
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
June 15, 2016

• 5397: Proposed by Kenneth Korbin, New York, NY

Solve the equation 3
√
x+ 9 =

√
3 + 3
√
x− 9 with x > 9.

• 5398: Proposed by D. M. Bătinetu-Giurgiu, Bucharest, Romania and Neculai
Stanciu,“George Emil Palade” School, Buzău, Romania

If (2n− 1)!! = 1 · 3 · 5 . . . (2n− 1), then evaluate

lim
n→∞

(
n+1
√

(n+ 1)!(2n+ 1)!!

n+ 1
−

n
√
n!(2n− 1)!!

n

)
.

• 5399: Proposed by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain

Let a, b, c be positive real numbers. Prove that∑
cyclic

2a+ 2b√
6a2 + 4ab+ 6b2

≤ 3.

5400: Proposed by Arkady Alt, San Jose, CA

Prove the inequality
a2

ma
+

b2

mb
+

c2

mc
≤ 12 (2R− 3r),

where a, b, c and ma,mb,mc are respectively sides and medians of 4ABC, with
circumradius R and inradius r.

• 5401: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let a, b, c be three positive real numbers such that a2 + b2 + c2 = 3. Prove that

b−1

(4
√
a+ 3

√
b)2

+
c−1

(4
√
b+ 3

√
c)2

+
a−1

(4
√
c+ 3

√
a)2
≥ 3

49
.
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• 5402: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Calculate ∫ ∞
0

(
cos(ax)− cos(bx)

x

)2

dx,

where a and b are real numbers.

Solutions

• 5379: Proposed by Kenneth Korbin, New York, NY

Solve:
(x+ 1)4

(x− 1)2
= 17x.

Solution 1 by Ed Gray, Highland Beach, FL

Cross-multiplying and simplifying gives x4 − 13x3 + 40x2 − 13x+ 1 = 0. Obviously
x 6= 0, so dividing the polynomial by 40x2 gives

x2

40
− 13

40
x+ 1− 13

40
· 1

x
+

1

40
· 1

x2
= 0,

1

40

((
x2 +

1

x2

)
− 13

(
x+

1

x

))
+ 1 = 0.

Letting t = x+
1

x
, squaring t2 = x2 +

1

x2
+ 2 and then substituting into the above gives

1

40

((
t2 − 2

)
− 13t

)
+ 1 = 0

t2 − 13t+ 38 = 0, so

t1 =
1

2

(
13 +

√
17
)

t2 =
1

2

(
13−

√
17
)
.

Since t = x+
1

x
, we have x2 − tx+ 1 = 0, and solving for x gives

x1 =
1

2

(
t1 +

√
t21 − 4

)
x2 =

1

2

(
t1 −

√
t21 − 4

)
x3 =

1

2

(
t2 +

√
t22 − 4

)
x4 =

1

2

(
t2 −

√
t22 − 4

)
.

Substituting in the respective values of t and simplifying gives:

x1 =
13

4
+

√
17

4
+

1

2

√
85

2
+

13
√

17

2

2



x2 =
13

4
+

√
17

4
− 1

2

√
85

2
+

13
√

17

2

x3 =
13

4
−
√

17

4
+

1

2

√
85

2
− 13

√
17

2

x4 =
13

4
−
√

17

4
− 1

2

√
85

2
− 13

√
17

2
.

Solution 2 by Brian D. Beasley, Presbyterian College, Clinton, SC

Given a real number k, we seek all real solutions of

(x+ 1)4

(x− 1)2
= kx.

We require

x4 + (4− k)x3 + (6 + 2k)x2 + (4− k)x+ 1 = (x2 + ax+ 1)(x2 + bx+ 1) = 0,

where a = (4− k +
√
k2 − 16k)/2 and b = (4− k −

√
k2 − 16k)/2. Hence there are no

real solutions unless k ∈ (−∞, 0] ∪ [16,∞). Solving for x, we obtain
x = (−a±

√
a2 − 4)/2 or x = (−b±

√
b2 − 4)/2. We note that if k = 0, then there is one

real solution; if k < 0 or k = 16, then there are two real solutions; and if k > 16, then
there are four real solutions.

For the given equation with k = 17, we have four real solutions:

Letting a = (−13 +
√

17)/2 and b = (−13−
√

17)/2, we obtain

x = (−a±
√
a2 − 4)/2 ≈ 4.200 or 0.238;

x = (−b±
√
b2 − 4)/2 ≈ 8.443 or 0.118.

Comments: Arkady Alt of San Jose, CA noted in his solution that the 17 in the
statement of the problem could be replaced with any of the three numbers 15, 16, or 18
to obtain a more elegant answer. For example, the equation

(x+ 1)4

(x− 1)3
= 18x gives the solutions

x = 5± 2
√

6 =
(√

3±
√

2
)2

x = 2±
√

3 =

(√
6±
√

2

2

)2

.

Kenneth Korbin, proposer of the problem, stated: If b > 2, then the equation
(x+ 1)4

(x− 1)3
=
(
4b2
)
x gives the solutions

x1 =

√
a+

√
b+
√
c

√
a−

√
b+
√
c

=
1

x2
,

3



x3 =

√
a+

√
b−
√
c

√
a−

√
b−
√
c

=
1

x4
,

with a = 2b and with c = b2 − 4.

