
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
June 15, 2019

5541: Proposed by Kenneth Korbin, New York, NY

A convex cyclic quadrilateral has inradius r and circumradius R. The distance from the
incenter to the circumcenter is 169. Find positive integers r and R.

5542: Proposed by Michel Bataille, Rouen, France

Evaluate in closed form: cos
π

13
+ cos

3π

13
− cos

4π

13
.

(Closed form means that the answer should not be expressed as a decimal equivalent.)

5543: Proposed by Titu Zvonaru, Comănesti, Romania

Let ABDC be a convex quadrilateral such that
6 ABC = 6 BCA = 25◦, 6 CBD = 6 ADC = 45◦ . Compute the value of 6 DAC. (Note
the order of the vertices.)

5544: Proposed by Seyran Brahimov, Baku State University, Masalli, Azerbaijan

Solve in <: 
tan−1 x = tan y + tan z
tan−1 y = tanx+ tan z
tan−1 z = tanx+ tan y

5545: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let p, q be two twin primes. Show that

1 + 4

 p−1
2∑
j=1

⌊
jq

p

⌋
+

q−1
2∑

k=1

⌊
kp

q

⌋
is a perfect square and determine it. (Here bxc represents the integer part of x).
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5546: Proposed by Ovidiu Furdui and Alina Sîntămărian, Technical University of
Cluj-Napoca, Cluj-Napoca, Romania

Calculate
∞∑
n=1

(−1)b
n
2 c
(

ex − 1− x

1!
− x2

2!
− · · · − xn

n!

)
.

Solutions

5523: Proposed by Kenneth Korbin, New York, NY

For every prime number P , there is a circle with diameter 4P 4 + 1. In each of these
circles, it is possible to inscribe a triangle with integer length sides and with area
(2P )(2P + 1)(2P − 1)(2P 2 − 1). Find the sides of the triangles if P = 2 and if P = 3.

Solution 1 by Ed Gray, Highland Beach, FL

Case 1. P = 2. Then Area = 4 · 5 · 3 · 7 = 22 · 31 · 51 · 71 = 420.

By Brahmaguptas formula, A2 = s(s− a)(s− b)(s− c), where a, b, and c are the sides,
and s is the semi-perimeter. We note that (s− a) + (s− b) + (s− c) = 3s− 2s = s. So
we seek a factor, s, and three other factors whose sum is s.
A2 = (24)(32)(52)(72) = 2 · 2 · 2 · 2 · 3 · 3 · 5 · 5 · 7 · 7. A discerning eye sees that

49 = 20 + 20 + 9, so

s = 7 · 7
s− a = 2 · 2 · 5, so a = 49− 20 = 29.

s− b = 2 · 2 · 5, so b = 49− 20 = 29.

s− c = 3 · 3, so c = 49− 9 = 40.

Each side is less than 4P 4 + 1 = 65, and the triangle inequality holds.

Case 2. P = 3. The area = 6 · 5 · 7 · 17 = (21)(31)(51)(71)(171) = 3570.

A2 = s(s− a)(s− b)(s− c) = (22)(32)(52)(72)(172) = 2 · 2 · 3 · 3 · 5 · 5 · 7 · 7 · 17 · 17.

Let s = 2 · 3 · 5 · 7 = 210. Then

s− a = 7 · 17 = 119, a = 210− 119 = 91.

s− b = 5 · 17 = 85, b = 210− 85 = 125.

s− c = 2 · 3 = 6, c = 210− 6 = 204.

Each side is less than 4P 4 + 1 = 325, and the triangle inequality holds.

Solution 2 by David E. Manes, Oneonta, NY

Given triangle 4ABC with side lengths a, b and c opposite the respective vertices A, B
and C. Moreover, assume that the triangle has area
[ABC] = (2P )(2P + 1)(2P − 1)(2P 2 − 1) and is inscribed in a circle with diameter
4P 4 + 1, where P is a prime. If P = 2, then the area [ABC] = 4 · 5 · 3 · 7 = 420 and the
circle has diameter 4 · 24 + 1 = 65. Therefore, the radius R of the circumscribed circle
has value R = 32.5. The formula relating the radius R, the area [ABC] and the side
lengths a, b and c is R = abc/(4[ABC]). With R = 32.5, [ABC] = 420, one obtains
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abc = 4R[ABC] = 4(32.5)(420) = 54600 = 23 · 3 · 52 · 7 · 13. Using the prime factorization
of 54600, we then assign values to a, b and c so that [ABC] = 420. If a = 3 · 13 = 39,
b = 52 = 25 and c = 23 · 7 = 56, then the semi-perimeter s of 4ABC is given by
s = (a+ b+ c)/2 = (39 + 25 + 56)/2 = 60 and Heron’s formula for the area yields

[ABC] =
√
s(s− a)(s− b)(s− c) =

√
60 · 21 · 35 · 4 = 420.

