Problems Ted Eisenberg, Section Editor
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This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@(013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

Solutions to the problems stated in this issue should be posted before
June 15, 2017

e 5445: Proposed by Kenneth Korbin, New York, NY

Find the sides of a triangle with exradii (3,4, 5).

e 5446: Proposed by Arsalan Wares, Valdosta State University, Valdosta, GA

Polygons ABC'D,CEFG, and DGHJ are squares. Moreover, point F is on side
DC, X =DGNEF,and Y = BCNJH. If GX splits square CEFG in regions whose
areas are in the ratio 5:19. What part of square DGH J is shaded? (Shaded region in
DGHJ is composed of the areas of triangle Y HG and trapezoid EXGC.)
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5447: Proposed by Iuliana Trasca, Scornicesti, Romanai

Show that if z,y, and z is each a positive real number, then

2628 4 yb a8 203 S By +2243ry2
72 2. 22 = 92 :

5448: Proposed by Yubal Barrios and Angel Plaza, University of Las Palmas de Gran
Canaria, Spain

, 2i\ (25
Evaluate: 1 .

0<i,j<n
i+j=n

5449: Proposed by José Luis Diaz-Barrero, Barcelona Tech, Barcelona, Spain

Without the use of a computer, find the real roots of the equation

2% — 2623 + 5522 — 39z + 10 = (3x — 2)v/3x — 2.

5450: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let k be a positive integer. Calculate
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where |a| denotes the floor (the integer part) of a.

Solutions

5427: Proposed by Kenneth Korbin, New York, NY

Rationalize and simplify the fraction

(z+1)4 g 2017+ V2017 — /2017
(201622 — 22 + 2016) 2017 — /2017 — /2017

Solution 1 by David E. Manes, SUNY at Oneonta, Oneonta, NY
Let F' = (z +1)*/(2(201622 — 22 4 2016)) and let y = /2017 — 4/2017. Then
y? = 2017 — /2017 and y* = 2017(2018 — 21/2017). Moreover,

017+y 1 2017—y 2(2017)
r = , -—= r+1=——2- and
2017 -y =z 2017 +y 2017 —y
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201 2 201 2 4+ (2017 — y)?
Pt (RUTEY, ) COTH 0P+ 017 =)
2017 — y (2017 — y)?
_ 22017 +47)
(2017 —y)2
Therefore,
r2016(20172 + %) 2017 +y
2016(2% + 1) — 22 =2 —
016(2" +1) =22 = 2| =5 7 — 72 2017—y]
_ ,[2016(2017% 4 4%) — (20172 - yz)}
7l (2017 — y)?
.y 2015 - 20172 + 2017y2}
-l (2017 — y)?
2015(2017) + 12
= 2(201
(20 7)[ (2017 — y)2 }

Substituting these values into the fraction F and simplifying, we obtain

4
(3675) (017 —y)

s ()

F=

(2(2017))3
(20172 — 12)(2015 - 2017 + 32)
B 8(2017)3
201520173 + 2 2017(2017 — v/2017) — 2017(2018 — 24/2017)

B 8(2017)2
~ 2015 - 20172 + 2016

32546312
8197604351

~ 0.003 970222 349.
Solution 2 by Anthony J. Bevelacqua, University of North Dakota, Grand
Forks, ND

For notational convenience we set d = 2017 — /2017, y = 2017 + v/d, and
z = 2017 — /d. Thus our z is y/z. We have

Yy 4
(z 4+ 1) a (2 " 1) 2
2 _ - 2 A
(201622 — 22 + 2016) (y) <2016 (Q) _9 (Q) T 2016> :
z z z
(y +2)*

yz(2016y2 — 2yz + 201622)

Now
y+z=2-2017,



yz = 2017 —d
= 2017% — 2017 + V2017
= 2017-2016 + V2017,

and
2016y°% — 2yz + 201622 = 2016(y* + 22) — 2yz
= 2016((y + 2)® — 2yz) — 2yz
= 2016(y + 2)* — 2- 2017y
= 2016(2-2017)% —2-2017(2017 - 2016 + v/2017)
= 2.2017(2017 - 2016 — v/2017).
Hence

