
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
June 15, 2015

• 5349: Proposed by Kenneth Korbin, New York, NY

Given angle A with sinA =
5

13
. A circle with radius 1 and a circle with radius x are each

tangent to both sides of the angle. The circles are also tangent to each other. Find x.

• 5350: Proposed by Kenneth Korbin, New York, NY

The four roots of the equation

x4 − 96x3 + 206x2 − 96x+ 1 = 0

can be written in the form

x1,2 =

(√
a+

√
b+
√
c

√
a−

√
b+
√
c

)±1

x3,4 =

(√
a+

√
b−
√
c

√
a−

√
b−
√
c

)±1
where a, b, and c are positive integers.

Find a, b, and c if (a, b, c) = 1.

• 5351: Proposed by D.M. Bătinetu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” School, Buzău,
Romania

Let x, y, z be positive real numbers. Show that

xy

x3 + y3 + xyz
+

yz

y3 + z3 + xyz
+

zx

z3 + x3 + xyz
≤ 3

x+ y + z
.

• 5352: Proposed by Arkady Alt, San Jose, CA

Evaluate
n∑
k=0

xk − (x− 1)

n−1∑
k=0

(k + 1)xn−1−k.
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5353: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain.

Let A(z) =
n∑
k=0

akz
k be a polynomial of degree n with complex coefficients. Prove that

all its zeros lie in the disk D = {z ∈ C : |z| < r}, where

r =

1 +

(
n−1∑
k=0

∣∣∣∣akan
∣∣∣∣3
)1/2


2/3

• 5354: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let a, b, c > 0 be real numbers. Prove that the series

∞∑
n=1

[
n ·

(
a

1
n − b

1
n + c

1
n

2

)
− ln

a√
bc

]
,

converges if and only if 2 ln2 a = ln2 b+ ln2 c.

Solutions

• 5331: Proposed by Kenneth Korbin, New York, NY

Given equilateral 4ABC with cevian CD. Triangle ACD has inradius 3N + 3 and
4BCD has inradius N2 + 3N where N is a positive integer.

Find lengths AD and BD.

Solution 1 by Ed Gray, Highland Beach, FL

Referring to the diagram, we can derive an equation which relates N and the angle a
defined as the bisector of ∠ADO. (Points O and P are the centers of the incircles.
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It is seen from the diagram that IC = AG = AE + ED +DG.

1) tan 30 =
3N + 3

AE
, so

2) AE =
√

3(3N + 3)

3) tan a =
3N + 3

ED
, so

4) ED =
3N + 3

tan a

5) tan a =
DG

N2 + 3N

6) DG = (N2 + 3N) tan a

Adding 2), 4), and 6)

7) AG = (3N + 3)
√

3 +
3N + 3

tan a
+
(
N2 + 3N

)
tan a

To evaluate IC we note:

8) tan(a− 30) =
N2 + 3N

IC
, or

9) IC =
N2 + 3N

tan(a− 30)

Equating 7) and 9) gives the basic equation:

10) (3N + 3)

(√
3 +

1

tan a

)
+
(
N2 + 3N

)
tan a =

N2 + 3N

tan (a− 30)
.

We expand tan (a− 30)

11) tan(a− 30) =
tan a− tan 30

1 + tan a tan 30
=

tan a−
√

3/3

1 +
√

3/3 tan a
=

3 tan a−
√

3

3 +
√

3 tan a
. So,

12) (3N + 3)
1 +
√

3 tan a

tan a
=
(
N2 + 3N

)(3 +
√

3 tan a

3 tan a−
√

3
− tan a

)
.

There is no way to eliminate all of these irrationals except to let:

13) tan a = r
√

3, where r is, for now, unspecified. Making this substitution, eq-12)
becomes:

14) (3N + 3)
1 +
√

3r
√

3

r
√

3
= (N2 + 3N)

(
3 + 3r

3r
√

3−
√

3
− r
)
.

Step 14) simplifies to

15)
(3N + 3)(1 + 3r)

r
=

(
N2 + 3N

)
(9r2 − 6r − 3)

(1− 3r)
and dividing by 3

16)
(N + 1)(1 + 3r)

r
= (N2 + 3N)

(3r + 1)(r − 1)

1− 3r
, and dividing by 3r + 1

17)
N + 1

r
= (N2 + 3N)

1− r
3r − 1

, and simplifying gives

18) (N + 1)(3r − 1) = (N2 + 3N)(r − r2).
Writing step 18) as a quadratic in r, we obtain,
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19)
(
N2 + 3N