Accordingly, if P = 2, then the triangle with integer length sides 25, 39 and 56 is
inscribed in a circle with diameter 4P 4 + 1 = 65 and has area
(2P )(2P + 1)(2P − 1)(2P 2 − 1) = 420.

If P = 3, then 4ABC has area
[ABC] = (2P )(2P + 1)(2P − 1)(2P 2 − 1) = 6 · 7 · 5 · 17 = 3570 and is inscribed in a circle
with diameter 4P 4 + 1 = 4 · 34 + 1 = 325, whence the radius R of the circumscribed
circle is R = 162.5. Therefore, the product of the side lengths a, b and c satisfies the
equation abc = 4R[ABC] = 4(162.5)(3570) = 2320500 = 22 · 3 · 53 · 7 · 13 · 17. For this
case, let a = 22 · 3 · 17 = 204, b = 53 = 125 and c = 7 · 13 = 91. Then the semi-perimeter
s = (a+ b+ c)/2 = (204 + 125 + 91)/2 = 210 so that the area of 4ABC is given by

[ABC] =
√
s(s− a)(s− b)(s− c) =

√
210 · 6 · 85 · 119 = 3570.

Therefore, if P = 3, then the triangle with integer side lengths 91, 125 and 204 is
inscribed in a circle with diameter 4P 4 + 1 = 325 and the triangle 4ABC has area
[ABC] given by [ABC] = (2P )(2P + 1)(2P − 1)(2P 2 − 1) = 3570.

Solution 3 by David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA

The condition that P be prime is not necessary.

Note: This problem is similar to SSM Problem 5356 published May 2015. Our solution
is based on Brian Beasley’s solution (December 2015) to that problem.

We show that for a positive integer P , the triangle with sides given by

a = (2P + 1)
(
2P 2 − 2P + 1

)
= 4P 3 − 2P 2 + 1

b = (2P − 1)
(
2P 2 + 2P + 1) = 4P 3 + 2P 2 − 1

c = 4P
(
2P 2 + 1) = 8P 3 − 4P

has area 2P (2P + 1)(2P − 1)
(
2P 2 − 1) and can be inscribed in a circle with diameter

4P 4 + 1.

In particular:

For P = 2, the sides of the triangle are 25, 39 and 56; the diameter of the circle is 65 and
the area of the triangle is 420.

For P = 3, the sides of the triangle are 91, 125 and 204; the diameter of the circle is 325
and the area of the triangle is 3570.

We do not know whether our formula produces all such triangles. We used a computer
program to determine that it does produce the unique triangle for each positive integer
P from 1 through 12.

SOLUTION:
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We let a, b, and c be the sides of the triangle, A its area, and R its circumradius. It is

known that R is given by R =
abc

4A
.

Thus since we are given A = 2P (2P + 1)(2P − 1)
(
2P 2 − 1

)
and diameter 4P 4 + 1, we

have

abc = 4AR = 4 · 2P (2P + 1)(2P − 1)
(
2P 2 − 1

) 4P 4 + 1

2

= 4P (2P + 1)(2P − 1)
(
2P 2 − 1

) (
4P 4 + 1

)
= 4P (2P + 1)(2P − 1)

(
2P 2 − 1

) (
2P 2 + 2P + 1

) (
2P 2 − 2P + 1

)
.

We found a, b, c (as given above) by judiciously selecting the above factors of abc so that
1 ≤ a, b, c ≤ 2R = 4P 4 + 1 and the sum of any two of them exceeds the third.

It is easy to verify that our a, b, and c are ≥ 1.

We must show that a, b, c satisfy the requirements of the problem. Note that

a+ b+ c = 16P 3 − 4P = 4P (2P − 1)(2P + 1);

a+ b− c = 4P > 0, so a+ b > c;

a+ c− b = 8P 3 − 4P 2 − 4P + 2 = 2(2P − 1)
(
2P 2 − 1

)
> 0, so a+ c > b;

b+ c− a = 8P 3 + 4P 2 − 4P − 2 = 2(2P + 1)
(
2P 2 − 1

)
> 0, so b+ c > a.

This shows that a, b, c do form a triangle. It also puts us in position to calculate the
area by Herons Formula;

A2 =
1

16
(a+ b+ c)(a+ b− c)(a+ c− b)(b+ c− a)

=
1

16
4P (2P − 1)(2P + 1)(4P )

[
2(2P − 1)]

(
2P 2 − 1

)] [
2(2P + 1)

(
2P 2 − 1

)]
= 4P 2(2P − 1)2(2P + 1)2

(
2P 2 − 1)2.

Therefore, A− 2P (2P − 1)(2P1)(2P
2 − 1), as desired.

Finally, we calculate the diameter of the circumscribed circle:

D = 2R =
abc

2A
=

4P (2P + 1)(2P − 1)
(
2P 2 − 1

) (
2P 2 + 2P + 1

) (
2P 2 − 2P + 1

)
4P (2P − 1)(2P + 1) (2P 2 − 1)

=
(
2P 2 + 2P + 1

) (
2P 2 − 2P + 1

)
= 4P 4 + 1, as desired.

