) = 18a2 − 6a− b2 − b

and
f (a, b) = (577a+ 136b− 28, 2448a+ 577b− 120) .
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By direct computation we see that g (f (a, b)) = g (a, b). If g (a0, b0) = 0 with a0, b0 ∈ N
then the iterates (an, bn) = f (an−1, bn−1) are in N ×N and satisfy g (an, bn) = 0, for all
n ∈ N .

Since g (1, 3) = 0, starting with (a0, b0) = (1, 3) we obtain the infinite sequence of
solutions

(1, 3) , (957, 4059) , (1104185, 4684659) , (1274228341, 5406093003) ,

(1470458401137, 6238626641379) , . . .

Since g (5, 20) = 0, starting with (a0, b0) = (5, 20) we obtain another infinite sequence of
solutions:

(5, 20) , (5577, 23660) , (6435661, 27304196) , (7426747025, 31509019100) ,

(8570459630997, 36361380737780) , . . .

Solution 2 by Trey Smith, Angelo State University, San Angelo, TX

Solution by Trey Smith, Angelo State University, San Angelo, TX 76909

We start by observing that

18a2 − b2 − 6a− b = 0 ⇒ (2b+ 1)2 − 2(6a− 1)2 = −1

which is suspiciously close to being Pell’s Equation. Our particular equation is of the
form

x2 − 2y2 = −1.

Notice that (7, 5) (x = 7 and y = 5) is a solution to x2 − 2y2 = −1. We will now create a
sequence of solutions starting with (c0, d0) = (7, 5) in the following recursive manner.
For n ≥ 0, let

cn+1 = c3n + 6cnd
2
n, dn+1 = 3c2ndn + 2d3n.

We prove the following facts regarding this sequence.

Fact 1. For all n, (cn, dn) is a solution to x2 − 2y2 = −1.

Proof: We use induction to prove this. In the ground case, it is clear that
(c0, d0) = (7, 5) is a solution to x2 − 2y2 = −1.

Assume that (cn, dn) is a solution.

c2n+1 − 2d2n+1

= (c3n + 6cnd
2
n)2 − 2(3c2ndn + 2d3n)2

= c6n + 12c4nd
2
n + 36c2nd

4
n − 2(9c4nd

2
n + 12c2nd

4
n + 4d6n)

= c6n + 12c4nd
2
n + 36c2nd

4
n − 18c4nd

2
n − 24c2nd

4
n − 8d6n

= c6n − 6c4nd
2
n + 12c2nd

4
n − 8d6n

= (c2n − 2d2n)3

= −1.
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For the next two facts, we use the notation q ≡m t to represent the statement q ≡ t
(mod m).

Fact 2. For all n, cn ≡3 1 and cn ≡2 1.

Proof: We proceed by induction noting, first, that c0 ≡3 1 and c0 ≡2 1. Then assuming
that cn ≡3 1 we have that

cn+1 = c3n + 6cnd
2
n ≡3 13 + 0 = 1.

Also, assuming that cn ≡2 1, we have

cn+1 = c3n + 6cnd
2
n ≡2 13 + 0 = 1.

Fact 3. For all n, dn ≡2 1.

Proof: Clearly d0 ≡2 1. Assuming that dn ≡2 1, we have

dn+1 = 3c2ndn + 2d3n ≡2 3 · 12 · 1 + 0 = 3 ≡2 1.

Fact 4. For all n, d2n ≡3 2.

Proof: Certainly d0 ≡3 2. Assume that for n, d2n ≡3 2. Then

d2n+1 = 3c22nd2n + 2d32n ≡3 0 + 2 · 23 ≡3 1,

so that

d2(n+1) = d2n+2 = 3c22n+1d2n+1 + 2d32n+1 ≡3 0 + 2 · 13 ≡3 2.