In the given equation 4b2 = 17. Then

b2 =
17

4
, b =

√
17

2
> 2, a = 2b =

√
17, c = b2 − 4 =

1

4
.

Also solved by Hatef I. Arshagi, Guilford Technical Community College,
Jamestown, NC; Bruno Salgueiro Fanego, Viveiro, Spain; G.C. Greubel,
Newport News, VA; Paul M. Harms, North Newton, KS; Kee-Wai Lau,
Hong Kong, China; Moti Levy, Rehovot, Israel; David E. Manes, SUNY
College at Oneonta, Oneonta, NY; Paolo Perfetti, Department of
Mathematics, Tor Vergata University, Rome, Italy; Boris Rays, Brooklyn,
NY; Henry Ricardo, New York Math Circle, NY. Toshihiro Shimizu,
Kawasaki, Japan; Neculai Stanciu, “George Emil Palade” General School,
Buzău, Romania and Titu Zvonaru, Comănesti, Romania; Albert Stadler,
Herrliberg, Switzerland; (David Stone and John Hawkins, Georgia Southern
University, Statesboro, GA; Nicusor Zlota, “Traian Vuia” Technical College,
Focsani, Romania, and the proposer.

• 5380: Proposed by Arkady Alt, San Jose, CA

Let ∆(x, y, z) = 2(xy + yz + xz)− (x2 + y2 + z2) and a, b, c be the side-lengths of a
triangle ABC. Prove that

F 2 ≥ 3

16
· ∆(a3, b3, c3)

∆(a, b, c)
,

where F is the area of 4ABC.

Solution 1 by Toshihiro Shimizu, Kawasaki, Japan

From the Heron’s formula,

F 2 =
(a+ b+ c)(b+ c− a)(c+ a− b)(a+ b− c)

16

=
∆(a2, b2, c2)

16

Thus, it suffices to show that ∆(a2, b2, c2)∆(a, b, c)− 3∆(a3, b3, c3) ≥ 0 (♥). The (l.h.s)
can be written as ∑

cyc

(a− b)(a− c)q(a, b, c),

where q(a, b, c) = 4a4 + 2a3(b+ c) + a2(b− c)2 ≥ 0. Moreover, since

q(a, b, c)− q(b, c, a) = (a− b)(bc2 + ac2 + 2b2c+ 2a2c+ 4b3 + 6ab2 + 6a2b+ 4a3),
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the relation, which is larger q(a, b, c) or q(b, c, a), depends on the value of a or b. Without
loss of generality, we assume a ≥ b ≥ c. Then, q(a, b, c) ≥ q(b, c, a) ≥ q(c, a, b). Thus,∑
cyc

(a− b)(a− c)q(a, b, c) = (a− b)
(
(a− c)q(a, b, c)− (b− c)q(b, c, a)

)
+ q(c, a, b)(a− c)(b− c)

≥ 0.

Therefore, (♥) is true.
Note: It is similar to the proof of Schur’s inequality. It seems that (♥) is valid for any
a, b, c, even if the constraint that a, b, c are the side-lengths of a triangle is not satisfied.

Solution 2 by Albert Stadler, Herrliberg, Switzerland

Denote by s the semiperimeter of the triangle put sa = s− a, sb = s− b, sc = s− c. By
the triangle inequality, sa ≥ 0, sb ≥ 0, sc ≥ 0. Also a = sb + sc, b = sc + sa, c = sa + sb.
Furthermore, we note that

∆(a, b, c) = ∆ (sb + sc, sc + sa, sa + sb) = 4 (sasb + sbsc + scsa) ≥ 0.

By Heron’s formula F 2 = s · sa · sb · sc = (sa + sb + sc) sa · sb · sc.
Therefore we need to prove that

64 (sa + sb + sc) · sa · sb · sc (sasb + sbsc + scsa) ≥ 3∆
(

(sb + sc)
3 , (sc + sa)

3 , (sa + sb)
3
)

which is equivalent to

27
∑
symm

s4as
2
b + 21

∑
symm

s3as
3
b + 5

∑
symm

s2as
2
bs

2
c ≥ 27

∑
symm

s4asbsc + 26
∑
symm

s3as
2
bsc (1)

(as is seen by simply multiplying out).

By Schur’s inequality ∑
cycl

sasb (sasb − sbsc) (sasb − scsa) ≥ 0

which is equivalent to∑
symm

s3as
3
b +

∑
symm

s2as
2
2s

2
c ≥ 2

∑
symm

s3as
2
bsc (2)

(as is seen again by multiplying out).

We have the following inequalities

5
∑
symm

s3as
3
b + 5

∑
symm

s2as
2
bs

2
c ≥ 10

∑
symm

s3as
2
bsc, (by(2)),

27
∑
symm

s4as
2
b ≥ 27

∑
symm

s4asbsc, by Muirhead′s inequality,

16
∑
symm

s3as
3
b ≥ 16

∑
symm

s3as
2
bsc, by Muirhead′s inequality.
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(1) follows by adding these three inequalities.