Because the sides a, b, c produce the appropriate circumradius, we know that the sides
actually fit into the circle: each is ≤ D.
Here are the results for P = 1, 2, . . . , 12. Each of these is the unique triangle satisfying
the given conditions.
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

P a b c Area Diameter

1 3 5 4 6 5

2 25 39 56 420 65

3 91 125 204 3570 325

4 225 287 496 15624 1025

5 451 549 980 48510 2501

6 793 935 1704 121836 5185

7 1275 1469 2716 264810 9605

8 1921 2175 4064 518160 16385

9 2755 3077 5796 936054 26245

10 3801 4199 7960 1588020 40001

11 5083 5565 10604 2560866 58565

12 6625 7199 13776 3960600 82945


Comment: There are other ways to factor
abc = 4P (2P + 1)(2P − 1)

(
2P 2 − 1

) (
2P 2 + 2P + 1

) (
2P 2 − 2P + 1

)
so the sides form a

triangle, but which do not give the desired area. For example, with P = 2, the sides
50, 39, 28 form a triangle whose area is not the desired area (420).

Ditto for 35, 39, 40.

Also these triangles do not have the desired circumradius of 4P 4 + 1.

Also solved by Brian D. Beasley, Presbyterian College, Clinton, SC;
Kee-Wai Lau, Hong Kong, China, and the proposer.

5524: Proposed by Michael Brozinsky, Central Islip, NY

A billiard table whose sides obey the law of reflection is in the shape of a right triangle
ABC with legs of length a and b where a > b and hypotenuse c. A ball is shot from the
right angle and rebounds off the hypotenuse at point P on a path parallel to leg CB

that hits CAat point Q. Find the ratio
AQ

QC
.

Solution 1 by Ed Gray, Highland Beach,FL

Usually in a triangle, especially right triangles, sides are labeled with small letters, and
the vertices are labeled with capital letters, the same letter being used to designate a
side being opposite a vertex. To make this problem work, the drawing must be as
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follows (not withstanding rotations). The right angle C is at lower right, the hypotenuse
is c. Vertex A is North of C, and B is at the left of C. However, AC > BC to
accommodate the law of reflection. So, if a > b,AC = a, and BC = b.

Let D be a point on the hypotenuse such that DC is perpendicular to the hypotenuse.
Point P is on the hypotenuse where the ball strikes and BD < BP , (i.e., P is between
D and A). Let PF be the normal to the hypotenuse where F is a point on AC.

Let r = the angle of incidence = CPF . The angle of reflection = r = 6 FPQ. Since
6 PQC is a right angle, then 6 QCP = 90◦ − 2r. Note that 6 PCD = r since PF ‖ CD
and alternate interior angles are equal.

Therefore,
6 DCB + r + (90◦ − 2r) = 6 ACB = 90◦, so 6 DCB = r ,

and 6 DBC = 90◦ − r, 6 APQ = 90◦ − r by corresponding angles, so 6 BAC = r.

Then tan( 6 APQ) = tan(90◦ − r) =
1

tan(r)
=
AQ

PQ
, and tan(6 QPC) = tan(2r) =

CQ

PQ
.

So,
AQ

CQ
=

1

tan(r)

tan(2r)
=

1− tan2(r)

2 tan2(r)
. From 4ABC, tan(r) =

b

a
. So,

AQ

CQ
=
a2 − b2

2b2
.

Editor′s comment : Ed’s comment that nonstandard labeling was being used in this
problem is absolutely correct. I wrote to the proposer and he acknowledged the mix up,
but stated that everything will still work out with standard notation but then we must
state that a < b.

Solution 2 by Michel Bataille, Rouen, France

Since PQ is parallel to BC, we have 6 PQA = 90◦, hence 6 QPA = B. Let the
perpendicular to AB at P intersect the line AC at N . Then
6 NPC = 6 QPN = 90◦ −B = A and 6 ACP = 6 QCP = 90◦ − 2A. Thus, we must have
A ≤ 45◦ and so B ≥ 45◦ ≥ A. Therefore the longest leg is a = CA while b = CB (see
figure).
Now, 6 PCB = 2A and 6 CPB = B = 6 PBC, from which we deduce
PB = 2CB cosB = 2b cosB = 2b · bc = 2b2

c . It follows that

AP = c− 2b2

c = c2−2b2
c = a2−b2

c and so AP
PB = a2−b2

2b2
. Since PQ is parallel to BC, we have

AQ
QC = AP

PB and we can conclude that AQ
QC = a2−b2

2b2
.
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Also solved by Kenneth Korbin, NY, NY; David Stone and John Hawkins,
Georgia Southern University Statesboro GA, and the proposer.