Using the facts above, we show that there are infinitely many pairs (a, b) that satisfy
(2b+ 1)2 − 2(6a− 1)2 = −1. Fix an even number m. Then (cm, dm) satisfies
x2 − 2y2 = −1. Since cm ≡2 1 we have that cm − 1 is even (and greater than 0) so that

b =
cm − 1

2

is an integer. Also, dm ≡3 2 which tells us that dm + 1 is divisible by 3, and since
dm ≡2 1, dm + 1 is divisible by 2. Hence dm + 1 is divisible by 6. Then

a =
dm + 1

6

is an integer. Thus, the pair (a, b) is a solution to 18a2 − b2 − 6a− b = 0.

Solution 3 by Jeremiah Bartz, University of North Dakota, Grand Forks, ND
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Observe two such solutions (a, b) are given by (1, 3) and (5, 20). We claim that if (ai, bi)
is a solution in positive integers, then so is (ai+1, bi+1) where

ai+1 = 577ai + 136bi − 28
bi+1 = 2448ai + 577bi − 120.

To see this, note that (ai+1, bi+1) are clearly positive integers and

18a2i+1 − b2i+1 − 6ai+1 − bi+1 = 18(577ai + 136bi − 28)2 − (2448ai + 577bi − 120)2

−6(577ai + 136bi − 28)− (2448ai + 577bi − 120)

= 18a2i − b2i − 6ai − bi
= 0.

The solutions (1, 3) and (5, 20) are seeds which produce two infinite families of solutions.
The first four solutions in each family is given below.

i ai bi ai bi
1 1 3 5 20
2 957 4059 5577 23660
3 1104185 4684659 6435661 27304196
4 1274228341 5406093003 7426747025 31509019100

Solution 4 by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain

The proposed equation may be written as follows:

18a2 − b2 − 6a− b = 0

18

(
a− 1

6

)2

− 1

2
−
(
b+

1

2

)2

+
1

4
= 0

18

(
a− 1

6

)2

−
(
b+

1

2

)2

=
1

4

72

(
a− 1

6

)2

− 4

(
b+

1

2

)2

= 1

(2b+ 1)2 − 2 (6a− 1)2 = −1.

The last equation is a Pell-type equation x2 − 2y2 = −1, by doing x = 2b+ 1 and
y = 6a− 1. The smallest solution of x2 − 2y2 = −1 is (1, 1) and therefore all its solutions

are given by xi + yi
√

2 =
(
1 +
√

2
)2i+1

. Note that xi and yi are allways odd so b is an

integer. Also 6a = 1 +
∑
k≥0

(
2i+ 1

2k + 1

)
. Since the expression 1 +

∑
k≥0

(
2i+ 1

2k + 1

)
is even and

multiple of 3 for i of the form i = 6m− 1, for m integer, the proposed equation has
infinitely many positive integral solutions.

Solution 5 by David E. Manes, SUNY at Oneonta, NY

Solution. Writing the equation as a quadratic in b, one obtains b2 + b− 6a(3a− 1) = 0
and, since we want positive integer solutions,

b =
−1 +

√
1 + 72a2 − 24a

2
.
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Note that the above fraction is a positive integer provided that 72a2 − 24a+ 1 = c2 for
some integer c. This last equation is equivalent to a negative Pell equation
c2 − 2d2 = −1, where d = 6a− 1. This equation is solvable and the positive integer
solutions are given by the odd powers of 1 +

√
2. More precisely, if n is a positive integer

and (cn, dn) is a solution of c2− 2d2 = −1, then cn + dn
√

2 = (1 +
√

2)2n−1. The problem
is that not all the solutions for dn yield solutions for an.

Observe: 1) if n ≡ 0 (mod 4), then cn ≡ 5 (mod 6) and dn ≡ 1 (mod 6), 2) if n ≡ 1
(mod 4), then cn ≡ dn ≡ 1 (mod 6), 3) if n ≡ 2 (mod 4), then cn ≡ 1 (mod 6) and
dn ≡ 5 (mod 6), 4) if n ≡ 3 (mod 4), then cn ≡ dn ≡ 5 (mod 6).