(y + 2)* _ 24. 2017
yz(2016y2 — 2yz +201622)  2-2017(20172 - 20162 — 2017)
23 . 20172

2017 - 20162 — 1
32546312

8197604351 "

Solution 3 by Jeremiah Bartz, University of North Dakota, Grand Forks, ND

Let y = 2017 and w = /y — /y. Observe

y+w
r =
Y — w
2
r+1 = 2y
Y —w
w? = y-— VY
wt = Yty -2y
Then
(z+ 1) B 24yt oy —w 1
2 _ - DY ) 2
x(201622 — 2z + 2016) (y—w)* y+w 92016 (%) _ 9 (%) 42016
_ 24y4
2016(y + w)3(y — w) — 2(y + w)?(y — w)? + 2016(y + w)(y — w)3
24 4
. Y
~2(2015y% + 2y2w? — 2017w?)
23 3
— y using y = 2017
2015y3 + 2yw? — w*
_ 8y’
2015y° + 2y(y — ) — (v +y — 2y/Y)
_ 8y’
20153 + 2 —y
_ 8y’
20152 4y — 1



so that
(z +1)* 8(2017)2 32546312

2(201622 — 22 + 2016)  2015(2017)2 + 2016 8197604351

Solution 4 by Arkady Alt, San Jose, CA

a—+/a—+/a T a—+\/a—+a a++a—+a
2 2
(0 Va=va) + (0 VaTVa) a(@ra-ya) _2(-ara-vato)
a®—a++/a  a?—a++a a’?—a++/a
4a? 1 4a®
—2+m <:>:U+§+2:mand, therefore,
(z+1)* a (z+1)*
_ 2 _ _ o 1 -
2((a-1)a* = 2w+ (a—1)) xQ((a—1)<x++2)—2a)
x
_|_1+2 ’ L ’
T B a’?—a++a
1 N 4a?
1 S 492) -2 D DO
(a )(x—i—x—i—) a (a—1) R —— a
16a* o 160" _
((a—1)-4a2 —2a(a® —a++/a))(a® —a++/a) 2a(a®—a—+/a)(a® —a+/a)
8a3 B 8a?
(@2—a)’—a ala—1)>%*-1
(z+ 1) 820172

For a = 2017 t - ’
or a OB (201647 — 20+ 2016) 2017 20167 — 1

Solution 5 by Kee-Wai Lau, Hong Kong, China
We show that

(z +1)* 32546312 )
2(201622 — 2z +2016) 8197604351

Firstly we have

2017 + /2017 — /2017 n 2017 — /2017 — /2017
2017 — /2017 — /2017 2017 4+ /2017 — /2017

(2017 + /2017 — \/W>2 n (2017 — /2017 — \/Wf
(2017 — /2017 — W)Q + (2017 +1/2017 — WY

r+ - =
T

2(4070306 — +/2017)
4066272 + /2017

2(4070306 — v/2017) (4066272 — /2017)
(4066272 -+ /2017) (4066272 — 1/2017)




2(8205736897 — 4034+/2017)
8197604351 ’

Next, we have

( n 1 n 2>2 131291822608(8197604353 — 4032+/2017)
o —
z

67200717095534131201
and
2016 (= + 1y o _ 4034(8197604353 — 4032+/2017)
x B 8197604351 '
1 2
+=+2
SO )
Since (z+1) = i , so (1) follows.

2_ 1
x(201622 — 22 + 2016) 9016 <$ n ) _g
x

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland
Beach, FL; Telman Rashidov, Azerbaijan Medical University, Baku
Azerbaijan; Boris Rays, Brooklyn, NY; Albert Stadler, Herrliberg,
Switzerland; Toshihiro Shimizu, Kawasaki, Japan; David Stone and John
Hawkins, Georgia Southern University, Statesboro, GA, and the proposer.

5428: Proposed by Nicusor Zlota, “Traian Vuia” Technical College, Focsani, Romania

[] {z}

1
If > 0, then >1— —=, where [] and
N R N GG e A C

{.} respectively denote the integer part and the fractional part of z.