)
r2 +

(
3−N2

)
r − (N + 1) = 0, with solution

20) 2(N2 + 3N)r = (N2− 3) +
√

(N2− 3)2 + (4N + 4)(N2 + 3N). The discriminat D2 is:

21) D2 = N4 + 4N3 + 10N2 + 12N + 9 =
(
N2 + 2N + 3)2 . So

22) D = N2 + 2N + 3, and equation 20) becomes

23) 2(N2 + 3N)r = N2 − 3 +N2 + 2N + 3

24) 2(N2 + 3N)r = 2N2 + 2N

25) r =
N2 +N

N2 + 3N
=
N + 1

N + 3

Then the value of tan a becomes

26) tan a =
N + 1

N + 3

√
3. So,

Finally, AD = AE + ED. So,

27) AD = (3N + 3)
√

3 + (N + 3)
√

3 = 2
√

3(2N + 3), and

Similarly, DB = DG+GB = 2
√

3
(
N2 + 2N

)
.

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

Let I and J be respectively the inradius of 4ACD and 4BCD, E and F be the
tangent points of the incircles of 4ACD and 4BCD with AB, respectively,
a = AB = BC = CA, d = CD, x =AD, e = AE and f = BF .

By the cosine theorem in 4ACD, d2 = a2 + x2 − 2ax cos(π/3), d=
√
a2 − ax+ x2.

Since AE is a segment of the tangent from A to the incircle of 4ACD, whose

semiperimeter is
a+ x+ d

2
, e =

a+ x+ d

2
− d =

a+ x− d
2

and analogously,

f =
2a− x− d

2
; on the other hand, in 4IAE we have that ∠IAE = ∠(DAC/2) = π/6,

and IE ⊥ AD, so e = (3N + 3) cot (π/6) = 3
√

3(N + 1) and analogously
f =
√

3N(N + 3).

Thus, a+ x−
√
x2 + a2 − xa = 6

√
3 (N + 1) and

2a− x−
√
x2 + a2 − xa = 2

√
3N (N + 3).

Subtracting the first equation from the second one, we obtain that
a = 2x+ 2

√
3
(
N2 − 3

)
, and isolating the square root and squaring the first equation we

obtain that

(a+ x)2 − 121
√

3(N + 1)(a+ x) + 108(N + 1)2 = x2 + a− xa, or equivalently

ax− 4
√

3(N + 1)(a+ x) + 36(N + 1)2 = 0

Substituting here the obtained value of a as a function of x we deduce that
x2 +

√
3(N2 − 6N − 9)x− 12N2 + 6N2 + 72N + 54 = 0, which is a quadratic equation
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with solutions

x =
1

2

(
−
√

3
(
N2 − 6N − 9

)
±
√

3 (N2 − 6N − 9)2 − 4 (−12N2 + 6N2 + 72N + 54)

)

=
1

2

(
−
√

3
(
N2 − 6N − 9

)
±
√

3 (N2 + 2N + 3)2
)

=

√
3

2

(
−N2 + 6N + 9±

(
N2 + 2N + 3

))
∈
{
−
√

3(N + 1)(N − 3), (2
√

3(2N + 3)
}
,

from where, being a = 2x+ 2
√

3(N2 − 3), we deduce that
a ∈

{
4
√

3N, 2
√

3 (N + 1) (N + 3)
}

, respectively, that is, AD = 2
√

3 (2N + 3) and

BD = 2
√

3N (N + 2).

Note that N is a positive integer, so the first case would be possible if (N + 1)(3−N)
and (N − 1)(N + 3) are positive, which is impossible, hence, AD = 2

√
3(2N + 3) and

BD = 2
√

3N (N + 2).

Solution 3 by Kee-Wai Lau, Hong Kong, China

We show that
(
AD,BD

)
=
(
2
√

3(2N + 3), 2
√

3N(N + 2)
)
.

Let AD = x and BD = y so that AC = BC = x+ y. The area of

4ACD =
x(x+ y) sin 60◦

2
=

√
3x(x+ y)

4
and the area of 4BCD =

√
3y(x+ y)

4
.

Applying the cosine formula to 4ACD, we obtain CD =
√
x2 + xy + y2.