The above observations provide straightforward inductive arguments for the following
consequences. If n ≡ 0 or 1 (mod 4), then there are no solutions since dn ≡ 1 (mod 6)
implies no integer solution for an. On the other hand, if n ≡ 2 or 3 (mod 4), then

an =
dn + 1

6
is a positive integer and bn = (−1 +

√
72a2n − 24an + 1)/2. Since there are

infinitely many positive integers congruent to 2 or 3 modulo 4, the result follows.

Some of the infinitely many solutions are: if n = 2, then c2 = 7, d2 = 5 and
(a2, b2) = (1, 3); if n = 3, then c3 = 41, d3 = 29 and (a3, b3) = (5, 20); if n = 6, then
c6 = 8119, d6 = 5741 and (a6, b6) = (957, 4059); if n = 7, then c7 = 47321, d7 = 33461
and (a7, b7) = (5577, 23660); if n = 10, then c10 = 9369319, d10 = 6625109 and
(a10, b10) = (1104185, 4684659); if n = 11, then c11 = 54608393, d11 = 38613965 and
(a11, b11) = (6435661, 27304196).

Also solved by Arkady Alt, San Jose, CA; Hatef I. Arshagi, Guilford
Technical Community College, Jamestown, NC; Dionne Bailey, Elsie
Campbell, and Charles Diminnie, Angelo State University, San Angelo, TX;
Anthony J. Bevelacqua, University of North Dakota, ND; Ed Gray, Highland
Beach, FL; Moti Levy, Rehovot, Israel; Kenneth Korbin, NY, NY; Kee-Wai
Lau, Hong Kong, China; Albert Stadler, Herrliberg, Switzerland; Toshihiro
Shimizu, Kawasaki, Japan; David Stone and John Hawkins, Georgia
Southern University, Statesboro, GA, and the proposer.

5430: Proposed by Oleh Faynshteyn, Leipzig, Germany

Let a, b, c be the side-lengths, α, β, γ the angles, and R, r the radii respectively of the
circumcircle and incircle of a triangle. Show that

a3 · cos(β − γ) + b3 · cos(γ − α) + c3 · cos(α− β)

(b+ c) cosα+ (c+ a) cosβ + (a+ b) cos γ
= 6Rr.

Solution 1 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX

By the Law of Cosines,

cosα =
b2 + c2 − a2

2bc

and hence,

(b+ c) cosα =
(b+ c)

(
b2 + c2 − a2

)
2bc

=
a (b+ c)

(
b2 + c2 − a2

)
2abc

.

11



Similarly,

(c+ a) cosβ =
b (c+ a)

(
c2 + a2 − b2

)
2abc

and

(a+ b) cos γ =
c (a+ b)

(
a2 + b2 − c2

)
2abc

.

Therefore,

(b+ c) cosα+ (c+ a) cosβ + (a+ b) cos γ

=
a (b+ c)

(
b2 + c2 − a2

)
+ b (c+ a)

(
c2 + a2 − b2

)
+ c (a+ b)

(
a2 + b2 − c2

)
2abc

=
2a2bc+ 2ab2c+ 2abc2

2abc
= a+ b+ c. (1)

If K is the area of the given triangle, then

K =
1

2
ab sin γ =

1

2
bc sinα =

1

2
ca sinβ

and we have

sinα =
2K

bc
, sinβ =

2K

ca
, and sin γ =

2K

ab
.

Thus,

a3 cos (β − γ) = a3 [cosβ cos γ + sinβ sin γ]

= a3

[(
c2 + a2 − b2

)
2ca

·
(
a2 + b2 − c2

)
2ab

+
4K2

(ca) (ab)

]

= a

[
a4 −

(
b2 − c2

)2
+ 16K2

4bc

]

=
a2

4abc

[
a4 −

(
b2 − c2

)2
+ 16K2

]
.

By Heron’s Formula,

16K2 = (a+ b+ c) (a+ b− c) (b+ c− a) (c+ a− b)

=
[
(a+ b)2 − c2

] [
c2 − (a− b)2

]
= 2

(
a2b2 + b2c2 + c2a2

)
−
(
a4 + b4 + c4

)
.