Solution 1 by Soumava Chakraborty, Kolkata, India

Case 1: 0 <z <1 [z] =0. Therefore,

[ P CJ) S S

YTyt VAT V2

Case 2: [z] > 1 and {z} = 0. Therefore,

o 1oy ]

LHS = — TR — %

Case 3: [z] > 1 and 0 < {z} < 1. Therefore,

{z} <1< z] = {z} <|[7] (2{95} + [x]>4 + [2]* < 82[z]*

M 1 and {:c} 0, and therefore
e (3 T ) Lo MV ey e (7 ey
LHS > L >1—i.
v/ 82 V2



1 1
Combining the 3 cases, the LHS is always > ——whichis >1— —
g Y 125 3
Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain
Since z = [z] + {z} and [z] <z < [z] + 1, we have that [z] +2{z} =z + {z} and
{z} =z —[z] <1,s0 [z]+2{z} =2+ {} <2+ 2z = 22 and, thus, since x > 0,

(z + {z})* < (22)%; hence, [z]* + (z + {z})* < 2! + 1621 and
{2} + (v + {2})* < 2* + 1622

It follows that 0 < ¢/[z]4 + (z + {z})* < V172* and 0 < {/{z}4 + (z + {z})* < V172*
S0

1 1 . 1
0< VIt + (z + {x}) = Ve and 0 < R I PR PN < 5 and hence,
G El N
VT o)~ Vi "t cauality iff {r] = 0 and

(=) (x)
VT ey Vi

with equality iff {z} =0, so

B . () _ B . (=)
Vel G+ 2@ Vil + @l 2Gh VErT e+ @) Vel + @ @b
o] | {o} _led+(e}_ a1

7z - itz Witz Vite  VIT

with equality iff [x] = 0 and {z} = 0, that is, iff 0 < < 1 and x € N, with is impossible.
Hence, we have proved the more general and strict inequality

[z] n {x} . 1
Vit (o] +2{zh)t - et + (] +2{z})? V1T

(which implies, because

1 1
_|_7
VIT V2

Also solved by Moti Levy, Rehovot, Israel; Nirapada Pal-India, and the
proposer.

= 1.33338 - -+ > 1, the initial result.)

5429: Proposed by Titu Zvonaru, Comanesti, Romania and Neculai Stanciu, “George
Emil Palade” School, Buzau, Romania

Prove that there are infinitely many positive integers a, b such that 18a? —b> —6a — b = 0.

Solution 1 by Ulrich Abel, Technische Hochschule Mittelhessen, Germany

Define
g (a,b) =18a* — 6a — b*> — b

and
f(a,b) = (577a + 136b — 28,2448a + 577b — 120) .



By direct computation we see that g (f (a,b)) = g (a,b). If g (ap,bo) = 0 with ag,bp € N
then the iterates (an,bn) = f (an—1,bp—1) are in N x N and satisty g (an, b,) = 0, for all
n € N.

Since g (1,3) = 0, starting with (ag, by) = (1,3) we obtain the infinite sequence of
solutions

(1,3), (957,4059), (1104185,4684659), (1274228341,5406093003),
(1470458401137, 6238626641379) , . ..

Since g (5,20) = 0, starting with (ag, by) = (5,20) we obtain another infinite sequence of
solutions:

(5,20), (5577,23660), (6435661,27304196), (7426747025,31509019100),
(8570459630997, 36361380737780) , . . .

Solution 2 by Trey Smith, Angelo State University, San Angelo, TX
Solution by Trey Smith, Angelo State University, San Angelo, TX 76909

We start by observing that
18a> =V —6a—b=0 = (20+1)>—-2(6a—1)*= -1

which is suspiciously close to being Pell’s Equation. Our particular equation is of the
form
22— 2% = —1.

Notice that (7,5) (r = 7 and y = 5) is a solution to 2% — 2y? = —1. We will now create a
sequence of solutions starting with (cq,dy) = (7,5) in the following recursive manner.
For n >0, let

Cnsl = €0+ 6c,d2,  dny1 = 3c2d, + 2d3.

We prove the following facts regarding this sequence.

Fact 1. For all n, (c,,d,) is a solution to 22 — 2y% = —1.

Proof: We use induction to prove this. In the ground case, it is clear that
(co,do) = (7,5) is a solution to x? — 2y? = —1.