5525: Proposed by Daniel Sitaru, National Economic College “Theodor Costescu”,
Drobeta Turnu-Severin, Mehedinti, Romania

Find real values for x and y such that:

4 sin2(x+ y) = 1 + 4 cos2 x+ 4 cos2 y.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

Put u = e2ix, v = e2iy. Then the given equation reads as

0 =
(
e2ix+2iy + e−2ix−2iy − 2

)
+ 1 +

(
e2ix + e−2ix + 2

)
+
(
e2iy + e−2iy + 2

)
=

= u
1

uv
+ u+

1

u
+ v +

1

v
+ 3 =

(uv + u+ 1)(uv + v + 1)

uv
.

So either v = −1

u
− 1 or

1

v
= −u− 1. If x and y run through the real numbers v and

1

v
represent circles in the complex plane with radius 1 and center 0, while −u− 1 and
−1

u
− 1 represent circles with radius 1 and center −1. Therefore

(u, v) ∈
{(
e2πi/3, e2πi/3

)
,
(
e−2πi/3, e−2πi/3

)}
which translates to x ≡ y ≡ ±π

3
(mod π).

Solution 2 by Michael C. Faleski, University Center, MI

Let’s rewrite the statement of the problem using several trigonometric indentities. This
leads to

4(sinx cos y + sinx cos y)2 = 1 + 4 cos2 x+ 4 cos2 y

4(sin2 x cos2 y + sin2 y cos2 x+ 2 sinx sin y cosx cos y) = 1 + 4 cos2 x+ 4 cos2 y

7



4
(
(1− cos2 x) cos2 y + cos2 x(1− cos2 y) + 2 sinx sin y cosx cos y

)
= 1 + 4 cos2 x+ 4 cos2 y

−8 cos2 x cos2 y + 8 sinx sin y cosx cos y = 1

−8

(
1

2
+

1

2
cos(2x)

)(
1

2
+

1

2
cos(2y)

)
+ 2 sin 2x sin 2y = 1

−2(1 + cos 2x+ cos 2y + cos 2x cos 2y) + 2 sin 2x sin 2y = 1

−2− 2 cos 2x− 2 cos 2y − 2 cos 2x cos 2y + 2 sin 2x sin 2y = 1

−2 cos 2x− 2 cos 2y − 2(cos 2x cos 2y − sin 2x sin 2y) = 3

cos 2x+ cos 2y + cos(2x+ 2y) = −3

2
.

And now we use cos a = cos b = 2 cos

(
1

2
(a+ b)

)
cos

(
1

2
(a− b)

)
to produce 2 cos(x+ y) cos(x− y) + (2 cos2(x+ y)− 1) = −3

2
,

and so we have 2 cos2(x+ y) + 2 cos(x− y) cos(x+ y) +
1

2
= 0, or

cos2(x+ y) + cos(x− y) cos(x+ y) +
1

4
= 0.

We will now use the quadratic formula to solve for cos(x+ y).

cos(x+ y) =
− cos(x− y)±

√
cos2(x− y)− 1

2
.

As we are required to have real solutions, this means that
cos2(x− y)− 1 ≥ 0 −→ cos2(x− y) ≥ 1. This condition is only true for

cos2(x− y) = 1 −→ cos(x− y) = 1.

Letting y = x− a, we find cos a = 1 −→ a = 2nπ,∀n ∈ Z.

cos(x+ y) = −cos(x− y)

2
= −1

2
.

Since y = ±2nπ, then for 0 ≤ x ≤ 2π, x = y. Hence, cos 2x = −1

2
, which leads to

2x =
2

3
π,

4

3
π −→ x =

(
1

3
π,

2

3
π

)
. So, for 0 ≤ x, y ≤ 2π, (x, y) =

(
1

3
π,

1

3
π

)
,

(
2

3
π,

2

3
π

)
.

Solution 3 by Bruno Salgueiro Fanego, Viveiro, Spain

4 sin2((x+y) = 1+4 cos2 x+4 cos2 y ⇐⇒ 4
(
1− cos2(x+ y)

)
= 1+2 cos(2x)+2+2 cos(2y)

⇐⇒ 4− 4 cos2(x+ y) = 5 + 4 cos

(
2x+ 2y

2

)
cos

(
2x− 2y

2

)
⇐⇒ 0 = 4− 4 cos2(x+ y) + 4 cos(x+ y) cos(x− y) + 1
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⇐⇒ 0 = (2 cos(x+ y) + cos(x− y))2 − cos2(x− y) + 1

⇐⇒ 0 = (2 cos(x+ y) + cos(x− y))2 + sin2(x− y)

⇐⇒ 2 cos(x+ y) + cos(x− y) = 0 = sin(x− y) ⇐⇒ x− y = kπ, k ∈ Z

cos(x+ y) + cos(kπ) = 0 ⇐⇒ x− y = kπ; cos(x+ y) =
(−1)k+1

2
, k ∈ Z

⇐⇒ x− y = kπ; x+ y = arccos
(−1)k+1

2
, ∈ Z

⇐⇒ x =
1

2

(
arccos

(−1)k+1

2
+ kπ

)
, y =

1

2

(
arccos

(−1)k+1

2
− kπ

)
, k ∈ Z.

