
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
June 15, 2009

• 5062: Proposed by Kenneth Korbin, New York, NY.

Find the sides and the angles of convex cyclic quadrilateral ABCD if
AB = BC = CD = AD − 2 = AC − 2.

• 5063: Proposed by Richard L. Francis, Cape Girardeau, MO.

Euclid’s inscribed polygon is a constructible polygon inscribed in a circle whose
consecutive central angle degree measures form a positive integral arithmetic sequence
with a non-zero difference.

a) Does Euclid’s inscribed n-gon exist for any prime n greater than 5?
b) Does Euclid’s n-gon exist for all composite numbers n greater than 2?

• 5064: Proposed by Michael Brozinsky, Central Islip, NY.

The Lemoine point of a triangle is that point inside the triangle whose distances to the
three sides are proportional to those sides. Find the maximum value that the constant
of proportionality, say λ, can attain.

• 5065: Mihály Bencze, Brasov, Romania.

Let n be a positive integer and let x1 ≤ x2 ≤ · · · ≤ xn be real numbers. Prove that

1)
n∑

i,j=1

|(i− j)(xi − xj)| =
n

2

n∑
i,j=1

|xi − xj |.

2)
n∑

i,j=1

(i− j)2 =
n2(n2 − 1)

6
.

• 5066: Proposed by Panagiote Ligouras, Alberobello, Italy.
Let a, b, and c be the sides of an acute-angled triangle ABC. Let abc = 1. Let H be the
orthocenter, and let da, db, and dc be the distances from H to the sides BC, CA, and AB
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respectively. Prove or disprove that

3(a + b)(b + c)(c + a) ≥ 32(da + db + dc)2.

• 5067: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let a, b, c be complex numbers such that a + b + c = 0. Prove that

max {|a|, |b|, |c|} ≤
√

3
2

√
|a|2 + |b|2 + |c|2.

Solutions

• 5044: Proposed by Kenneth Korbin, New York, NY.

Let N be a positive integer and let{
x = 9N2 + 24N + 14 and
y = 9(N + 1)2 + 24(N + 1) + 14.

Express the value of y in terms of x, and express the value of x in terms of y.

Solution by Armend Sh. Shabani, Republic of Kosova.

One easily verifies that
y − x = 18N + 33. (1)

From 9N2 + 24N + 14− x = 0 one obtains N1,2 =
−4±

√
2 + x

3
, and since N is a

positive integer we have

N =
−4 +

√
2 + x

3
. (2)

Substituting (2) into (1) gives:

y = x + 9 + 6
√

2 + x. (3)

From 9(N + 1)2 + 24(N + 1) + 14− y = 0 one obtains N1,2 =
−7±

√
2 + y

3
, and since N

is a positive integer we have

N =
−7 +

√
2 + y

3
. (4)

Substituting (4) into (1) gives:

x = y + 9− 6
√

2 + y. (5)

Relations (3) and (5) are the solutions to the problem.

Comments: 1. Paul M. Harms mentioned that the equations for x in terms of y, as
well as for y in terms of x, are valid for integers satisfying the x, y and N equations in
the problem. The minimum x and y values occur when N = 1 and are x = 47 and
y = 98. 2. David Stone and John Hawkins observed that in addition to (47, 98),
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other integer lattice points on the curve of y = 9 + x + 6
√

2 + x in the first quadrant are
(4, 98), (98, 167), (167, 254), (254, 359), and (23, 62).

Also solved by Brian D. Beasley, Clinton, SC; John Boncek, Montgomery,
AL; Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie, San
Angelo, TX; José Luis Dı́az-Barrero, Barcelona, Spain; Bruno Salgueiro
Fanego, Viveiro, Spain; Michael C. Faleski, University Center, MI; Michael
N. Fried, Kibbutz Revivim, Israel; Paul M. Harms, North Newton, KS;
David E. Manes, Oneonta, NY; Boris Rays, Chesapeake, VA; José
Hernández Santiago (student UTM), Oaxaca, México; David Stone and John
Hawkins (jointly), Statesboro, GA; David C.Wilson, Winston-Salem, NC,
and the proposer.

• 5045: Proposed by Kenneth Korbin, New York, NY.

Given convex cyclic hexagon ABCDEF with sides

AB = BC = 85
CD = DE = 104, and
EF = FA = 140.

Find the area of 4BDF and the perimeter of 4ACE.

Solution by Kee-Wai Lau, Hong Kong, China.

We show that the area of 4BDF iis 15390 and the perimeter of 4ACE is
123120

221
.

Let 6 AFE = 2α, 6 EDC = 2β, and 6 CBA=2γ so that
6 ACE = π − 2α, 6 CAE = π − 2β, and 6 AEC = π − 2γ.