Since the area of a triangle equals the product of its semiperimeter with its inradius, so

√
3x(x+ y)

2
(

2x+ y +
√
x2 + xy + y2

) = N + 3, (1) and

√
3y(x+ y)

2
(
x+ 2y +

√
x2 + xy + y2

) = N2 + 3N. (2)

Since the left side of (1) equals

√
3
(

2x+ y −
√
x2 + xy + y2

)
6

and the left side of (2)

equals

√
3
(
x+ 2y −

√
x2 + xy + y2

)
6

, so we obtain respectively from (1) and (2) that

√
x2 + xy + y2 = 2x+ y − 6

√
3(N + 1) (3) and

√
x2 + xy + y2 = x+ 2y − 2

√
3N(N + 3) (4)
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From (3) and (4), we obtain y = x+ 2
√

3
(
N2 − 3

)
. Substituting y back into (3),

squaring and simplifying, we obtain,

x2 +
√

3
(
N2 − 6N − 9

)
X − 12N3 + 6N2 + 72N + 54 = 0. Hence either

x = 2
√

3(2N + 3), y = 2
√

3N(N + 2) or x =
√

3(3−N)(1 +N), y =
√

3(N − 1)(N + 3).

Since only the former solution satisfies (3) and (4), so we obtain the claimed solution.

Also solved by Albert Stadler, Herrliberg, Switzerland, and the proposer.

• 5332: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

Inspired by the prime number 1000000000000066600000000000001, known as
Belphegor’s prime where there are thirteen consecutive zeros to the left and right of 666,
we consider the numbers 100 . . . 0201500 . . . 01 where there are k−zeros left and right of
2015. For k < 28 only k = 9 and k = 27 yield prime numbers.

(a) Prove that the sequence 120151, 10201501, 1002015001, . . . has an infinite
subsequence of all composite numbers.

(b) Find the next prime in both the sequences 100 . . . 066600 . . . 01 and
100 . . . 0201500 . . . 01, after the ones noted above.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

(a) The sequence can be expressed as ak = 102k+5 + 2015 · 10k+1 + 1, k = 0, 1, . . ., where
k denotes the number of consecutive zeros to the right and to the left of 2015.

We note that 1000 ≡ −1 (mod 13), 2015 ≡ 0 (mod 13), 1013 ≡ 1 (mod 53). So

a3n+2 = 103(2n+3) + 2015 · 103n+3 + 1 ≡ 10002n+3 + 2015 · 103n+3 + 1 ≡ −1 + 0 + 1 = 0 (mod 13),

a13n = 1026n+5 + 2015 · 1013n+1 + 1 ≡ 105 + 20150 + 1 ≡ 0 (mod 53),

a13n+8 = 1026n+21 + 2015 · 1013n+9 + 1 ≡ 108 + 2015 · 109 + 1 ≡ 0 (mod 53).

So there are infinitely many indices k for which ak is composite.

(b) Tom Moore is wrong in saying that

10 . . . 0︸ ︷︷ ︸
9 zeros

20150 . . . 0︸ ︷︷ ︸
9 zeros

1 and

1 0 . . . 0︸ ︷︷ ︸
27 zeros

2015 0 . . . 0︸ ︷︷ ︸
27 zeros

1

are primes. The correct statement is that

10 . . . 0︸ ︷︷ ︸
7 zeros

20150 . . . 0︸ ︷︷ ︸
7 zeros

1 and
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1 0 . . . 0︸ ︷︷ ︸
25 zeros

2015 0 . . . 0︸ ︷︷ ︸
25 zeros

1

are primes.

Let bk = 102k+4 + 666 · 10k+1 + 1. Then b13 is Belphegore’s prime. Using the PrimeQ
function of Mathematica we find that

• b42 is prime,

• bk is composite for 14 ≤ k ≤ 41,

• ak is composite for0 ≤ k ≤ 7000, except for k = 7 and k = 25.

I was not able to find a k > 25 for which ak is prime.

Solution 2 by Pat Costello, Eastern Kentucky University, Richmond, KY

(a) The number 2015 is divisible by 13 and so starting with 1002015001, every third
number in the sequence is divisible by 13 (the leading 1 is a 103(2x+3) ≡ −1 (mod13)
which cancels with the final 1).

(b) The next primes in the sequence 100 . . . 066600 . . . 01 are when then the number of
zeroes is k = 42 and k = 506 (probably prime according to Mathematica ).

In the sequence 100 . . . 0201500 . . .− 1, I believe the k values that give primes should be
k = 7 and k = 25 (not 9 and 27) and Mathematica did not find any more primes (or
probably primes) in the sequence with k < 2000.

Solution 3 by Ashland University Undergraduate Problem Solving Group,
Ashland, OH

a) We begin by noting ak = 105+2k + 2015(10k+1) + 1 is an explicit formula for the
number with k-zeros to the left and right of 2015.