Solution 4 by Kee-Wai Lau, Hong Kong, China

Since sin(x+ y) = sinx cos y + cosx sin y, so the given equation is equivalent to
1− 8 sinx cosx sin y cos y + 8 cos2 x cos2 y = 0. Clearly cosx 6= 0 and cos y 6= 0. So
dividing both sides of the last equation by cos2 x cos2 y, we obtain
sec2 x sec2 y − 8 tanx tan y + 8 = 0 or (1 + tan2 x)(1 + tan2 y)− 8 tanx tan y + 8 = 0, or

(tanx− tan y)2 + (tanx tan y − 3)2 = 0.

Thus tanx = tan y and tanx tan y = 3, so that tanx = tan y =
√

3 or
tanx = tan y = −

√
3. It follows that

(x, y) =
(π

3
+mπ,

π

3
+ nπ

)
,

(
2π

3
+mπ,

2π

3
+ nπ

)
,

where m and n are arbitrary integers.

Solution 5 by Ulrich Abel, Technische Hochschule Mittelhessen, Germany

Using cos (2x) = 2 cos2 (x)− 1 = 1− 2 sin2 (x) we see that the equation

4 sin2 (x+ y) = 1 + 4 cos2 (x) + 4 cos2 (y)

is equivalent to

0 = 3 + 2 cos (2x+ 2y) + 2 cos (2x) + 2 cos (2y) =: f (x, y) .

Using sin (2a) + sin (2b) = 2 sin (a+ b) cos (a− b) we obtain

gradf (x, y) = −4 · (sin (2x+ 2y) + sin (2x) , sin (2x+ 2y) + sin (2y))

= −8 · (sin (2x+ y) cos y, sin (x+ 2y) cosx) .

Therefore, gradf (x, y) = (0, 0) happens if

• 2x = π (mod 2π) and 2y = π (mod 2π). The critical points

(
2n+ 1

2
π,

2m+ 1

2
π

)
with

integers n,m satisfy

f

(
2n+ 1

2
π,

2m+ 1

2
π

)
= 3 + 2 · 1 + 2

(
−1)n+1 + 2(−1)m+1 > 0.

9



• 2x = π (mod 2π) and 2x+ y = 0 (mod π). The critical points(
2n+ 1

2
π,mπ − (2n+ 1)π

)
with integers n,m satisfy

f

(
2n+ 1

2
π,mπ − (2n+ 1)π

)
= 3 + 2 · (−1) + 2 (−1)n+1 + 2 · 1 > 0.

• 2y=π (mod 2π) and x+ 2y = 0 (mod π) is symmetrical to the preceding case.

• 2x+ y = 0 (modπ) and x+ 2y = 0 ( modπ). This implies 3x+ 3y = (n+m)π and

x− y = (n−m)π with integers n,m. We infer that (x, y) =
π

3
(2n−m, 2m− n) are the

remaining critical points of f .

f

(
2n−m

3
π,

2m− n
3

π

)
= 3 + 2 cos

2 (n+m)π

3
+ 2 cos

(4n− 2m)π

3
+ 2 cos

(4m− 2n)π

3

= 3 + 2

(
2 cos2

(n+m)π

3
− 1

)
+ 4 cos

(n+m)π

3
cos (n−m)π

= 1 + 4 cos2
Nπ

3
+ 4 (−1)N cos

Nπ

3
=

(
1 + 2 (−1)N cos

Nπ

3

)2

≥ 0

with N := n+m. Consequently, the function value is equal to zero iff N is not a
multiple of 3.

In total, we have f (x, y) ≥ 0 on R2 and f (x, y) = 0 if and only if (x, y) = (2n−m, 2m− n)
π

3
,

for all integers n,m satisfying n + m 6= 0 (mod 3). The solutions of the above trigonometric
identity are exactly the zeros of f .

Also solved by Hatef I. Arshagi, Guilford Technical Community College, Jamestown,
NC; Michel Bataille, Rouen, France; Brian D. Beasley, Presbyterian College, Clin-
ton, SC; Ed Gray, Highland Beach, FL; David E. Manes, Oneonta, NY; Adrian
Naco, Polytechnic University, Tirana, Albania; Ioannis D. Sfikas, National and
Kapodistrian University of Athens, Greece; David Stone and John Hawkins, Geor-
gia Southern University, Statesboro, GA; Marian Ursărescu, “Roman Vodă Col-
lege,” Roman, Romania, and the proposer.

5526: Proposed by Ioannis D. Sfikas, National and Kapodistrian University of Athens, Greece

The lengths of the sides of a triangle are 12, 16 and 20. Determine the number of straight lines
which simultaneously halve the area and the perimeter of the triangle.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

We claim that there is exactly one straight line which simultaneously halves the area and the
perimeter of the triangle.