Solution 3 by proposer

Let s :=
t1 + t2 + t3

2
. Since ti < s, i = 1, 2, 3 (triangle inequalities) then our problem is:

Find max s for which there are positive integer numbers
t1, t2, t3 satisfying ti ≤ min {ai, s− 1} , i = 1, 2, 3, t1 + t2 + t3 = 2s.

First note that s ≥ 3, ti ≥ 2, i = 1, 2, 3. Indeed, since ti ≤ s− 1, then
1 ≤ s− ti, i = 1, 2, 3 and,
therefore, t1 = 2s− t2 − t3 = (s− t2) + (s− t3) ≥ 2. Cyclic we obtain t2, t3 ≥ 2. Hence,
2s ≥ 6 ⇐⇒ s ≥ 3.

Since t3 = 2s− t1 − t2, 2 ≤ t3 ≤ min {a3, s− 1}
then 1 ≤ 2s− t1 − t2 ≤ min {a3, s− 1} ⇐⇒
max {2s− t1 − a3, s+ 1− t1} ≤ t2 ≤ 2s− 1− t1 and, therefore, for t2 we obtain the
inequality

(1) max {2s− t1 − a3, s+ 1− t1, 2} ≤ t2 ≤ min {2s− 1− t1, a2, s− 1}
with conditions of solvability :

(2)


2s− t1 − a3 ≤ s− 1

2s− t1 − a3 ≤ a2
s+ 1− t1 ≤ a2
2 ≤ 2s− 1− t1

⇐⇒


s+ 1− a3 ≤ t1

2s− a2 − a3 ≤ t1
s+ 1− a2 ≤ t1
t1 ≤ 2s− 3

.

Since s− 1 ≤ 2s− 3 then (2) together with 2 ≤ t1 ≤ min {a1, s− 1} it gives us bounds
for t1 :

(3) max {s+ 1− a3, 2s− a2 − a3, s+ 1− a2, 2} ≤ t1 ≤ min {a1, s− 1} .

Since 2 ≤ ai, i = 2, 3 then s+ 1− a2 ≤ s− 1, s+ 1− a3 ≤ s− 1 and solvability condition
for (3) becomes

s+ 1− a3 ≤ a1 ⇐⇒ s ≤ a1 + a3 − 1, 2s− a2 − a3 ≤ a1 ⇐⇒ s ≤
⌊
a1 + a2 + a3

2

⌋
,

s+ 1− a2 ≤ a1 ⇐⇒ s ≤ a1 + a2 − 1, 2s− a2 − a3 ≤ s− 1 ⇐⇒ s ≤ a2 + a3 − 1.

Thus, s∗ = min

{⌊
a1 + a2 + a3

2

⌋
, a1 + a2 − 1, a2 + a3 − 1, a3 + a1 − 1

}
is the largest

value of integer semiperimeter.

Solution 4 by Andrea Fanchini, Cantú, Italy

We know that
F 2 = s(s− a)(s− b)(s− c)

where s is the semiperimeter of 4ABC.
Now making the substitutions and clearing the denominators we have to prove

16s(s−a)(s−b)(s−c)
[
2(ab+ bc+ ca)− (a2 + b2 + c2)

]
≥ 3

[
2(a3b3 + b3c3 + c3a3)− (a6 + b6 + c6)

]
now we make the following substitutions (with x, y, z > 0)

a = y + z, b = z + x, c = x+ y
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and expanding out into symmetric sums the given inequality yields
LHS:

27(x4y2 + x4z2 + y4z2 + x2y4 + x2z4 + y2z4) + 42(x3y3 + y3z3 + x3z3)+

+6(x3yz2 + x3y2z + x2y3z + xy3z2 + x2yz3 + xy2z3) + 78x2y2z2

RHS:
38(x4yz + xy4z + xyz4)

so it remains to prove that

27(x4y2 + x4z2 + y4z2 + x2y4 + x2z4 + y2z4) ≥ 38(x4yz + xy4z + xyz4)

or
27[4, 2, 0] ≥ 19[4, 1, 1]

which is true because
19[4, 2, 0] � 19[4, 1, 1]

it follows from Muirhead’s Theorem, q.e.d.

Solution 5 by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy

As well known F 2 = s(s− a)(s− b)(s− c) and s = (a+ b+ c)/2. Upon setting
a = y + z, b = x+ z, c = x+ y,
the inequality becomes∑

sym

(
27x4y2 + 21(xy)3 + 5(xyz)2

)
≥
∑
sym

(
27x4yz + 26x3y2z

)
.

The third degree Schür inequality is

(a3 + b3 + c3) + 3abc ≥
∑
sym

a2b,

which applied to the triple (xy), (yz), (zx), yields

5
∑
sym

(xy)3 + 5
∑
sym

(xyz)2 ≥ 10
∑
sym

x3y2z.