Assume that (¢, d,) is a solution.
Crr1 —2dp 44
= (3 +6¢,d%)? — 2(3c2d, + 2d3)?
= 84 12¢hd? +36c2dL — 2(9ctd? +12c2d2 + 4d8)
= S +12¢id? +36c2d — 18ctd? — 24c2dl — 8dS
= S —6crd? +12c2d} — 8dS
- (& 2y

= —1.



For the next two facts, we use the notation ¢ =, t to represent the statement g = ¢
(mod m).

Fact 2. For all n, ¢, =3 1 and ¢, =5 1.

Proof: We proceed by induction noting, first, that c¢g =3 1 and ¢g =2 1. Then assuming
that ¢,, =3 1 we have that

Cn+l = ci + Gcndf1 =3 1B¥+0=1.

Also, assuming that ¢, =2 1, we have
Cntl = cf’l + Gcndi = 134+0=1.
Fact 3. For all n, d,, =2 1.
Proof: Clearly dy =2 1. Assuming that d,, =5 1, we have
dpy1 =3Ad, +2d3 =23-12.14+0=3=5 1.
Fact 4. For all n, ds, =3 2.
Proof: Certainly dg =3 2. Assume that for n, doy, =3 2. Then

doni1 = 3ca,doy +2d5, =3 0+2-23 =31,

so that
da(ni1) = dant2 = 3¢hy, 1dons1 + 2d3,, =3 04217 =5 2.

Using the facts above, we show that there are infinitely many pairs (a,b) that satisfy
(2b+1)? — 2(6a — 1)? = —1. Fix an even number m. Then (¢, d,,,) satisfies

22 — 2y? = —1. Since ¢, =2 1 we have that c,, — 1 is even (and greater than 0) so that

is an integer. Also, d,, =3 2 which tells us that d,,, + 1 is divisible by 3, and since
dm =2 1, d,, + 1 is divisible by 2. Hence d,,, + 1 is divisible by 6. Then

is an integer. Thus, the pair (a,b) is a solution to 18a? — b?> — 6a — b = 0.

Solution 3 by Jeremiah Bartz, University of North Dakota, Grand Forks, ND



Observe two such solutions (a,b) are given by (1,3) and (5,20). We claim that if (a;, b;)
is a solution in positive integers, then so is (a;t1,bj+1) where

a1 = 5T77a; + 136b; — 28
bix1 = 2448a; + 577b; — 120.

To see this, note that (a;;1,b;+1) are clearly positive integers and

18a2,; — b2, | — 6aj41 — biy1 = 18(577a; + 136b; — 28)% — (2448a; + 577b; — 120)>
i+1 i+1
—6(577a; + 136b; — 28) — (2448a; + 577b; — 120)
= 18a? — b7 — 6a; — b;
= 0.

The solutions (1, 3) and (5,20) are seeds which produce two infinite families of solutions.
The first four solutions in each family is given below.

1 ‘ 073 bZ’ a; bz‘
1 1 3 5 20
2 957 4059 5577 23660
3 1104185 4684659 6435661 27304196
4| 1274228341 5406093003 | 7426747025 31509019100

Solution 4 by Angel Plaza, University of Las Palmas de Gran Canaria, Spain

The proposed equation may be written as follows:

18a> —=b* —6a—b = 0
18<a_1>2_1_(b+1>2+1 _ 0
6 2 2 4
18(a_1)2_<b+1)2 - !

6 2 4
1\? 1\?
72<a6> 4<b+2>

(26+1)*> =2 (6a—1)* = —1.

The last equation is a Pell-type equation 2 — 2y?> = —1, by doing = 2b + 1 and
y = 6a — 1. The smallest solution of x? — 2y? = —1is (1,1) and therefore all its solutions

are given by z; + y;v/2 = (1 + \/5) S Note that x; and y; are allways odd so b is an

2t +1 20+1
integer. Also 6a =1+ Z < ) Since the expression 1 + Z < ) is even and
= 2k+1 = 2k +1

multiple of 3 for ¢ of the form ¢ = 6m — 1, for m integer, the proposed equation has
infinitely many positive integral solutions.