If the line passes through the sides of length 12 and 16, and its intersection with side 12 is x
units from the acute angle on that side, then the line cuts off a right triangle of base 12 − x
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and height 12 + x. The area of this triangle is
144− x2

2
. Setting this equal to 48, we would

have x = ±4
√

3, but the construction of this line requires 0 ≤ x ≤ 4, so there is no such line
that cuts the triangle’s area in half.

If the line passes through the sides of length 16 and 20, and its intersection with side 16 is
x units from the acute angle on that side, then it cuts off a triangle with base x and height
3

5
(24 − x). The area of this triangle is

1

2
x

3

5
(24 − x) =

3

10
x(24 − x), which takes a maximum

value
432

10
< 48 at x = 12, so no such line can cut the triangle’s area in half.

The remaining case is a line through sides 12 and 20. Let the line intersect side 12 at a point

x units from the right angle. Then it cuts off a triangle of base 12 − x and height
4

5
(12 + x),

which has area
2

5
(144 − x2). Setting this equal to 48, we find that x = ±2

√
6, but 0 ≤ x ≤ 8

by the construction of the line, so we have one solution, x = 2
√

6.

Comment: this problem is not new. It was discussed (for instance) in an internet site called
“Problem of the Month”, run by the University of Regina in Regina, Saskatchewan, Canada.

The problem of the month of April 2012 stated
(see http://mathcentral.uregina.ca/mp/previous2011/apr12sol.php):

Recall that the incenter I of a triangle is the point where the three internal angle bisectors
meet. Prove that any line through I that divides the area of the triangle in half also divides
its perimeter in half; conversely, any line through I that divides the perimeter of the triangle
in half also divides its area in half.

In the solution the problem editor referred to a theorem of Verena Haider which states that for
any triangle ABC and any line l , l divides the area and the perimeter of 4ABC in the same
ratio if and only if it passes through the triangle’s incenter. Furthermore the problem editor
made the statement that it is not hard to prove that every triangle has exactly one, two, or
three bisecting lines, and no other values are possible, and provided a few references.

Solution 2 by Adrian Naco, Polytechnic University, Tirana, Albania

Let be a right angle triangle ABC where AB = 20, AC = 12, BC = 16.

Case 1. The straight line intersect the sides AC and AB in the points M and N respectively.
Let us sign AM = x,AN = y.
The area of the traiangle AMN (we sign the area of the triangle by [AMN ]) is half the area of
the triangle ABC ([ABC]), that is’

[AMN ] =
1

2
[ABC] ⇒ AM ·AN · sin 6 MAN

2
=

1

2
· AC ·AB · sin

6 CAB

2

⇒ xy sin 6 MAN

2
=

1

2
· 12 · 20 · sin 6 CAB

2
⇒ xy = 120

11



Furthermore, the straight line MN halve the perimeter of the triangle ABC, that is, x+y = 24.
So, the lengths x, y of the respective sides AM and AN of the triangle AMN are roots of the
following quadratic equation,

t2 − 24t+ 120 = 0 ⇒ {x, y} = {10, 14}
⇒ x = AM = 10, y = AN = 14

Case 2. The straight line intersect the sides BC and AB in the points M and N respectively.
Let us sign BM = x,BN = y.
The area of the traiangle BMN is half the area of the triangle ABC, that is,

[BMN ] =
1

2
[ABC] ⇒ BM ·BN · sin 6 MBN

2
=

1

2
· BC ·AB · sin

6 CBA

2

⇒ xy sin 6 MBN

2
=

1

2
· 16 · 20 · sin 6 CAB

2
⇒ xy = 160

Furthermore, the straight line MN halve the perimeter of the triangle ABC that is, x+y = 24.
So, the lengths x, y of the respective sides BM and BN of the triangle BMN are roots of the
following quadratic equation,

t2 − 24t+ 160 = 0 ⇔ (t− 12)2 + 16 = 0

which have no solution. So this case is not possible. Case 3. The straight line intersect the
sides AC and BC in the points M and N respectively. Let us sign CM = x,CN = y.
The area of the traiangle CMN is half the area of the triangle ABC, that is,

[CMN ] =
1

2
[ABC] ⇒ CM · CN · sin 6 MCN

2
=

1

2
· AC ·BC · sin

6 ACB

2

⇒ xy sin 6 MCN

2
=

1

2
· 12 · 16 · sin 6 ACB

2
⇒ xy = 96

Furthermore, the straight line MN halve the perimeter of the triangle ABC, that is, x+y = 24.
So, the lengths x, y of the respective sides CM and CN of the triangle CMN are roots of the
following quadratic equation,

t2 − 24t+ 96 = 0 ⇒ {x, y} = {12− 2
√

7, 12 + 2
√

7}
⇒ x = CM = 12− 2

√
7, y = CN = 12 + 2

√
7

This case is not possible since 12 + 2
√

7 > 16 = BC.