Since 6 ACE + 6 CAE + 6 AEC = π, so

α + β + γ = π

cos α + cos β + cos γ = 4 sin
α

2
sin

β

2
sin

γ

2
+ 1 or

(cos α + cos β + cos γ − 1)2 = 2(1− cos α)(1− cos β)(1− cos γ). (1)

Denote the radius of the circumcircle by R. Applying the Sine Formula to 4ACE, we
have

R =
AE

2 sin 2α
=

EC

2 sin 2β
=

CA

2 sin 2γ
.

By considering triangles AFE, EDC, and CBA respectively, we obtain

AE = 280 sin α, EC = 208 sin β, CA = 170 sin γ.

It follows that cos α =
70
R

, cos β =
52
R

, and cos γ =
85
2R

. Substituting into (1) and
simplifying, we obtain

4R3 − 37641R− 1237600 = 0 or(
2R− 221

)(
2R2 + 221R + 5600

)
= 0.
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Hence,

R =
221
2

, cos α =
140
221

, sinα =
171
221

cos β =
104
221

, sinβ =
195
221

cos γ =
85
221

, sin γ =
204
221

,

and our result for the perimeter of 4ACE.

It is easy to check that 6 BFD = α, 6 FDB = β, 6 DBF = γ so that
6 BAF = π − β, 6 DEF = π − γ.
Applying the cosine formula to 4BAF and 4DEF respectively, we obtain BF = 195
and DF = 204.
It follows, as claimed, that the area of

4BDF =
1
2

(
BF

)(
DF

)
sin 6 BFD =

1
2
(195)(204)

171
221

= 15390.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; David E. Manes,
Oneonta, NY; Boris Rays, Chesapeake, VA; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposer.

• 5046: Proposed by R.M. Welukar of Nashik, India and K.S. Bhanu, and M.N.
Deshpande of Nagpur, India.

Let 4n successive Lucas numbers Lk, Lk+1, · · · , Lk+4n−1 be arranged in a 2× 2n matrix
as shown below:


1 2 3 4 · · · 2n

Lk Lk+3 Lk+4 Lk+7 · · · Lk+4n−1

Lk+1 Lk+2 Lk+5 Lk+6 · · · Lk+4n−2


Show that the sum of the elements of the first and second row denoted by R1 and R2

respectively can be expressed as

R1 = 2F2nL2n+k

R2 = F2nL2n+k+1

where {Ln, n ≥ 1} denotes the Lucas sequence with L1 = 1, L2 = 3 and
Li+2 = Li + Li+1 for i ≥ 1 and {Fn, n ≥ 1} denotes the Fibonacci sequence,
F1 = 1, F2 = 1, Fn+2 = Fn + Fn+1.

Solution by Angel Plaza and Sergio Falcon, Las Palmas, Gran Canaria,
Spain.

R1 = Lk + Lk+3 + Lk+4 + Lk+7 + · · ·+ Lk+4n−2 + Lk+4n−1, and since Li = Fi−1 + Fi+1,
we have:
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R1 = Fk−1 + Fk+1 + Fk+2 + Fk+4 + Fk+3 + Fk+5 + · · ·+ Fk+4n−2 + Fk+4n

= Fk−1 +
4n∑

j=1

Fk+j − Fk+4n−1

= Fk−1 − Fk+4n−1 +
4n+k∑
j=0

Fj −
k∑

j=0

Fj

And since
m∑

j=0

Fj = Fm+2 − 1 we have:

R1 = Fk−1 − Fk+4n−1 + Fk+4n+2 − 1− Fk+2 + 1 = 2Fk+4n − 2Fk

where in the last equation it has been used that Fi+2 − Fi = Fi+1 + Fi − Fi−1 = 2Fi.
Now, using the relation LnFm = Fn+m − (−1)mFn−m (S. Vajda, Fibonacci and Lucas
numbers, and the Golden Section: Theory and Applications, Dover Press (2008)) in the
form L2n+kF2n = F4n+k − (−1)2nF2n+k−2n it is deduced R1 = 2F2nL2n+k.
In order to prove the fomula for R2 note that

R1 + R2 =
4n−1∑
j=0

Lk+j =
4n+k−1∑

j=0

Lj −
k−1∑
j=0

Lj

As before,
4n+k−1∑

j=0

Lj = Fk+4n + Fk+4n+2, while
k−1∑
j=0

Lj = Fk + Fk+2, so

R1 + R2 = Fk+4n − Fk + Fk+4n+2 − Fk+2

= L2n+kF2n + L2n+k+2F2n

And therefore,

R2 = F2n (L2n+k+2 − L2n+k) = F2nL2n+k+1

Also solved by Paul M. Harms, North Newton, KS; John Hawkins and
David Stone (jointly), Statesboro, GA, and the proposers.)