Hence,

a3 cos (β − γ) =
a2

4abc

[
a4 −

(
b2 − c2

)2
+ 2

(
a2b2 + b2c2 + c2a2

)
−
(
a4 + b4 + c4

)]
=

a2

4abc

[
−2b4 − 2c4 + 2

(
a2b2 + 2b2c2 + c2a2

)]
=

a2

2abc

(
−b4 − c4 + a2b2 + 2b2c2 + c2a2

)
.

Similarly,

b3 cos (γ − α) =
b2

2abc

(
−c4 − a4 + a2b2 + b2c2 + 2c2a2

)
12



and

c3 cos (α− β) =
c2

2abc

(
−a4 − b4 + 2a2b2 + b2c2 + c2a2

)
.

As a result,

a3 cos (β − γ) + b3 cos (γ − α) + c3 cos (α− β)

=
a2

2abc

(
−b4 − c4 + a2b2 + 2b2c2 + c2a2

)
+

b2

2abc

(
−c4 − a4 + a2b2 + b2c2 + 2c2a2

)
+

c2

2abc

(
−a4 − b4 + 2a2b2 + b2c2 + c2a2

)
=

1

2abc
· 6a2b2c2

= 3abc. (2)

By (1) and (2),

a3 cos (β − γ) + b3 cos (γ − α) + c3 cos (α− β)

(b+ c) cosα+ (c+ a) cosβ + (a+ b) cos γ
=

3abc

a+ b+ c
. (3)

Finally, if s =
a+ b+ c

2
, then

R =
abc

4K
and K = rs

and we get

6Rr = 6

(
abc

4K

)(
K

s

)
=

3abc

2s

=
3abc

a+ b+ c
. (4)

Conditions (3) and (4) yield the desired result.

Solution 2 by Moti Levy, Rehovot, Israel

After substituting Rr = abc
2(a+b+c) in the right hand side of the original inequality, it

becomes ∑
cyc a

3 cos (β − γ)∑
cyc (b+ c) cosα

=
3abc

a+ b+ c
.

Thus, we actually need to prove two identities (which appeared many times before in the
literature):

∑
cyc

(b+ c) cosα = a+ b+ c, (1)∑
cyc

a3 cos (β − γ) = 3abc. (2)

13



Dropping a perpendicular from C to side c, it divides the triangle into two right
triangles, and c into two pieces c = a cosβ + b cosα, and similarly for all sides:

c = a cosβ + b cosα,

a = b cos γ + c cosβ,

b = c cosα+ a cos γ.

To prove (1), we add the three equations, and get immediately:

a+ b+ c = a cosβ + b cosα+ b cos γ + c cosβ + c cosα+ a cos γ =
∑
cyc

(b+ c) cosα.

To prove (2), we use the following trigonometric identity

cos (x− y) =
sinx cosx+ sin y cos y

sin (x+ y)
,

and the triangle identity
a

sinα
=

b

sinβ
=

c

sin γ
.

a3 cos (β − γ) = a3
sinβ cosβ + sin γ cos γ

sin (β + γ)

= a3
sinβ cosβ + sin γ cos γ

sinα

= a3
b cosβ + c cos γ

a
= a2b cosβ + a2c cos γ

∑
cyc

a3 cos (β − γ) =
∑
cyc

(
a2b cosβ + a2c cos γ

)
= ab (a cosβ + b cosα) + ac (c cosα+ a cos γ) + bc (b cos γ + c cosβ)

= 3abc.

Also solved by Arkady Alt, San Jose, CA; Hatef I. Arshagi, Guilford
Technical Community College, Jamestown, NC; Bruno Salgueiro Fanego,
Viveiro, Spain; Kee-Wai Lau, Hong Kong, China; Kevin Soto Palacios,
Huarmey, Peru; Neculai Stanciu, “Geroge Emil Palade” School Buzău,
Romania and Titu Zvonaru, Comănesti, Romania; Nicusor Zlota, “Traian
Vuia” Technical College, Focsani, Romania, and the proposer.