Suppose k ≡ 2 (mod 3) so k = 3n+ 2 for some integer n. Then
a3n+2 = 106n+9 + 2015(103n+3) + 1. Since 2015 ≡ 0 (mod 13), we have
a3n+2 ≡ 106n+9 + 1 (mod 13). Thus a3n ≡ (103)2n+3 + 1 (mod 13). Note
103 = 1000 ≡ −1 (mod 13) and clearly 2n+ 3 is odd, so
a3n+2 ≡ (−1)2n+3 + 1 ≡ −1 + 1 ≡ 0 (mod 13) and hence 13

∣∣a3n+2 and a3n+2 is
composite. Thus the subsequence {an} where kn = 3n+ 2 for n = 0, 1, 2, 3, . . . is an
infinite subsequence of all composite numbers.

b) For the sequence 10 . . . 0666001, ak = 102k+4 + 666(10k+1) + 1 and we used MAPLE
to find that the next prime occurs when k = 42, .i.e., there are 42 zeros to the left and
right of 666. (The only additional primes in this sequence with k ≤ 1000 occur when
k = 506 and k = 608).

For the sequence 10 . . . 020150 . . . 01, ak = 105+2k + 2015(10k+1) + 1 and were unable to
find the next prime in the sequence, using MAPLE to check all terms with k ≤ 7000
were composite.

Also solved by Brain D. Beasley, Presbyterian College, Clinton, SC; Ed
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Gray, Highland Beach, FL; Haroun Meghaichi (student, University of
Science and Technology, Houari Boumediene) Algeria, and the proposer.

• 5333: Proposed by Paolo Perfetti, Department of Mathematics, Tor Vergata Roma
University, Rome, Italy.

Evaluate ∫ π/2

−π/2

(
ln
(
1 + tanx+ tan2 x

))2
1 + sinx cosx

dx.

Solution 1 by Kee-Wai Lau, Hong Kong, China

Denote the integral of the problem by I. We show that

I =
2
√

3π
(
π2 + 3 ln2 3

)
9

. (1)

Let J =

∫ π/2

o
ln(cosx)dx and K =

∫ π/2

0
ln2(cosx)dx. It is known [1], p. 531, section

4.224, entries 6 and 8) that

J =
−π ln 2

2
(2), and

K =
−π(π2 + 12 ln2 2)

24
. (3)

By means of the substitution tanx =

√
3 tan y − 1

2
, we see that

I =
2√
3

∫ π/2

−π/2
ln2

(
3 sec2 y

4

)
dy =

4√
3

∫ π/2

0
ln2

(
3 sec2 y

4

)
dy.

Since ln2

(
3 sec2 y

4

)
= ln2

(
3

4

)
− 4 ln

(
3

4

)
ln(cos y) + 4 ln2(cos y), so

I =
4√
3

(
ln2

(
3

4

)
π

2
− 4 ln

(
3

4

)
J + 4K

)
.

Using (2) and (3), we obtain (1).

Reference

1. I.S. Gradshteyn and I.M. Ryzhik: Table of Integrals, Series, and Products, seventh
edition, Elsevier, Inc. 2007.

Solution 2 by Albert Stadler, Herrliberg, Switzerland

We claim that the integral equals
2π(π2 + 3 ln2 3)

3
√

3
.
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We perform a change of variables and put y = tanx. The dy =
1

cos2 x
dx = (1 + y2)dx

and

I =

∫ π/2

−π/2

(
ln
(
1 + tanx+ tan2 x

))2
1 + sinx cosx

dx =

∫ ∞
−∞

(
ln
(
1 + y + y2

))2
1 +

y

1 + y2

dy

1 + y2
=

∫ ∞
−∞

(
ln
(
1 + y + y2

))2
1 + y + y2

dy =

=

∫ ∞
−∞

(
ln
(

1 +
(
y − 1

2

)
+
(
y − 1

2

)2))2
1 +

(
y − 1

2

)
+
(
y − 1

2

)2 dy =

∫ ∞
−∞

(
ln
(
3
4 + y2

))2
3
4 + y2

dy = 2

∫ ∞
0

(
ln
(
3
4 + y2

))2
3
4 + y2

dy.

Put f(s) = 2

∫ ∞
0

1(
3
4 + y2

)sdy for <(s) >
1

2
.

We evaluate f(s) in terms of the beta function

B(x, y) =

∫ 1

0
tx−1 (1− t)y−1 dt =

Γ(x)Γ(y)

Γ(x+ y)
, by performing a change of variables in the

defining integral of f(s). Letting z =
1

1 + y2
, y =

√
1

z
− 1, dy =

−1

2z2
√

1

z
− 1

dz we

obtain

f(s) = 2

∫ ∞
0

1(
3
4 + y2

)sdy = 2

√
3

4

∫ ∞
0

1(
3
4 + 3

4y
2
)sdy = 2

(
3

4

) 1
2
−s ∫ ∞

0

1

(1 + y2)s
dy =

=

(
3

4

) 1
2
−s ∫ 1

0
zs−

3
2

1√
1− z

dz =

=

(
3

4

) 1
2
−s Γ

(
s− 1

2

)
Γ
(
1
2

)
Γ(s)

=

√
3π

2

(
4

3

)s Γ
(
s− 1

2

)
Γ(s)

,

where we have used that Γ
(
1
2

)
=
√
π.