The inequality becomes∑
sym

(
27x4y2 + 16(xy)3

)
≥
∑
sym

(
27x4yz + 16x3y2z

)
,

and the proof is complete upon observing that by the AGM we have

x4y2 + x4z2 ≥ 2x4yz, (xy)3 + (xy)3 + (xz)3 ≥ 3x3y2z.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland
Beach, FL; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong,
China; Moti Levi, Rehovot, Israel, and Nicusor Zlota, “Traian Vuia”
Technical College, Focsani, Romania
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• 5381: Proposed by D.M. Batinetu-Giurgiu,“Matei Basarab” National College,
Bucharest, and Neculai Stanciu “George Emil Palade” School, Buzău, Romania

Prove: In any acute triangle ABC, with the usual notations, holds:

∑
cyclic

(
cosA cosB

cosC

)m+1

≥ 3

2m+1
,

where m ≥ 0 is an integer number.

Solution 1 by Nikos Kalapodis, Patras, Greece

We first recall Barrow’s Inequality:
If x, y, z are positive real numbers and A+B + C = π then

yz

2x
+
zx

2y
+
xy

2z
≥ x cosA+ y cosB + z cosC (1)

(This inequality first appeared in [1]. For a solution see [2] or [3] (inequality 2.20, pp.
23-24)).
Applying inequality (1) for x = cosA, y = cosB, and z = cosC (note that
cosA, cosB, cosC > 0, since ABC is an acute triangle) we obtain∑

cyclic

cosA cosB

cosC
≥ 2(cos2A+ cos2B + cos2C) (2)

By the following well-known trigonometric identities

cosA+ cosB + cosC = 1 + 4 sin
A

2
sin

B

2
sin

C

2
and sin

A

2
sin

B

2
sin

C

2
=

r

4R
and

Euler’s inequality (2r ≤ R) we obtain that cosA+ cosB + cosC = 1 +
r

R
≤ 3

2
(3)

Using the AM-GM inequality and inequality (3) we have

cosA cosB cosC ≤
(

cosA+ cosB + cosC

3

)3

≤
(

1

3
· 3

2

)3

=
1

8
(4)

Furthermore, by the identity cos2A+ cos2B + cos2C + 2 cosA cosB cosC = 1 and
inequality (4) we obtain

cos2A+ cos2B + cos2C ≥ 3

4
(5)

By (2) and (5), we have ∑
cyclic

cosA cosB

cosC
≥ 3

2
(6)

Finally, applying Radon’s Inequality and using inequality (6) we have that

∑
cyclic

(
cosA cosB

cosC

)m+1

=

(
cosA cosB

cosC

)m+1

1m
+

(
cosB cosC

cosA

)m+1

1m
+

(
cosC cosA

cosB

)m+1

1m
≥

8



∑
cyclic

cosA cosB

cosC

m+1

(1 + 1 + 1)m
≥

(
3

2

)m+1

3m
=

3

2m+1
.

References:
[1] L. J. Mordell and D. F. Barrow, Solution 3740, The American Mathematical Monthly
Vol. 44, No. 4 (Apr., 1937) pp. 252-254
(http://www.jstor.org/stable/2300713)
[2] R. R. Janic, On A Geometric Inequality Of D. F. Barrow, Univ. Beograd. Publ.
Elektrotehn. Fak. Ser. Mat. Fiz. No. 181-196 (1967), pp.73-74
(http://pefmath2.etf.bg.ac.rs/files/71/194.pdf)
[3] O. Bottema, R. Z. Djordjevic, R. R. Janic, D. S. Mitrinovic, and P. M. Vasic,
Geometric Inequalities, Wolters-Noordhoff Publishing, Groningen, The Netherlands,
1969.
Remark: Inequalities (3), (4), and (5) also appear respectively as inequalities 2.16, 2.23
and 2.21 in reference [3].

Solution 2 byÁngel Plaza, University of Las Palmas de Gran Canaria, Spain

By the RMS-AM inequality it is enough to prove that∑
cyclic

cosA cosB

cosC
≥ 3

2
.

Taking into account that A+B + C = π, then
cosC = cos

(
π
2 −A+ π

2 −B
)

= sinA sinB − cosA cosB, so the inequality to be proved
may be written with cotangents as∑

cyclic

cotA cotB

1− cotA cotB
≥ 3

2
, or

∑
cyclic

1

1− cotA cotB
≥ 9

2
.

It is well known that if α = cotA, β = cotB, and γ = cotC, then αβ + βγ + γα = 1.

Therefore, taking x = αβ, y = βγ, and z = γα we have to prove that
∑
cyclic

1

1− x
≥ 9

2

which follows by Jensen’s inequality, since function f(x) =
1

1− x
is convex for x ∈ (0, 1).

Solution 3 by Henry Ricardo, New York Math Circle, NY

Elementary calculations show that for A,B,C ∈ (0, π/2)

cosA cosB

cosC
=

tanC

tanA+ tanB
. (1)

Furthermore, we have

∑
cyclic

tanC

tanA+ tanB
≥ 3

2
. (2)

by Nesbitt’s inequality.
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Finally, (1), (2), and the power mean inequality give us∑
cyclic

(
cosA cosB

cosC

)m+1

=
∑
cyclic

(
tanC

tanA+ tanB

)m+1

≥ 3

1

3

∑
cyclic

tanC

tanA+ tanB

m+1

≥ 3

(
1

2

)m+1

=
3

2m+1
.