Finally, the only possible case is when the straight line intersect the sides AC = 12 and AB = 20
in the respective points M and N such that AM = 10 and AN = 14.

Editor′s comment: The proposer, Ioannis D. Sfikas of National and Kapodistrian Uni-
versity in Athens, Greece accompanied his solution with an interesting discussion of the
problem’s history. He wrote the following:
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Comments. An interesting issue arising from classical Euclidean geometry concerns the exis-
tence of lines called “equalizers” that bisect both the area and the perimeter of a triangle. The
search for such lines can be seen as a trivial process, but this abstains from the real picture.
The complete study concerning the special case of a triangle was conducted by Kontokostas
(2010). The possibility of the existence of an equalizer that can be applied to an arbitrary
planar shape is an important parameter. However, a general method may not exist in order to
solve this problem.

In general, an equalizer can be applied to any body and that is a fact that came up from a useful
topology theorem: the Ham-Sandwich Theorem, also called the Stone-Tukey Theorem (after
Arthur H. Stone and John W. Tukey). The theorem states that, given d ≥ 2 measurable solids
in <d, it is possible to bisect all of them in half with a single (d − 1)-dimensional hyperplane.
In other words, the Ham-Sandwich Theorem provides the following paraphrased statement:
Take a sandwich made of a slice of ham and two slices of bread. No matter where one places
the pieces of the sandwich in the kitchen, or house, or universe, so long as one’s knife is long
enough one can cut all three pieces in half in only one pass. Proving the theorem for d = 2
(known as the Pancake Theorem) is simple and can be found in Courant and Robbins (1996,
p. 267).

In 1994, Alexander Shen, professor at the Independent University of Moscow, published in The
Mathematical Intelligencer a selection of problems, known as “coffin problems,” which were of-
fered to “undesirable” applicants at the entrance examinations at the Department of Mechanics
and Mathematics (Mekh-mat) of Moscow University at 1970s and 1980s. Four examinations
were held at the Mekh-Mat: written math, oral math, literature essay composition, and oral
physics (Frenkel, 2013, p. 28). These problems appear to resemble greatly with the Olympiad
problems. It should be noted that these problems also differ from the Olympiad problems by
being, in many cases, either false or poorly stated. Their solution does not require knowledge
of a higher level of mathematics, but require, however, ingenuity, creativity and unorthodox
attitudes. Solutions to these problems were thoroughly analyzed by Ilan Vardi (2005a, 2005b,
2005c).

The Mathematics Department of Moscow State University, the most prestigious mathematics
school in Russia, had at that time been actively trying to keep Jewish students (and other
“undesirables”) from enrolling in the department (Vershik, 1994, p. 5). One of the methods
they used for doing this was to give the unwanted students a different set of problems on
their oral exam. These problems were carefully designed to have elementary solutions (so that
the Department could avoid scandals) that were nearly impossible to find. Any student who
failed to answer could be easily rejected, so this system was an effective method of controlling
admissions. These kinds of math problems were informally referred to as “Jewish” problems
or “coffins.” Coffins is the literal translation from Russian (Khovanova and Radul, 2012, p.
815). These problems along with their solutions were, of course, kept as a secret, but Valera
Senderov and his friends had managed to collect a list. In 1975, they approached us to solve
these problems, so that they could train the Jewish students following these mathematical ideas.
Problem 5 of Shen’s catalogue, which had been proposed by Podkolzin in 1978, states: Draw
a straight line that halves the area and perimeter of a triangle. A solution was included in the
first chapter of Mikhail Shifman’s book (2005, pp. 50-51).

The Canadian Mathematical Olympiad is an annual premier national advanced mathematics
competition sponsored by the Canadian Mathematical Society. In 1985, 17th Canadian Math-
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ematical Olympiad was held, and the first problem was:

17th Canadian Mathematical Olympiad 1985, Problem 1
A triangle has sides 6, 8, 10. Show that there is a unique line, which bisects the area and the
perimeter.

The solution to the above problem is given in detail by Doob (1993, p. 169). The same subject
seems to appear as Problem 9 at the Canadian mathematical magazine Crux Mathematicorum
destined for students. Readers are invited to search for the number of equalizers included on a
right triangle whose sides differ from those presented in Problem 1 (Woodrow, 1991, p. 72):

Problem 9, Crux Mathematicorum 1991

The lengths of the sides of a triangle are 3, 4 and 5. Determine the number of straight lines
which simultaneously halve the area and the perimeter of the triangle.

A solution to the magazine’s Problem 9 was given by Michael Selby from the University
of Windsor. A solution was also already given to Problem 1 of the Canadian Mathematical
Olympiad stating that the questioned right triangle contains only one equalizer. The solution
of the particular problem doesn’t abstain from Problem 1. A relative problem was also proposed
by the Flemish Mathematical Olympiad in 2004 in Belgium. It states:

Flanders Mathematics Olympiad 2004, Problem 1

Consider a triangle with side lengths 501 m, 668 m, 835 m. How many lines can be drawn with
the property that such a line halves both area and perimeter?
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Also solved by Ed Gray, Highland Beach, FL; Kee-Wai Lau, Hong Kong, China;
David Stone and John Hawkins, Georgia Southern University, Statesboro, GA, and
the proposer.