We have
d2

ds2
1

Γ(s)
=

d

ds

−Γ′(s)

Γ2(s)
= −Γ

′′
(s)

Γ2(s)
+ 2

(
Γ

′
(s)
)2

Γ3(s)
,

d2

ds2
u(s)v(s)w(s)

u(s)v(s)w(s)
=
u′′(s)

u(s)
+
v′′(s)

v(s)
+
w′′(s)

w(s)
+ 2

u′(s)v′(s)

u(s)v(s)
+ 2

v′(s)w′(s)

v(s)w(s)
+ 2

w′(s)u′(s)

w(s)u(s)
.

So

I = f
′′
(1) =

√
3π

2

4

3
Γ

(
1

2

)
ln2

(
4

3

)
+

√
3π

2

4

3
Γ

′′
(

1

2

)
+
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+

√
3π

2

4

3
Γ

′′
(

1

2

)(
−Γ

′′
(1) + 2

(
Γ

′
(1)
)2)

+ 2

√
3π

2

4

3
Γ

′
(

1

2

)
ln

(
4

3

)

+2

√
3π

2

4

3
Γ

′
(

1

2

)(
−Γ

′
(1)
)

+ 2

√
3π

2

4

3
ln

(
4

3

)
Γ

(
1

2

)(
−Γ

′
(1)
)

(1)

To evaluate Γ
′
(1), Γ

′′
(1), Γ

′ (1
2

)
, Γ

′′ (1
2

)
we use the well known equations,

Γ
′
(z)

Γ(z)
=

1

z
+ γ +

∑
n≥1

(
1

n+ z
− 1

n

)
.

Γ
′′
(z)

Γ(z)
−

(
Γ

′
(z)

Γ(z)

)2

=
∑
n≥0

1

(n+ z)2
,

from which we deduce

(i) Γ(1) = −γ,

(ii) Γ
′′
(1) = γ2 +

∑
n≥0

1

(n+ 1)2
= γ2 +

π2

6
,

(iii) Γ
′
(

1

2

)
= −Γ

(
1

2

)2 + γ +
∑
n≥1

(
1

n+ 1
2

− 1

n

) = −
√
π

2 + γ + 2
∑
n≥1

(
1

2n+ 1
− 1

2n

) =

= −
√
π (γ + 2 ln 2) ,

(iv) Γ
′
(

1

2

)
= −Γ

(
1

2

)(Γ
′ (1

2

)
Γ
(
1
2

) )2

+
∑
n≥0

4

(2n+ 1)2

 =

=
√
π

(γ + 2 ln 2)2 + 4

∑
n≥0

1

n2
−
∑
n≥0

1

4n2

 =
√
π

(
(γ + 2 ln 2)2 +

π2

2

)
.

We plug (i)− (iv) into (1) and get

I =
2

3

√
3π ln2

(
4

3

)
+

2

3

√
3π

(
(γ + 2 ln 2)2 +

π2

2

)
+

2

3

√
3π

(
γ2 − π2

6

)
+

10



− 4

3

√
3π (γ + 2 ln 2) ln

(
4

3

)
− 4

3

√
3πγ (γ + 2 ln 2) +

4

3

√
3πγ ln

(
4

3

)
=

=
2π
(
π2 + 3 ln2 3

)
3
√

3
.

Comment by editor. The numerical answer to this problem can be approximated to
whatever degree of accuracy one wishes by piecing together various integrating techniques
for power series expansions over specific domains and for estimating the area under the
graph of a positively valued curve. This method of computing the value of the integral was
employed by Ed Gray of Highland Beach, FL in his 10 page solution that gave him
a numerical answer that was correct to several decimal places. But as one can see from
the above solutions, the problem was not as straight-forward as I had initially thought.

This problem was also solved by its proposer.

• 5334: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let xij , (1 ≤ i ≤ m, 1 ≤ j ≤ n) be nonnegative real numbers. Prove that

n∏
j=1

(
1−

m∏
i=1

√
xij

1 +
√
xij

)
+

m∏
i=1

1−
n∏
j=1

1

1 +
√
xij

 ≥ 1.