Solution 5 by David E. Manes, SUNY at Oneonta, NY

Solution. Writing the equation as a quadratic in b, one obtains b* +b — 6a(3a — 1) = 0
and, since we want positive integer solutions,

-1+ V14 7202 — 24q

’ 2

10



Note that the above fraction is a positive integer provided that 72a? — 24a + 1 = ¢? for
some integer c. This last equation is equivalent to a negative Pell equation

c? — 2d? = —1, where d = 6a — 1. This equation is solvable and the positive integer
solutions are given by the odd powers of 1 4+ /2. More precisely, if n is a positive integer
and (cp, dy,) is a solution of ¢2 — 2d% = —1, then ¢, + d,v/2 = (1 ++/2)2"~1. The problem
is that not all the solutions for d,, yield solutions for a,,.

Observe: 1) if n =0 (mod 4), then ¢, =5 (mod 6) and d, =1 (mod 6), 2) if n =1
(mod 4), then ¢, =d,, =1 (mod 6), 3) if n =2 (mod 4), then ¢, =1 (mod 6) and
dy, =5 (mod 6), 4) if n =3 (mod 4), then ¢, =d, =5 (mod 6).

The above observations provide straightforward inductive arguments for the following
consequences. If n =0 or 1 (mod 4), then there are no solutions since d, = 1 (mod 6)

implies no integer solution for a,. On the other hand, if n = 2 or 3 (mod 4), then
dp +1

is a positive integer and b, = (—1 + /72a2 — 24a,, + 1)/2. Since there are

infinitely many positive integers congruent to 2 or 3 modulo 4, the result follows.

Ay =

Some of the infinitely many solutions are: if n = 2, then ¢o = 7,ds = 5 and

(az,b2) = (1,3); if n = 3, then ¢3 = 41,ds = 29 and (as, b3) = (5,20); if n = 6, then
c¢ = 8119,dg = 5741 and (ag, bg) = (957,4059); if n = 7, then ¢; = 47321, d7 = 33461
and (a7, b7) = (5577,23660); if n = 10, then ¢19 = 9369319, d19 = 6625109 and
(a10,b10) = (1104185, 4684659); if n = 11, then ¢ = 54608393, dy; = 38613965 and
(a11,b11) = (6435661, 27304196).

Also solved by Arkady Alt, San Jose, CA; Hatef 1. Arshagi, Guilford
Technical Community College, Jamestown, NC; Dionne Bailey, Elsie
Campbell, and Charles Diminnie, Angelo State University, San Angelo, TX;
Anthony J. Bevelacqua, University of North Dakota, ND; Ed Gray, Highland
Beach, FL; Moti Levy, Rehovot, Israel; Kenneth Korbin, NY, NY; Kee-Wai
Lau, Hong Kong, China; Albert Stadler, Herrliberg, Switzerland; Toshihiro
Shimizu, Kawasaki, Japan; David Stone and John Hawkins, Georgia
Southern University, Statesboro, GA, and the proposer.

5430: Proposed by Oleh Faynshteyn, Leipzig, Germany

Let a,b, ¢ be the side-lengths, «, 5, the angles, and R, r the radii respectively of the
circumcircle and incircle of a triangle. Show that

a® - cos(B — ) + b2 - cos(y — a) + 3 - cos(a — j3)
(b+c)cosa+ (c+a)cosf+ (a+ b)cosy

= 6Rr.

Solution 1 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX

By the Law of Cosines,
b2 + 2 — a?
2bc

Cosx =

and hence,

b+ yeosa = QTAE TS —a) _albto)(F+e —a”)
2be 2abce .

11



Similarly,
e b(c+a)(+a®—b?)

(c+a)cosf = Sabe
and s e o
+0b + b —
(a+b)coS’y:C(a )(;abc C).
Therefore,

(b+ c)cosa+ (¢ + a)cos B+ (a+ b) cosy
a(b+c) (b +c*—a®) +b(c+a) (P +a®>—b*) +cla+b) (e +b* - )
2abc

B 2a2bc + 2ab%c + 2abc?
a 2abe
=a+b+ec.