5431: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let Fn be the nth Fibonacci number defined by F1 = 1, F2 = 1 and for all n ≥ 3,
Fn = Fn−1 + Fn−2. Prove that

∞∑
n=1

(
1

11

)FnFn+1

is an irrational number and determine it (*).

The asterisk (∗) indicates that neither the author of the problem nor the editor are
aware of a closed form for the irrational number.

Solution 1 by Moti Levy, Rehovot, Israel
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It is well known that

FnFn+1 =
n∑

k=1

F 2
k , (1)

hence x :=
∑∞

n=1

(
1
11

)FnFn+1 can be expressed as

x =
1

11F
2
1

+
1(

11F
2
1

)(
11F

2
2

) +
1(

11F
2
1

)(
11F

2
2

)(
11F

2
3

) + · · · ,

or

x =

∞∑
k=1

1

a1a2 · · · ak
, ak = 11F

2
k . (2)

The series (2) is the Engel expansion of the positive real number x. See [1] for definition
of Engel expansion.

In 1913, Engel established the following result (See [2] page 303):

Every real number x has a unique representation c+
∑∞

k=1
1

a1a2···ak , where c is an
integer and 2 ≤ a1 ≤ a2 ≤ a3 ≤··· is a sequence of integers. Conversely, every such
sequence is convergent and its sum is irrational if and only if limk→∞ ak =∞.
Therefore, by Engel’s result,

∑∞
n=1

1
11FnFn+1

is irrational, since limk→∞ 11F
2
k =∞.

I do not know how to express x in closed form. However, it can be shown that it is
transcendental. To this end, I rely on a result given in [2] (on page 315):

Let (f(n))n≥1 be a sequence of positive integers such that limn→∞
f(n+1)
f(n) = µ > 2. Then

for every integer d ≥ 2, the number x =
∑∞

n=1
1

df(n) is transcendental.

In our case, d = 11 and f (n) = FnFn+1. We check that

lim
n→∞

f (n+ 1)

f (n)
= lim

n→∞

Fn+1Fn+2

FnFn+1
= lim

n→∞

Fn+2

Fn
= lim

n→∞

Fn+1 + Fn

Fn

= 1 + lim
n→∞

Fn+1

Fn
=

3 +
√

5

2
∼= 2.618 > 2.

Then x =
∑∞

n=1
1

11FnFn+1
is transcendental.

References:

[1] Wikipedia “Engel expansion”.

[2] Ribenboim Paulo, “My Numbers, My Friends: Popular Lectures on Number Theory”,
Springer 2000.

Solution 2 by Ulrich Abel, Technische Hochschule Mittelhessen, Friedberg,
Germany

Let p be a prime. For the sake of brevity put ck = FkFk+1. We prove that the number

s =
∞∑
k=1

(
1

p

)ck
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is transcendental, in particular irrational.

The partial sum

sn =

n∑
k=1

(
1

p

)ck

=
an
bn

with positive integers an and bn ≤ pcn satisfies

0 < s− sn =

∞∑
k=n+1

(
1

p

)ck

≤
(

1

p

)cn+1 ∞∑
k=0

(
1

p

)k

=
1

p− 1

(
1

p

)cn+1−1
≤ 1

(pcn)
cn+1−1

cn

,

because ck+1 − ck = Fk+1Fk+2 − FkFk+1 = F 2
k+1 ≥ 1. Since

lim
n→∞

cn+1 − 1

cn
= lim

n→∞

Fn+1Fn+2 − 1

FnFn+1
= lim

n→∞

(
Fn+1

Fn
· Fn+2

Fn+1

)
=

(
1 +
√

5

2

)2

=
3 +
√

5

2
> 2

By the theorem of Thue, Siegel and Roth, for any (fixed) algebraic number x and ε > 0,
the inequality

0 <
∣∣∣x− a

b

∣∣∣ < 1

b2+ε

is satisfied only by a finite number of integers a and b. Hence, s is transcendental.