Solution 4 by Nicusor Zlota, “Traian Vuia” Technical College, Focsani,
Romania

Using the inequality am+1 + bm+1 + cm+1 ≥ 1

3m
(a+ b+ c)m+1 (*) we have

∑(
cosA cosB

cosC

)m+1

=
∑(

tanC

tanA+ tanB

)m+1 ≥
by (∗)

1

3m

(∑ tanC

tanA+ tanB

)m+1

. (∗∗)

Setting tanA = x, tanB = y, tanC = z, and using Nesbitt’s inequality, we have∑ tanC

tanA+B
=
∑ z

x+ y

≥
by Nesbitt)

3

2
, (∗ ∗ ∗)

The statement of the problem follows from (∗∗) and (∗ ∗ ∗).

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland
Beach, FL; Kee-Wai Lau, Hong Kong, China; Moti Levi, Rehovot, Israel;
Toshihiro Shimizu, Kawasaki, Japan, and the proposer.

• 5382: Proposed by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain

Prove that if a, b, c are positive real numbers, then∑
cyclic

a

b
+ 8

∑
cyclic

b

a

∑
cyclic

b

a
+ 8

∑
cyclic

a

b

 ≥ 93.

Solution 1 by Henry Ricardo, New York Math Circle, NY

By the arithmetic-geometric mean inequality, each of the sums
∑
cyclic

a

b
,
∑
cyclic

b

a
is

greater than or equal to 3. Thus∑
cyclic

a

b
+ 8

∑
cyclic

b

a

∑
cyclic

b

a
+ 8

∑
cyclic

a

b

 ≥ (3 + 8 · 3)(3 + 8 · 3) = 272 = 93.

Solution 2 by Ed Gray, Highland Beach, FL

Clearly, if a = b = c, the above product becomes

(1 + 1 + 1 + 8(1 + 1 + 1)) (1 + 1 + 1 + 8(1 + 1 + 1)) = (3 + 24)(3 + 24) = 272 = 729 = 93.
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Therefore, if we show that the product is minimum when all variables are equal, then the
conjecture would be true. It is sufficient to calculate the product in two different ways.

First, suppose that a = b and c = 0.99a. Second, suppose a = b and c = 1.01a. If both
of these products exceed 729, that would show that if all variables are not equal, we do
not have a minimum.

Case 1: a = b, c = 0.99a. The product becomes(
1 +

1

0.99
+ 0.99 + 8(1 + 0.99 +

1

0.99
)

)(
1 + 0.99 +

1

0.99
+ 8(1 +

1

0.99
+ 0.99)

)
= 729.049

Case 2: a = b, c = 1.01a. The product becomes(
1 +

1

0.99
+ 0.99 + 8(1 + 1.01 +

1

1.01
)

)2

= 729.048

QED

Solution 3 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX

We begin by applying the extension of the Arithmetic - Geometric Mean Inequality
which states that if α, β, x, y > 0 and α+ β = 1, then

αx+ βy ≥ xαyβ,

with equality if and only if x = y. It follows that∑
cyclic

a

b
+ 8

∑
cyclic

b

a
=
∑
cyclic

(
a

b
+ 8

b

a

)

= 9
∑
cyclic

(
1

9

a

b
+

8

9

b

a

)

≥ 9
∑
cyclic

(a
b

) 1
9

(
b

a

) 8
9

= 9
∑
cyclic

(
b

a

) 7
9

,

with equality if and only if
a

b
=
b

a
,
b

c
=
c

b
, and

c

a
=
a

c
, i.e., if and only if a = b = c.

Next, apply the standard version of the Arithmetic - Geometric Mean Inequality to get

∑
cyclic

a

b
+ 8

∑
cyclic

b

a
≥ 9

∑
cyclic

(
b

a

) 7
9

≥ 27 3

√√√√∏
cyclic

(
b

a

) 7
9

= 27, (1)

with equality if and only if
b

a
=
c

b
=
a

c
, i.e., if and only if a = b = c.
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A similar set of steps yields ∑
cyclic

b

a
+ 8

∑
cyclic

a

b
≥ 27, (2)

with equality if and only if a = b = c.

Therefore, by (1) and (2),∑
cyclic

a

b
+ 8

∑
cyclic

b

a

∑
cyclic

b

a
+ 8

∑
cyclic

a

b

 ≥ 272 = 93,

with equality if and only if a = b = c.

Solution 4 by Andrea Fanchini, Cantú, Italy

Clearing the denominators and making the multiplications we have

8(a4b2 +a4c2 +a2b4 + b4c2 + b2c4 +a2c4)+65(a4bc+ab4c+abc4)+65(a3b3 + b3c3 +a3c3)+

+16(a3b2c+ a3bc2 + a2b3c+ ab3c2 + a2bc3 + ab2c3) ≥ 534a2b2c2

or
16[4, 2, 0] + 65[4, 1, 1] + 65[3, 3, 0] + 32[3, 2, 1] ≥ 178[2, 2, 2]

which is true because
16[4, 2, 0] � 16[2, 2, 2]

65[4, 1, 1] � 65[2, 2, 2]

65[3, 3, 0] � 65[2, 2, 2]

32[3, 2, 1] � 32[2, 2, 2]

each of which follows from Muirhead’s Theorem, q.e.d.