If K is the area of the given triangle, then

1
K= §absin’y = ibcsina = §casinﬂ

and we have

2 2K 2K
sina:b—, sin=—, and siny=—
C

ca ab’
Thus,

a® cos (B — ) = a® [cos B cosy + sin fsin 7]

g (E4a®-0?) (P + 0 -P) 4K?
- 2ca ‘ 2ab + (ca) (ab)
et = (0* - )%+ 16K
- 4bc

2
= ﬁ [a4 — (b2 - 02)2 + 16K2} :

By Heron’s Formula,

16K? = (a+b+c)(a+b—c)(b+c—a)(ct+a—D)

:[a—i-b }[02—(a—b)2}
( 2p2 4 22 +62a2) — (a4 +b4+c4).

Hence
a’cos (B —7) 4220 [a4 - (b2 - 62)2 +2 (ong2 + b2 + CQaQ) - (a4 + bt + 04)}
= 4326 [—2b* — 2¢* + 2 (a2 + 26°* + c2a?)]
= 2220 (—b4 —ct+a?p? 2% + 02a2) .
Similarly,
b2 cos (v — a) = 2226 (—04 —a* +a?? + 2P + 202(12)

12



and

62

2abc

A cos(a— B) = (—a* —b* + 2a%b* + b*c* + Fa?) .
As a result,

a’ cos (B — ) + b cos (7 — @) + ¢ cos (a — )

2 b2
= L (<bt =t 4 a?? 4 22+ Pa?) + —— (=t — a4 @+ B2+ 2a?)
2abc 2abc
2
+ ZCT (—a4 — b+ 2% + b2 + 02a2)
abc
L 6a2b22
2abc ave
= 3abc. (2)

By (1) and (2),

atcos(B—7)+b’cos(y—a)+ccos(a—B)  3abe 3)
(b+c)cosa+ (c+a)cos B+ (a+b)cosy  a+b+c
. : a+b+c
Finally, if s = — 5 then
R= % and K =rs
and we get
abc K
~ 3abc
 2s
3abc
= 4
a+b+c (4)

Conditions (3) and (4) yield the desired result.

Solution 2 by Moti Levy, Rehovot, Israel

After substituting Rr = Q(Q(j—bbc—i-c) in the right hand side of the original inequality, it
becomes 5
chc a~ cos (/B - ’Y) 3(11)0

Y eye (b+¢)cosa Ca+b+c

Thus, we actually need to prove two identities (which appeared many times before in the
literature):

Z(b—i—c)cosa:a—i—b—i-c, (1)
cyc
Z a? cos (B — ) = 3abe. (2)
cyc

13



Dropping a perpendicular from C' to side c, it divides the triangle into two right
triangles, and ¢ into two pieces ¢ = a cos 8 + bcos «, and similarly for all sides:

c=acosf +bcosa,
a = bcosy + ccos 3,

b= ccosa+ acosvy.

To prove (1), we add the three equations, and get immediately:

a+b+c=acosf +bcosa+bcosy+ ccosf + ccosa+ acosy = Z(b—i—c)cosa.

cyc
To prove (2), we use the following trigonometric identity

( ) sinx cosx + siny cosy
cos(x —y) =
Y sin (z 4 y) ’

and the triangle identity
a b c

sina  sinfB  siny’

3sin B cos 3 4 siny cosy

a®cos (B —7) =a

sin (8 + )
38in B cos 3 4 siny cosy
=a
sin a
b
=d? cosp + ccosy = a*bcos B + a’ccosy

a

Z a’cos (B —v) = Z (a*bcos B + a’ccosy)

cyc cyc
=ab(acos 4+ beosa) + ac(ccosa + acosy) + be (bcosy + ccos f)
= 3abc.

Also solved by Arkady Alt, San Jose, CA; Hatef I. Arshagi, Guilford
Technical Community College, Jamestown, NC; Bruno Salgueiro Fanego,
Viveiro, Spain; Kee-Wai Lau, Hong Kong, China; Kevin Soto Palacios,
Huarmey, Peru; Neculai Stanciu, “Geroge Emil Palade” School Buzau,
Romania and Titu Zvonaru, Comanesti, Romania; Nicusor Zlota, “Traian
Vuia” Technical College, Focsani, Romania, and the proposer.

5431: Proposed by José Luis Diaz-Barrero, Barcelona Tech, Barcelona, Spain
Let F,, be the n'" Fibonacci number defined by F1 =1,F, =1 and for all n > 3,
¥, =F,_1 + F,,_2. Prove that

o 1 FnFn+1

> (+)

n=1

is an irrational number and determine it (*).