• 5047: Proposed by David C. Wilson, Winston-Salem, N.C.

Find a procedure for continuing the following pattern:

S(n, 0) =
n∑

k=0

(
n

k

)
= 2n

S(n, 1) =
n∑

k=0

(
n

k

)
k = 2n−1n

S(n, 2) =
n∑

k=0

(
n

k

)
k2 = 2n−2n(n + 1)
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S(n, 3) =
n∑

k=0

(
n

k

)
k3 = 2n−3n2(n + 3)

...

Solution by David E. Manes, Oneonta, NY.

Let f(x) = (1 + x)n =
n∑

k=0

(
n

k

)
xk. For m ≥ 0,

S(n, m) =
(

x
d

dx

)m

(f(x))
∣∣∣∣
x=1

, where
(

x
d

dx

)m

is the procedure x
d

dx
iterated m times

and then evaluating the resulting function at x = 1. For example,

S(n, 0) = f(1) =
n∑

k=0

(
n

k

)
= 2n. Then

x
d

dx
(f(x)) = x

d

dx
(1 + x)n = x

d

dx

( n∑
k=0

(
n

k

)
xk
)

implies

nx(1 + x)n−1 =
n∑

k=0

(
n

k

)
k · xk. If x = 1, then

n∑
k=0

(
n

k

)
k = n · 2n−1 = S(n, 1).

For the value of S(n, 2) note that if

x
d

dx

[
nx(1 + x)n−1

]
= x

d

dx

[ n∑
k=0

(
n

k

)
kxk

]
, then

nx(nx + 1)(1 + x)n−2 =
n∑

k=0

(
n

k

)
k2xk. If x = 1, then

n(n + 1)2n−2 =
n∑

k=0

(
n

k

)
k2 = S(n, 2)

Similarly,

S(n, 3) =
n∑

k=0

(
n

k

)
k3 = 2n−3 · n2(n + 3) and

S(n, 4) =
n∑

k=0

(
n

k

)
k4 = 2n−4 · n(n + 1)(n2 + 5n− 2.)

Also solved by Paul M. Harms, North Newton, KS; David Stone and John
Hawkins (jointly), Statesboro GA, and the proposer.
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• 5048: Proposed by Paolo Perfetti, Mathematics Department, University “Tor Vergata,”
Rome, Italy.

Let a, b, c, be positive real numbers. Prove that

√
c2(a2 + b2)2 + b2(c2 + a2)2 + a2(b2 + c2)2 ≥ 54

(a + b + c)2
(abc)3√

(ab)4 + (bc)4 + (ca)4
.

Solution1 by Boris Rays, Chesapeake, VA.

Rewrite the inequality into the form:√
c2(a2 + b2)2 + b2(c2 + a2)2 + a2(b2 + c2)2 ·

(
a+b+c

)2

·
√

(ab)4 + (bc)4 + (ca)4 ≥ 54(abc)3 (1)

We will use the Arithmetic-Geometric Mean Inequality (e.g., x + y + z ≥ 3 3
√

xyz and
u + v ≥ 2

√
uv) for each of the three factors on the left side of (1).√

c2(a2 + b2)2 + b2(c2 + a2)2 + a2(b2 + c2)2 ≥
√

3 3

√
c2(a2 + b2)2 · b2(c2 + a2)2 · a2(b2 + c2)2

≥
√

3 3

√
(abc)2(a2 + b2)2(c2 + a2)2(b2 + c2)2

≥
√

3 3

√
(abc)2(4a2b2)(4c2a2)(4b2c2)

=
√

3(abc)2/3 3
√

43a4b4c4

=
√

3(abc)2/34(abc)4/3

=
√

3 · 22(abc)2

= 2
√

3(abc) (2)

Also, since (a + b + c) ≥ 3 3
√

abc, we have

(a + b + c)2 ≥ 32
(

3
√

abc

)2

= 32(abc)2/3 (3)

√
(ab)4 + (bc)4 + (ca)4 ≥

√
3 3

√
(ab)4(bc)4(ca)4

=
√

3 3
√

a8b8c8

=
√

3(abc)8/3

=
√

3(abc)4/3 (4)

Combining (2), (3), and (4) we obtain:
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√
c2(a2 + b2)2 + b2(c2 + a2)2 + a2(b2 + c2)2 ·

(
a + b + c

)2

·
√

(ab)4 + (bc)4 + (ca)4

≥ 2
√

3(abc) · 32(abc)2/3
√

3(abc)4/3

= 2 · 33(abc)1+2/3+4/3

= 54(abc)3.