Also solved by Arkady Alt, San Jose, CA; Hatef I. Arshagi, Guilford
Technical Community College, Jamestown, NC; Michael Brozinsky (3
solutions), Central Islip, NY; Bruno Salgueiro Fanego, Viveiro, Spain; Paul
M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong, China; Moti Levi,
Rehovot, Israel; Nikos Kalapodis, Patras, Greece; Paolo Perfetti,
Department of Mathematics, Tor Vergata University, Rome, Italy; Boris
Rays, Brooklyn, NY; Neculai Stanciu,“George Emil Palade” School, Buzău,
Romania and Titu Zvonaru, Comănesti, Romania; Toshihiro Shimizu,
Kawasaki, Japan; Albert Stadler, Helliberg, Switzerland; Nicusor Zlota,
“Traian Vuia” Technical College, Focsani, Romania, and the proposer.

5383: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let n be a positive integer. Find gcd(an, bn), where an and bn are the positive integers
for which (1−

√
5)n = an − bn

√
5.

Solution 1 by Ethan Gegner (Undergraduate student, Taylor University),
Upland, IN
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The equation

an+1 − bn+1

√
5 = (an − bn

√
5)(1−

√
5) = an + 5bn − (an + bn)

√
5

yields the recurrence relations

an+1 = an + 5bn

bn+1 = an + bn

Thus,

gcd(an+1, bn+1) = gcd(an + 5bn, an + bn) = gcd(6an−1 + 10bn−1, 2an−1 + 6bn−1)

= gcd(16an−2 + 40bn−2, 8an−2 + 16bn−2)

= 8 gcd(2an−2 + 5bn−2, an−2 + 2bn−2)

= 8 gcd(bn−2, an−2 + 2bn−2)

= 8 gcd(bn−2, an−2)

Since a1 = b1 = 1, a2 = 6, b2 = 2, a3 = 16, b3 = 8, we have
gcd(a1, b1) = 20, gcd(a2, b2) = 21, gcd(a3, b3) = 23. It follows inductively that

gcd(an, bn) =

{
2n : 3|n
2n−1 : otherwise

Solution 2 Ángel Plaza, University of Las Palmas de Gran Canaria, Spain

For n = 1, a1 = b1 = 1. For n > 1,

an − bn
√

5 =
(
an−1 − bn−1

√
5
)(

1 +
√

5
)

= an−1 + 5bn−1 −
√

5 (an−1 + bn−1)

so an = an−1 + 5bn−1, and bn = an−1 + bn−1, or in matrix form(
an
bn

)
=

(
1 5
1 1

)
·
(
an−1
bn−1

)
⇒

(
an
bn

)
=

(
1 5
1 1

)n
·
(

1
1

)
.

Therefore, an = 2n−1 · Ln and bn = 2n · Fn, where Ln and Fn+1 respectively are the nth
Lucas and the nth Fibonacci numbers. Since Ln = Fn−1 + Fn+1, then gcd(Ln, Fn+1) = 1
and hence gcd(an, bn) = 2n−1, if Ln is odd, while gcd(an, bn) = 2n if Ln is even, that is
when n is a multiple of 3.

Solution 3 by Carl Libis, Columbia Southern University, Orange Beach, AL

Let
(
1−
√

5
)n

= an − bn
√

5. Then

an+1 − bn+1

√
5 =

(
an − bn

√
5
)(

1−
√

5
)

= (an + 5bn)− (an + bn)
√

5.

Thus,

(i) an+1 = an + 5bn,

13



(ii) bn+1 = an + bn, and using (i), and (ii) we can show that

(iii) an+1 = 2an + 4an−1,

(iv) bn+1 = 2bn + ban−1. By observation we note from the first few terms

(v) an = 2n−1ln,

(vi) bn = 2n−1fn,

where ln and fn are Lucas and Fibonacci numbers. We can verify (v) and (vi) by
substituting them into (iii) and (iv).

It is well known that gcd(fn, ln) =

{
2, if 3| n
1, otherwise.

.

See<http://mathhelpforum.com/discrete-math/40492-proof-about-fibonacci-lucas-
numbers-gcd.html> or
<https://cms.math.ca/crux/v3/n4/page232-236.pdf>.

Therefore,

gcd (an, bn) = gcd
(
2n−1fn, 2

n−1ln
)

= 2n−1

{
2, if 3| n
1, otherwise.

=

{
2n, if 3| n
2n−1, otherwise.