Solution by Kee-Wai Lau, Hong Kong, China

For 1 ≤ i ≤ m, 1 ≤ j ≤ n, let yij be real numbers satisfying 0 ≤ yij ≤ 1. We prove by
induction on m+ n that

n∏
j=1

(
1−

m∏
i=1

yij

)
+

m∏
i=1

1−
n∏
j=1

(1− yij)

 ≥ 1. (1)

For m+ n = 2, we have m = n = 1, and (1) becomes an equality. So suppose that (1)
holds for m+ n = k ≥ 2. We now consider m+ n = k + 1.

Denote the left side of (1) by f (ymn). Then

f (ymn) ≥
n∏
j=1

(
1−

m∏
i=1

yij

)
+

m∏
i=1

1−
n−1∏
j=1

(1− yij)

 , (2)

and

f (ymn) ≥
n∏
j=1

(
1−

m−1∏
i=1

yij

)
+

m∏
i=1

1−
n∏
j=1

(1− yij)

 . (3)

Here we assign the value 1 to any empty products. From (2), we obtain by the induction

11



assumption that

f (0) ≥
n−1∏
j=1

(
1−

m∏
i=1

yij

)
+

m∏
i=1

1−
n−1∏
j=1

(1− yij)

 ≥ 1, (4)

and from (3), we obtain by the induction assumption that

f (1) ≥
n∏
j=1

(
1−

m−1∏
i=1

yij

)
+
m−1∏
i=1

1−
n∏
j=1

(1− yij)

 ≥ 1. (5)

Since f(ymn) is a polynomial in ymn with degree 0 or 1, so from (4) and (5), we see that

f(ymn) ≥ 1, and (1) holds also for m+ n = k + 1. Hence (1) holds in general and the

inequality of the problem follows by the substitution y =

√
xij

1 +
√
xij

.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ethan Gegner
(student), Taylor University, Upland, IN; Albert Stadler, Herrliberg,
Switzerland, and the proposer.

• 5335: Proposed by Arkady Alt, San Jose, CA

Prove that for any real p > 1 and x > 1 that

lnx

ln(x+ p)
≤
(

ln(x+ p− 1)

ln(x+ p)

)p
.

Solution 1 by Ethan Gegner (student), Taylor University, Upland, IN

The weighted AM-GM inequality, followed by Jensen’s inequality applied to the concave
function lnx yields

(lnx)1/p (ln(x+ p))

p− 1

p ≤ 1

p
lnx+

p− 1

p
ln(x+ p)

≤ ln

(
1

p
x+

p− 1

p
(x+ p)

)
= ln(x+ p− 1).

Exponentiation by p and then rearranging yields the desired result.

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

The inequality is true for any real p ≥ 1 and x > 1, because

(
ln (x+ p− 1)

ln (x+ p)

)p
− lnx

ln(x+ p)
≥ 1 + p

(
ln(x+ p− 1)

ln(x+ p)
− 1

)
− lnx

ln(x+ p)

12



=

p ln

(
x+ p− 1

x+ p

)
− ln

(
x

x+ p

)
ln(x+ p)

=
qy ln(1− y−1)− ln(1− q)

ln y

=
q

ln y

(
−
∞∑
k=1

k−1y1−k +
∞∑
k=1

k−1qk−1

)

=
q

ln y

∞∑
k=1

k−1
(
qk−1 − y1−k

)
≥ 0,

where we have used Bernoulli’s inequality

(1 + t)p ≥ 1 + pt for t =
ln(x+ p− 1)

ln(x+ p)
− 1 ≥ −1.

Note that p ≥ 1, x > 1⇒ x+ p− 1 > 1, x+ p > 1⇒ ln(x+ p− 1), ln(x+ p) > 0, the

notation y = x+ p and q =
p

y
, the series expansion ln(1− u) = −

∞∑
k=1

k−1uk for u = y−1

and u = q (observe that 0 < y−1, q < 1) and the fact that q ≥ y−1 with equality iff

p = 1⇒ qk−1 ≥
(
y−1
)k−1

for any integer k ≥ 1.

Moreover, equality is attained iff it occurs in Bernouilli’s inequality and in the inequality
q ≥ y−1. Since there is equality in this last inequality iff p = 1 and in this case also in
Bernoulli’s inequality, we conclude that equality occurs iff p = 1.

Solution 3 by Paul M. Harms, North Newton, KS

All logarithms involved with the inequality are positive. Then the inequality is correct if
the logarithm of the left side is less than the logarithm of the right side. Taking the
natural logarithm of both sides and dividing by p the problem inequality is equivalent t o

ln lnx− ln ln(x+ p)

p
≤ ln ln(x+ p− 1)− ln ln(x+ p)

1
,

Let f(x) = ln lnx where x > 1. Multiplying both sides of the inequality by (−1) we can
write the resulting inequality as

f(x+ p)− f(x)

(x+ p)− x
≥ f(x+ p)− f(x+ p− 1)

(x+ p)− (x+ p− 1)
,

forms often associated with the Mean Value Theorem for derivatives.