Hence, we have shown that (1) is true, with equality holding if a = b = c.

Solution 2 by José Luis Dı́az-Barrero, Barcelona, Spain.

The inequality claimed is equivalent to√
c2(a2 + b2)2 + b2(c2 + a2)2 + a2(b2 + c2)2

√
(ab)4 + (bc)4 + (ca)4 ≥ 54(abc)3

(a + b + c)2

Applying Cauchy’s inequality to the vectors ~u = (c(a2 + b2), b(c2 + a2), a(b2 + c2)) and
~v = (a2b2, c2a2, b2c2) yields√

c2(a2 + b2)2 + b2(c2 + a2)2 + a2(b2 + c2)2
√

(ab)4 + (bc)4 + (ca)4

≥ abc(ab(a2 + b2) + bc(b2 + c2) + ca(c2 + a2))

So, it will be suffice to prove that

(ab(a2 + b2) + bc(b2 + c2) + ca(c2 + a2))(a + b + c)2 ≥ 54a2b2c2 (1)

Taking into account GM-AM-QM inequalities, we have

ab(a2 + b2) + bc(b2 + c2) + ca(c2 + a2) ≥ 2(a2b2 + b2c2 + c2a2) ≥ 6abc
3
√

abc

and
(a + b + c)2 ≥ 9 3

√
a2b2c2

Multiplying up the preceding inequalities (1) follows and the proof is complete

Solution 3 by Kee-Wai Lau, Hong Kong, China.

By homogeneity, we may assume without loss of generality that abc = 1. We have√
c2(a2 + b2)2 + b2(c2 + a2)2 + a2(b2 + c2)2

=

√(
a2 + b2

ab

)2

+
(

c2 + a2

ca

)2

+
(

b2 + c2

bc

)2

=

√(
a2 − b2

ab

)2

+
(

c2 − a2

ca

)2

+
(

b2 − c2

bc

)2

+ 12
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≥ 2
√

3.

By the arithmetic-geometric mean inequality, we have (a + b = c)2 ≥ 9(abc)2/3 = 9 and√
(ab)4 + (bc)4 + (ca)4 ≥

√
3(abc)4/3 =

√
3. The inequality of the problem now follows

immediately.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ovidiu Furdui, Campia
Turzii, Cluj, Romania; Paul M. Harms, North Newton, KS; David E. Manes,
Oneonta, NY; Armend Sh. Shabani, Republic of Kosova, and the proposer.

5049: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Find a function f : < → < such that

2f(x) + f(−x) =
{
−x3 − 3, x ≤ 1,
3− 7x3, x > 1.

Solution by Dionne Bailey, Elsie Campbell, and Charles Diminnie (jointly), San
Angelo, TX .

If x > 1, then
2f (x) + f (−x) = 3− 7x3. (1)

Also, since −x < −1, we have

2f (−x) + f (x) = − (−x)3 − 3 = x3 − 3. (2)

By (1) and (2), f (x) = 3− 5x3 and f (−x) = −3 + 3x3 when x > 1. Further,
f (−x) = −3 + 3x3 when x > 1 implies that f (x) = −3 + 3 (−x)3 = −3− 3x3 when x < −1.

Finally, when −1 ≤ x ≤ 1, we get −1 ≤ −x ≤ 1 also, and hence,

2f (x) + f (−x) = −x3 − 3, (3)

2f (−x) + f (x) = − (−x)3 − 3 = x3 − 3. (4)

As above, (3) and (4) imply that f (x) = −x3 − 1 when −1 ≤ x ≤ 1.

Therefore, f (x) must be of the form

f (x) =

−3− 3x3 if x < −1,
−1− x3 if −1 ≤ x ≤ 1, (5)
3− 5x3 if x > 1.

With some perseverance, this can be condensed to

f (x) =
∣∣∣x3 + 1

∣∣∣− 2
∣∣∣x3 − 1

∣∣∣− 4x3
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for all x ∈ <. Since it is straightforward to check that this function satisfies the given
conditions of the problem, this completes the solution.

Also solved by Brian D. Beasely, Clinton, SC; Michael Brozinsky, Central Islip,
NY; Bruno Salgueiro Fanego, Viveiro, Spain; Paul M. Harms, North Newton,
KS; N. J. Kuenzi, Oshkosh, WI; David E. Manes, Oneonta, NY; Boris Rays,
Chesapeake, VA; David C. Wilson, Winston-Salem, NC, and the proposer.

Late Solutions

Late solutions were received from Pat Costello of Richmond, KY to problem 5027;
Patrick Farrell of Andover, MA to 5022 and 5024, and from David C. Wilson of
Winston-Salem, NC to 5038.
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