Also solved by the Kee-Wai Lau, Hong Kong, China (first part of the
problem), and the proposer, (first part of the problem)

5432: Proposed by Ovidiu Furdui and Alina Ŝıntămărian, Technical University of
Cluj-Napoca, Cluj-Napoca, Romania

Find all differentiable functions f : (0,∞)→ (0,∞), with f(1) =
√

2, such that

f ′
(

1

x

)
=

1

f(x)
, ∀x > 0.

Solution 1 by Arkady Alt, San Jose, CA

First note that f ′
(

1

x

)
=

1

f (x)
, ∀x > 0 ⇐⇒ f ′ (x) =

1

f

(
1

x

) , ∀x > 0.

Then, since f ′′ (x) =

 1

f

(
1

x

)

′

= −
f ′
(

1

x

)(
− 1

x2

)
f2
(

1

x

) and

1

f2
(

1

x

) = (f ′ (x))2 , f ′
(

1

x

)
=

1

f (x)
,

we obtain f ′′ (x) =
1

x2
(f ′ (x))2

1

f (x)
⇐⇒ f (x) f ′′ (x)

(f ′ (x))2
=

1

x2
⇐⇒

(f ′ (x))2 − f (x) f ′′ (x)

(f ′ (x))2
− 1 = − 1

x2
⇐⇒

16



(
f (x)

f ′ (x)

)′
= 1− 1

x2
⇐⇒ f (x)

f ′ (x)
= x+

1

x
+ c ⇐⇒ f ′ (x)

f (x)
=

x

x2 + cx+ 1
.

Since f ′ (1) =
1

f (1)
=

1√
2

then
f (1)

f ′ (1)
= 1 +

1

1
+ c ⇐⇒ 2 = 2 + c ⇐⇒ c = 0.

Therefore,
f (x)

f ′ (x)
= x+

1

x
⇐⇒ f ′ (x)

f (x)
=

x

x2 + 1
⇐⇒ ln f (x) =

1

2
ln
(
x2 + 1

)
+ d and,

using f(1) =
√

2

again, we obtain ln f (1) =
1

2
ln
(
12 + 1

)
+ d ⇐⇒ ln

√
2 =

1

2
ln 2 + d ⇐⇒ d = 0.

Thus, f (x) =
√
x2 + 1.

Solution 2 by Albert Stadler, Hirrliberg, Switzerland

The differential equation f ′(x) =
1

f

(
1

x

) shows that f is differentiable infinitely often in

x > 0. We differentiate the equation f ′(x)f

(
1

x

)
= 1 and get

f ′′(x)f

(
1

x

)
− f ′(x)f ′

(
1

x

)
1

x2
=
f ′′(x)

f ′(x)
− f ′(x)

f(x)

1

x2
= 0,

or equivalently

f ′′(x)f(x)

(f ′(x))2
=

1

x2
. (1)

By assumption f(1) =
√

2 and thus f ′(1) =
1

f(1)
=

√
2

2
.

We integrate (1) and apply partial integration to get

1− 1

x
=

∫ x

1

dt

t2
=

∫ x

1

f ′′(t)f(t)

(f ′(t))2
dt

=

∫ x

1

d

dt

(
−1

f ′(t)

)
f(t)dt

= − f(t)

f ′(t)

∣∣∣∣x
1

+

∫ x

1

f ′(t)

f ′(t)
dt

=
f(1)

f ′(1)
− f(x)

f ′(x)
+ x− 1

= 1− f(x)

f ′(x)
+ x.

So
f(x)

f ′(x)
=

1

x
+ x or equivalently

f ′(x)

f(x)
=

x

1 + x2
.
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We integrate again and get

ln f(x)− ln f(1) =

∫ x

1

f ′(t)

f(t)
dt =

∫ x

1

t

1 + t2
dt =

1

2
ln(1 + x2)− =

1

2
ln 2.