Let the following letters and points be associated with each other:

A (x, f(x)) , B ((x+ p), f(x+ p)) , C ((x+ p), f(x)) ,

13



E ((x+ p− 1), f(x+ p− 1)) , F ((x+ p), f(x+ p− 1)) ,

and let D be intersection of the line segment between A and B with the line segment
between E and F .

Consider the right triangle 4BEF and the similar right triangles 4ABC and 4DBF .

The left side of the last inequality is the ratio of the distances
BC

AC
=
BF

DF
and the right

side equals the ratio
BF

EF
.

Since f
′
(x) =

1

x lnx
> 0, and f

′′
(x) =

−1 (1 + lnx)

(x lnx)2
< 0 for x > 1, the line segment

from A to B is below the graph of y = f(x). Point D then satisfies the distance

inequality DF < EF so we have
BF

DF
≥ BF

EF
. The problem inequality is correct.

Solution 4 by Nicusor Zlota, “Traian Vuia” Technical College, Focsani,
Romania

The inequality in the statement of the problem is equivalent to

lnx

ln(x+ p)
≤
(

ln(x+ p− 1)

ln(x+ p)

)p
⇐⇒ ln (ln (x+ p))p−1 ≤ (ln (x+ p− 1))p . (∗)

Knowing that lnx > 0 and using the AM-GM inequality, we have:

lnx (ln (x+ p))p−1 ≤
(

lnx+ (p− 1) ln(x+ p)

p

)p
=
(

ln p
√
x(x+ p)p−1

)p
≤ (ln(x+ p− 1))p

for every p > 1 and x > 1. Using the fact that lnx is an increasing function, we deduce
that (∗) is true and also the equivalent inequality in the statement of the problem.

Also solved by Ed Gray, Highland Beach, FL; Kee-Wai Lau, Hong Kong,
China; Haroun Meghaichi (student, University of Science and Technology,
Houari Boumediene), Algiers, Algeria; Paolo Perfetti, Department of
Mathematics, Tor Vergata University, Rome, Italy; Albert Stadler,
Herrliberg, Switzerland, and the proposer.

• 5336: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Caculate:
∞∑
k=1

(
1 +

1

2
+ · · ·+ 1

k
− ln

(
k +

1

2

)
− γ
)
.

Solution 1 by Perfetti Paolo, Department of Mathematics, Tor Vergata
University, Rome, Italy

The first item we employ is

n∑
k=1

1

k
= lnn+ γn, γn = γ + o(1), n(γn − γ)→ 1/2.
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The second item we use is the content of problem 1781 of Mathematics Magazine,
vol.80–5, 2007.

Rearranging the sum up to n we get

n∑
k=1

n

k
−
n−1∑
k=1

k

k + 1
−

n∑
k=1

ln

(
k +

1

2

)
− nγ =

= n(lg n+ γn)−
n−1∑
k=1

(
1− 1

k + 1

)
− ln

n∏
k=1

2k + 1

2
− nγ =

= n lnn+ n(γn − γ)− (n− 1) + lnn+ γn − 1− ln
(2n+ 1)!

22nn!

Stirling’s formula n! = (n/e)n
√

2πn(1 + o(1)) and ln(1 + x) ∼ x for x→ 0 yields

n lnn+ n(γn − γ)− n+ lnn+ γn − (2n+ 1) ln(2n+ 1) + (2n+ 1) +

−1

2
ln(2π(2n+ 1)) + o(1) + 2n ln 2 + n lnn− n+

1

2
ln(2πn) + o(1)

(2n+ 1) ln(2n+ 1) = (2n+ 1)(ln 2 + lnn+ o( 1
n) = 2n lnn+ 2n ln 2 + lnn+ ln 2 + o(1).

The sum becomes

n(γn − γ) + n lnn(1− 2 + 1) + n(−1− 2 ln 2 + 2 ln 2 + 2− 1) +

+ lnn(1− 1− 1

2
+

1

2
) + (γn − ln 2− 1

2
ln(4π) +

1

2
ln(2π)

and in the limit we obtain
1

2
+ γ − 3

2
ln 2.

Solution 2 by Anastasios Kotronis, Athens, Greece

Let

Sn :=

n∑
k=1

(
1 +

1

2
+ · · ·+ 1

k
− ln

(
k +

1

2

)
− γ
)
.