The asterisk () indicates that neither the author of the problem nor the editor are
aware of a closed form for the irrational number.

Solution 1 by Moti Levy, Rehovot, Israel

14



It is well known that

n
FnF?H-l:ZFlgv (1)
k=1

FoFni1
hence z := ) 7, (ﬁ) "7 can be expressed as

1 1 1

€Tr = + + +... ,
WA () () () (110 (1)

or

> 1
S N = 117%. 2
) kzlalaz"'ak ak 2)

The series (2) is the Engel expansion of the positive real number x. See [1] for definition
of Engel expansion.

In 1913, Engel established the following result (See [2] page 303):

. . o0 1 ;
Every real number x has a unique representation ¢+ 4 aTaaan where ¢ is an
integer and 2 < a1 < as < as <--- is a sequence of integers. Conversely, every such
sequence is convergent and its sum is irrational if and only if limy_ . ap = co.

Therefore, by Engel’s result, > >° TFeFay 18 irrational, since limy_,o, 117% = oo.

I do not know how to express x in closed form. However, it can be shown that it is
transcendental. To this end, I rely on a result given in [2] (on page 315):

Let (f(n))n>1 be a sequence of positive integers such that lim,_, f?z:)l) =u > 2. Then
for every integer d > 2, the number z = >, ﬁ s transcendental.

In our case, d = 11 and f (n) = F,,F,+1. We check that

lim M = lim Fni1Fnio = lim Frta = lim Foi1 + Iy
n—oo  f(n) n—oo  FpFpyq n—oo [, n—oo E,
F, 3 5
W b ROy
n—00 n 2
Then z =377, Hﬂlﬁ is transcendental.

References:
[1] Wikipedia “Engel expansion”.

[2] Ribenboim Paulo, “My Numbers, My Friends: Popular Lectures on Number Theory”,
Springer 2000.

Solution 2 by Ulrich Abel, Technische Hochschule Mittelhessen, Friedberg,
Germany

Let p be a prime. For the sake of brevity put ¢y = FiFy11. We prove that the number



is transcendental, in particular irrational.

The partial sum

n 1\ o .
w-20) -0

k=1
with positive integers a, and b, < p* satisfies

> (<056
0 < s—s,= - <= il
k=n+1 p p k=0 p

1 /1\ ! 1
= (= G —
p—1\p T Satl”"

pcn ) cn

2 .
because cgy1 — cg = Fyr1Fpyo — FpFry1 = Fi; ; > 1. Since

2
N ek SN STST T LS S (Fn+1 . Fn+z> _ <1+\/5> 345

= > 2
n—00 Cn n—00 FnFn+1 n—00

F, Fp 2 2

By the theorem of Thue, Siegel and Roth, for any (fixed) algebraic number x and € > 0,

the inequality
1

a
0<‘$—g‘<b2+6

is satisfied only by a finite number of integers a and b. Hence, s is transcendental.

Also solved by the Kee-Wai Lau, Hong Kong, China (first part of the
problem), and the proposer, (first part of the problem)

5432: Proposed by Ovidiu Furdui and Alina Sintamarian, Technical University of
Cluj-Napoca, Cluj-Napoca, Romania

Find all differentiable functions f : (0,00) — (0, 00), with f(1) = v/2, such that
1 1
7(3) = i a0
z)  f(x)

Solution 1 by Arkady Alt, San Jose, CA

First note that f’ (i) = 7 (195)’ Ve >0 < f'(z) = f(lﬂt), Va > 0.
Then, since f" (z) = % 7 C”) <1_;2> and
1 ! §x> 1 : <x>
10 ~r @ (3) =5
we obtain f" (z) = % (F' (2))? f(lx) - W - % PN
(f (@)= f@) " (@) TN
(f (x)) a?

16



f@)\ _ . 1 f(x)_x 1. f(@) z
(f’($)>_1 $2{:>f’(90)_ frte f(x) a224cx+1

Sincef’(l):fh):\zthen ;’((11)) :1+%+c = 2=2+4c < c=0.
Therefore, ff’((z)) :x—k% = ff/((i)) — $2$+1 — lnf(x):%ln (z2+1)+d and,

using f(1) = V2
1 1
again, we obtainlnf(l)ziln(12+1)+d = ln\/§:§ln2+d — d=0.