Comment by Editor: Kenneth Korbin of NewYork, NY observed a connection
between this problem and the solution to problem 5373, that required us to find positive

integers x and y such that
2
√

2√
343− 147

√
5−

√
315− 135

√
5

=

√
x+ y

√
5, the unique

answer of which was (x, y) = 161 + 72
√

5. He continued on as follows.

Observe that:(
1−
√

5
)12

= (4096)(161−72
√

5) = 212(161−72
√

5), and also (161)2− (72
√

5)2 = 1. So,(
161− 72

√
5
)(

161 + 72
√

5
)(

1−
√

5
)12

= 212(161− 72
√

5)

161 + 72
√

5 =
212(

1−
√

5
)12√

161 + 72
√

5 =
26(

1−
√

5
)6 .

And additionally:
26(

1−
√

5
)6=

2
√

2√
343− 147

√
5−

√
315− 135

√
5

.

Also solved by Arkady Alt, San Jose, CA; Dionne Bailey, Elsie Campbell,
and Charles Diminnie, Angelo State University, San Angelo, TX; Brian D.
Beasley, Presbyterian College, Clinton, SC; Bruno Salgueiro Fanego,
Viveiro, Spain; Ed Gray, Highland Beach, FL; G.C. Greubel, Newport News,
VA; Kenneth Korbin, New York, NY; Kee-Wai Lau, Hong Kong, China;
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Moti Levi, Rehovot, Israel; David E. Manes, SUNY College at Oneonta,
Oneonta, NY; Toshihiro Shimizu, Kawasaki, Japan; David Stone and John
Hawkins, Georgia Southern University, Statesboro, GA, and the proposer.

5384: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Find all differentiable functions f : < → < which verify the functional equation

xf ′(x) + f(−x) = x2, for all x ∈ <.

Solution 1 by Michael Brozinsky, Central Islip, NY

We have at once from the given equation xf ′(x) + f(−x) = x2 that f(0) = 0, and since
x2 = (−x)2 that

xf ′(x) + f(x) = −xf ′(−x) + f(x) so that

x
(
f ′(x) + f ′(−x)) = f(x)− f(−x)

which can be cast as xG′(x) = G(x), which we label as equation (1) and in which
G(x) = f(x)− f(−x).

From (1) we have G(x) = cx for some constant c and thus G′′(x) = 0, and so
f ′′(x) = f ′′(−x) and we label this as equation (2), where we have used the chain rule.
Now, by differentiating the given equation twice we have

x · f ′′′(x) + f ′′(x) + f ′′(x) + f ′′(−x) = 2

and so from (2) we have

f ′′(0) =
2

3
and xf ′′′(x) + 3f ′′(x) = 2. (3)

Letting v = f ′′(x) in (3) we have the linear differential equation x ·
(
dv

dx

)
+ 3v = 2, and

using the integrating factor x3 we obtain

x3dv + 3x2vdx = 2x2dx so that

x3v =
2x3

3
+A and f ′′(x) = v =

2

3
+
A

x3
(4)

where the constantA = 0 since f ′′(0) =
2

3
. Integrating (4) twice we obtain

f(x) =
x2

3
+Bx+ C where B and C are constants and since f(0) = 0, we have C = 0.

Hence, the general solution is f(x) =
x2

3
+Bx, where B is an arbitrary constant.

Solution 2 by Toshihiro Shimizu, Kawasaki, Japan

Let P (x) be the given equation. From P (x) + P (−x), we get

x
d

dx
(f(x) + f(−x)) + (f(x) + f(−x)) = 2x2. (1)
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From P (x)− P (−x), we get

x
d

dx
(f(x)− f(−x))− (f(x)− f(−x)) = 0. (2)

First, we solve (1). Let g(x) = f(x) + f(−x)− 2
3x

2.Then, (1) can be rewritten as

x
dg

dx
= −g(x)

The root of this differential equation is g(x) = C/x for constant C ∈ R.
Next, we solve (2). Let h(x) = f(x)− f(−x). Then, (2) can be rewritten as

x
dh

dx
= h(x)

The root of this differential equation is h(x) = Dx for constant D ∈ R.
Thus, f(x) = (g(x) + 2/3x2 + h(x))/2 = C/x+Dx+ x2/3 for some constant C,D ∈ R.
Since, f(x) should be defined for all x ∈ R, C must be 0. Therefore, f(x) = Dx+ x2/3,
where D ∈ R is a constant and this satisfies P (x).

Solution 3 by Bruno Salgueiro Fanego, Viveiro, Spain

xf ′(x) + f(−x) = x2,∀x ∈ < =⇒ −xf ′(−x) + f (− (−x))− (−x)2 ,∀x ∈ <, that is

−xf ′(−x) + f(x) = x2,∀x ∈ < =⇒ xf ′(x) + f(−x) = x2 = −xf ′ (−x) + f(x) ,

∀x ∈ < =⇒ x (f ′(x)− f ′(−x)) + f(x) + f(−x) = 2x2,∀ ∈ <, or equivalently,

xg′(x) + g(x) = 2x2, ∀x ∈ <, where g : < → < is the function defined by

g(x) = f(x) + f(−x),∀x ∈ <, that is h′(x) = 2x2, with h : < → <, ∀x ∈ <.

h(x) = xg(x),∀x ∈ < =⇒ h(x) =
2x2

3
+ C, for some C ∈ <, ∀x ∈ <

implies f(x) + f(−x) = g(x) =
h(x)

x
=

2x2

3
+
C

x
, ∀x− {0}.

f differentiable implies f differentiable at x = 0 =⇒ f continuous at x = 0.