Summing by parts we have

Sn =
n∑
k=1

(k + 1− k)Hk − ln

(
n∏
k=1

2k + 1

2

)
− nγ

= kHk

∣∣∣∣∣
n+1

1

−
n∑
k=1

(k + 1) (Hk+1 −Hk)− ln

(
n∏
k=1

2k(2k + 1)

22k

)
− nγ

= (n+ 1) (Hn+1 − 1)− ln

(
(2n+ 1)!

22nn!

)
− nγ

→ 1

2
+ γ − 3 ln 2

2
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by Stirling’s approximation.

Solution 3 by Haroun Meghaichi, (student, University of Science and Technology
Houari Boumediene), Algiers, Algeria.

Let Hn be the n-th harmonic number then for any integer n > 1 we have

an =

n∑
k=1

Hk =

n∑
k=1

(k + 1)Hk+1 − kHk − 1

= (n+ 1) (Hn+1 − 1)

= n (lnn+ γ − 1) + lnn+ γ +
1

2
+ o(1).

And

bn =
n∑
k=1

ln

(
2k + 1

2

)
= ln

(
(2n+ 1)!!

2n

)
= ln

(
(2n+ 1)!

4n(n!)

)
= ln(2n+ 1)!− lnn!− 2n ln 2

= n (lnn− 1) + lnn+
3

2
ln 2 + o(1).

The last line comes directly from Stirling approximation, then we have

n∑
k=1

(
Hk − ln

(
k +

1

2

)
− γ
)

= an − bn − nγ = γ +
1

2
− 3

2
ln 2 + o(1)

Hence, the answer is γ +
1

2
− 3

2
ln 2 =

1

2
ln
e2γ+1

8
.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Kee -Wai Lau, Hong
Kong, China; Albert Stadler, Herrliberg, Switzerland, and the proposer.

Comments

Editor’s note: The following comment was sent to me by Henry Ricardo of the NY Math
Circle. In the March, 2015 solutions, Solution 1 of problem 5330 is incorrect. By throwing in
the factor B(1), the solvers have replaced the original problem by one whose solution is almost
trivial. The proposer (Ovidiu Furdui) no doubt specified that the matrix product start with
B(2) to make it more challenging. The extra factor does not provide a generalization or
extension but, rather, a simplification that is contrary to the spirit of the problem as proposed.

Solution 1 was solved by looking at a few examples, guessing a general form for the product
and then proving the product held by induction. I thought it was a nice simple way to solve
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the problem. Henry disagreed. So I sent his comment on to Ovidiu Furdui, the proposer of
the problem and asked him if the published solution were on a test, would he give full credit.
Here is his response.

——————————————

The reader is right, solution 2 is the correct one. On one hand, the problem asks for the
calculation of the product starting from B(2) up to B(n), for n ≥ 2 and in solution 1 basically
the solvers have computed a product which simplifies very much the problem, so from a
mathematical point of view the problem asks for one thing and the solvers give another. The
product A(n) = B(1)B(2) · · ·B(n) as they give it is correct but this is not what the problem
asks for. (Me, Ted, speaking again; I don’t see it this way– as I see it, they did answer the
question. Now back to Ovidiu.)

On the other hand, to answer your question, if this problem would have been an exam
problem and the student(s) would have solved the problem as in solution 1, then certainly I
would give partial credit for this solution, but not full credit due to the fact that, strictly
speaking the solution is not what the problem asks for. However, I would offer partial credit
to the student for calculating the product A(n) (for observing its form and for proving that by
induction) but not full credit.

Solution 2 is the correct solution of this problem.

———————-

(Editor again:) But still I wasn’t satisfied that the solution was incorrect, and so I explained
the solution to Michael Fried, and he agreed with Henry and with Ovidui. His reasoning was
that the authors of the Solution 1 had changed the initial conditions of the sequence by saying
that the sequence started with B(1) and not B(2). But I argued that the authors of Solution 1
stated in their argument, “we have shown, by mathematical induction that (1) holds for all
integers n ≥ 2,” and again I felt that that they had shown that. To my way of thinking, we
had the product of matrices B(1)B(2) · · ·B(n). The authors of Solution 1 could obtain the
correct answer by a simple translation. I also thought that they could obtain the answer by
multiplying the product by the inverse of B(1), and therein I made a mistake. Matrix B(1) is
not invertible. Anyway, at this point the score was two against me, nobody for me. I then
sent the question (Was the published solution 1 incorrect?) to Albert Stadler, and he agreed
with the others, and he pointed out my mistake that matrix B(1) was not invertible. The
score was now 3-0, and I am now siding with the majority.

Solution 1 to 5332 misses the spirit of the intended problem; once again, mea culpa.
——————
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