Thus, f (z) = Va2 + 1.

Solution 2 by Albert Stadler, Hirrliberg, Switzerland

1(2)

1
x > 0. We differentiate the equation f’(x)f <) =1 and get
T

" 1 / / 1 1 " T ! z) 1
(@) f <m> — fi(x)f (x) o= fféx; - J;((x))a:Q o
or equivalently

"x)f(z 1

shows that f is differentiable infinitely often in

—_
—_

The differential equation f'(x) =

By assumption f(1) = v/2 and thus f/(1) = f(ll) = \f

We integrate (1) and apply partial integration to get

g
= [ () o
ol
- Fw e
— 1- ;,((Z)) + .
So J{,((Z)) - i +  or equivalently j}/((;) =< fo.
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We integrate again and get

lnf(w)—lnf(l)—/lx “;,((Z))dt—/lxljtzdt—;ln(l—i—an)——;InQ.

Therefore f(z) = V1 + z2.

Solution 3 by Bruno Salgueiro Fanego, Viveiro, Spain

Let f:(0,4+00) — (0,+00) be a differentiable function that satisfies the hypothesis of
the problem and let g : (0,400) — (0,4+00) be the differentiable function defined by

1 1
g(x) = —. Since f is differentiable, and by the hypothesis f'(z) = ———
T (fog)(x)

conclude that f’ is also differentiable and, differentiating both side of the equality
1 1 1) —1

f'(x)f <> = 1, we obtain that f"(z)f () + f(x)f <> —5 =0, and since
x x x) x

Vo >0, we

1 1 / 2 e
f <> = —5, or equivalently, (F(@)) / (Qx)f(x) =1— —;, or what is the same,
r)ox (f"(x)) 5“
A} 1
1
Integrating both sides, we conclude that JJ:/((Z)) =x+ p + C, Vx > 0, for some C € R. If
we take 2 = 1 at the start of the inequality, and since f(1) = /2, we obtain that
1 f) L
f'(1) = — and =2+ C, from where C = 0, which implies, because
’ V2 S f(x) f'(x)
. x 1 x x
f(x) > 0 Vz > 0 by hypothesis and () =x+ - + 0 and @) =i Va > 0.

Integrating both sides of this last equality, we conclude that

In(f(x)) =log <\/a?2 + 1> + D, Yz > 0 for some D € R. Taking = 1 in this equality
and using the fact that f(1) = v/2, we find that D = 0 and therefore

f(z)=+vx?+1, Vx> 0.

Since the function f : (0, +00) — (0,400) defined by f(z) = Va2 +1,Vz > 0, is

differentiable with f'(z) = ————— and satisfies that f(1) = 2, and that
1
1 = 1
f <) = fv = @) Vz > 0, we conclude that the only differentiable function
x x
= +1
x

that satisfies the conditions of the problem is the function f(x) = va?+1, Vz > 0.

Solution 4 by Toshihiro Shimizu, Kawasaki, Japan

We have f' (1) f (z) = 1. Letting  to £ we also have f’(z) f (1) =1 (). Thus,
L)) =r@r()+odr@s(3)

Integrating it, we have

18



f(g;)f@) :x—i-%—i-C

Letting x = 1, we have 2 =24 C or C' = 0. Therefore f (z) f (%) =x+ % Multiplying
f (z) to (%), we have

f) 1
flz)  z+4+2
Integrating again, we have
dx
log f (2) = [
g f(z) x-i—%

x
= d
/:c2+1 “

:1/@62“)’@

2 2 +1
zélog(mQ—i-l)—i-D

Thus, we can write f () = Dvz? 4+ 1 where D is some constant. Letting 2 = 1, we have
D = 1. Therefore, we have f (x) = v 22 + 1, this function actually satisfies the condition.

Also solved by Abdallah El Farsi, Bechar, Algeria; Hatef I. Arshagi, Guilford
Technical Community College, Jamestown, NC; Michael N. Fried,
Ben-Gurion University, Beer-Sheva, Israel; Moti Levy, Rehovot, Israel; Ravi
Prakash, New Delhi, India, and the proposers.
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