Therefore f(x) =
√

1 + x2.

Solution 3 by Bruno Salgueiro Fanego, Viveiro, Spain

Let f : (0,+∞)→ (0,+∞) be a differentiable function that satisfies the hypothesis of
the problem and let g : (0,+∞)→ (0,+∞) be the differentiable function defined by

g(x) =
1

x
. Since f is differentiable, and by the hypothesis f ′(x) =

1

(f ◦ g)(x)
, ∀x > 0, we

conclude that f ′ is also differentiable and, differentiating both side of the equality

f ′(x)f

(
1

x

)
= 1, we obtain that f ′′(x)f

(
1

x

)
+ f ′(x)f ′

(
1

x

)
−1

x2
= 0, and since

f

(
1

x

)
=

1

x2
, or equivalently,

(f ′(x))2 − f ′′(x)f(x)

(f ′(x))2
= 1− 1

x2
, or what is the same,(

f

f ′

)′
(x) = 1− 1

x2
, ∀x > 0.

Integrating both sides, we conclude that
f(x)

f ′(x)
= x+

1

x
+ C, ∀x > 0, for some C ∈ <. If

we take x = 1 at the start of the inequality, and since f(1) =
√

2, we obtain that

f ′(1) =
1√
2

and
f(1)

f ′(1)
= 2 + C, from where C = 0, which implies, because

f(x) > 0 ∀x > 0 by hypothesis and
f(x)

f ′(x)
= x+

1

x
+ 0 and

f ′(x)

f(x)
=

x

x2 + 1
, ∀x > 0.

Integrating both sides of this last equality, we conclude that

ln (f(x)) = log
(√

x2 + 1
)

+D, ∀x > 0 for some D ∈ <. Taking x = 1 in this equality

and using the fact that f(1) =
√

2, we find that D = 0 and therefore
f(x) =

√
x2 + 1, ∀x > 0.

Since the function f : (0,+∞)→ (0,+∞) defined by f(x) =
√
x2 + 1, ∀x > 0, is

differentiable with f ′(x) =
x√

x2 + 1
and satisfies that f(1) =

√
2, and that

f

(
1

x

)
=

1

x√
1

x2
+ 1

=
1

f(x)
, ∀x > 0, we conclude that the only differentiable function

that satisfies the conditions of the problem is the function f(x) =
√
x2 + 1, ∀x > 0.

Solution 4 by Toshihiro Shimizu, Kawasaki, Japan

We have f ′
(
1
x

)
f (x) = 1. Letting x to 1

x we also have f ′ (x) f
(
1
x

)
= 1 (∗). Thus,

d

dx

(
f (x) f

(
1

x

))
= f ′ (x) f

(
1

x

)
+
(
−x−2

)
f (x) f ′

(
1

x

)
= 1− x−2.

Integrating it, we have
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f (x) f

(
1

x

)
= x+

1

x
+ C

Letting x = 1, we have 2 = 2 + C or C = 0. Therefore f (x) f
(
1
x

)
= x+ 1

x . Multiplying
f (x) to (∗), we have (

x+
1

x

)
f ′ (x) = f (x)

f ′ (x)

f (x)
=

1

x+ 1
x

Integrating again, we have

log f (x) =

∫
dx

x+ 1
x

=

∫
x

x2 + 1
dx

=
1

2

∫ (
x2 + 1

)′
x2 + 1

dx

=
1

2
log
(
x2 + 1

)
+D

Thus, we can write f (x) = D
√
x2 + 1 where D is some constant. Letting x = 1, we have

D = 1. Therefore, we have f (x) =
√
x2 + 1, this function actually satisfies the condition.

Also solved by Abdallah El Farsi, Bechar, Algeria; Hatef I. Arshagi, Guilford
Technical Community College, Jamestown, NC; Michael N. Fried,
Ben-Gurion University, Beer-Sheva, Israel; Moti Levy, Rehovot, Israel; Ravi
Prakash, New Delhi, India, and the proposers.

19