This fact and the equality f(x) + f(−x) =
2x2

3
+
C

x
imply that C = 0.

Hence, f(−x) =
2x2

3
− f(x) and thus xf ′(x) +

2x2

3
− f(x) = xf ′(x) + f(−x) = x2.

∀x ∈ <−{0} =⇒ xf ′(x)− f(x) =
x2

3
∀x ∈ <− 0} =⇒ f ′(x)

x
− f(x)

x2
=

1

3
, ∀x ∈ <−{0}.

=⇒ k′(x)
1

3
, where k : < → < is the function defined by k(x) =

f(x)

x
,∀x− {0}

=⇒ k(x) =
x

3
+D with D ∈ <,∀x ∈ <−{0} =⇒ f(x) =

x2

3
+Dx,∀x ∈ <−{0}. Since(

f ′(x)− f ′(−x)
)

+ f(x) + f(−x) = 2x2, ∀x ∈ < =⇒

2f(0) = 0 (f ′(0)− f ′(−0)) + f(0) + f(−0) = 2 · 02 = 0, so f(0) = 0, we conclude that

f(x) =
x2

3
+Dx,∀x, where D is any real constant.

Solution 4 by Moti Levy, Rehovot, Israel

The derivative of f : R→ R satisfies the functional equation
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f
′
(x) =

x2 − f (−x)

x
, (1)

hence it is also differentiable function (maybe except for x = 0).

Differentiation of the functional equation gives,

xf
′′

(x) + f
′
(x)− f ′

(−x) = 2x. (2)

Substitution of (1) into (2 ) gives,

xf
′′

(x) + f
′
(x) +

x2 − f (x)

x
= 2x,

or
x2f

′′
(x) + xf

′
(x)− f (x) = x2. (3)

All the differentiable functions which satisfy the functional equation
xf

′
(x) + f (−x) = x2, must satisfy (3).

The solutions of the differential equation (3) are

f (x) =
1

3
x2 + α

(
x+

1

x

)
+ β

(
x− 1

x

)
(4)

Now we substitute (4) in the left side of the original functional equation:

x
d
(
1
3x

2 + α
(
x+ 1

x

)
+ β

(
x− 1

x

))
dx

+
1

3
x2 − α

(
x+

1

x

)
+ β

(
1

x
− x
)

=
1

x

(
x3 − 2α+ 2β

)
= x2 − 2

x
(α− β) .

It follows that α must be equal to β for (4) to be a solution.
All the differentiable functions f : R→ R, which satisfy the functional equation
xf

′
(x) + f (−x) = x2, for all x ∈ R are

f (x) =
1

3
x2 + cx, c ∈ R.

Solution 5 by Kee-Wai Lau, Hong Kong, China

Denote the given functional equation by (1). We show that

f(x) =
x2

3
+ kx, (2)

where k is an arbitrary constant.

Replacing x bt −x in (1), we obtain

−xf ′(−x) + f(x) = x2. (3)

Subtracting (3) fromf (1), we obtain

x
(
f ′(x) + f ′(−x)

)
− (f(x)− f(−x)) = 0. (4)

17



Integrating (4), we obtain f(x)− f(−x) = ax , where a is an arbitrary constant. By
substituting f(−x) = f(x)− ax back into (1). we obtain

xf ′(x) + f(x) = x2 + ax. (5)

Integrating (5), we obtain xf(x) =
x3

3
+
ax2

2
+ b, where b is a constant. By

putting x = 0 we see that b = 0. Thus (2) hold for x 6= 0. By putting x = 0

into (1), we obtain f(0) = 0 and so (2) hold for x = 0 as well.

Also solved by Arkady Alt, San Jose, CA; Dionne Bailey, Elsie Campbell,
and Charles Diminnie, Angelo State University, San Angelo, TX; Ed Gray,
Highland Beach, FL; Henry Ricardo, New York Math Circle, NY; David
Stone and John Hawkins, Georgia Southern University, Statesboro, GA, and
the proposer.

Editor′s Notes

The conjecture in 5375* has been revised by its author Kenneth Korbin of NY,
NY to the following:

5375* (revised): Prove or disprove the following conjecture. Let k be the product of
N different prime numbers each congruent to 1(mod 4).

The total number of different rectangles and trapezoids with integer length sides and

diagonals that can be inscribed in a circle with diameter k is exactly
5N − 3N

2
.

Toshihiro Shimizu of Kawasaki, Japan provided a counter example to the original
statement of the problem that did not require the diagonals to also be integers. He let
k = 5 · 17 = 85 and then developed the trapezoids (34, 43, 34, 83) and (50, 43, 50, 83).
The diagonals of these two trapezoids are not of integral length. Ken commented on
Toshihiro’s examples by saying that: “It never occurred to me that a trapezoid with
integer length sides inscribed in a circle with diameter k could have non-integer length
diagonals.” So with the revision, 5375* remains an open problem.
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