5527: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let a, b and c be positive real numbers such that a + b + c = 3. Prove that for all real α > 0,
holds:

1

2

(
1− aα+1bα

aαbα
+

1− bα+1cα

bαcα
+

1− cα+1aα

cαaα

)

≤

√(
1− aα+1

aα
+

1− bα+1

bα
+

1− cα+1

cα

)(
1− aαbαcα
aαbαcα

)
.

Editor′s comment : A mistake was detected in the statement of the problem by Michel
Bataille of Rouen, France. He noticed the following:

The inequality easily rewrites as

A := aα + bα + cα − 3aαbαcα ≤ B := 2
√

(1− aαbαcα)(aαbα + bαcα + aαcα − 3aαbαcα). (1)

We take a = 1
2 , b = 1, c = 3

2 and first consider the case α = 2. We obtain A = 1.8125 and

B =
√
154
8 = 1.55...., hence (1) does not hold.

In the case α = 1, we find A = 0.75 and B =
√
2
2 = 0.707..., hence (1) does not hold.

In the case α = 1/2, A = 0.333.. and B = 0.327.., hence (1) does not hold.
However, we prove the reverse inequality in the case α = 1, that is,

3− 3abc ≥ 2
√

(1− abc)(ab+ bc+ ca− 3abc). (2)

Since 3 = a + b + c ≥ 3 3
√
abc, we have 1 − abc ≥ 0 and (2) will certainly holds if 3

√
1− abc ≥

2
√
ab+ bc+ ca− 3abc or, squaring and arranging,

9 + 3abc− 4(ab+ bc+ ca) ≥ 0. (3)
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Now, From Schur’s inequality a(a− b)(a− c) + b(b− c)(b− a) + c(c− a)(c− b) ≥ 0, we obtain

(a+ b+ c)(ab+ bc+ ca)− 3abc ≤ (a+ b+ c)
(
(a+ b+ c)2 − 3(ab+ bc+ ca)

)
+ 6abc

or since a + b + c = 3, 3(ab + bc + ca) − 3abc ≤ 3(9 − 3(ab + bc + ca)) + 6abc, that is,
4(ab+ bc+ ca) ≤ 9 + 3abc and (3) holds.
Perhaps the reverse inequality does hold when α > 0, α 6= 1 but I have not been able to find a
proof.

Editor again : With respect to the above, the solution to this problem remains open.

5528: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

Let a > 0. Calculate

∫ ∞
a

∫ ∞
a

dxdy

x6(x2 + y2)
.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

We easily verify that∫ ∫
dxdy

x6(x2 + y2)
=

1

6xy5
− 1

18x3y3
+

1

30x5y
+

arctan x
y

6y6
−

arctan y
x

6x6
+ C.

Therefore, ∫ ∞
a

∫ ∞
a

dxdy

x6(x2 + y2)
=

13

90a6
.

Solution 2 by Michael C. Faleski, University Center, MI

We start by evaluating the y−integral using trigonometric substitution with y = x tan θ, dy =
x sec2 θdθ to give∫ ∞

a

dy

x6(x2 + y2)
→
∫

1

x6

( x
x2

)
dθ → 1

x7
tan−1

(y
x

) ∣∣∣∣∞
a

=
1

x7

(π
2
− tan−1

(a
x

))
.

This quantity is now integrated with respect to x by braking it into two terms written as∫ ∞
a

π

2

dx

x7
−
∫ ∞
a

tan−1
(a
x

)
x7

dx.

The first term evaluates as ∫ ∞
a

πdx

2x7
= − π

12

1

x6

∣∣∣∣∞
a

=
π

12a6
.

For the second term, we start with integration by parts using u = − tan−1
(a
x

)
→ du =

a

x2 + a2

and dv =
1

x7
dx→ v = − 1

6x6
which yields

tan−1
(a
x

)
6x6

∣∣∣∣∞
a

−
(
−a

6

)∫ ∞
a

dx

x6(x2 + a2)
=
(

0− π

24a6

)
+
a

6

∫ ∞
a

dx

x6(x2 + a2)
.
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For the last term, one approach would be to make a u−substitution 0f x = a tan θ → dx =
a sec2 θdθ leading to

a

6
a

∫ ∞
a

dx

x6(x2 + a2)
→ a

6

∫ π/2

π/4

1

a8
a sec2 θ dθ

tan6 θ sec2 θ
=

We can use (which is easily shown using cot2 x = (csc 2x− 1) repeatedly) that∫
cot6 xdx =

cot5 x

5
+

cot3 x

3
− cotx

1
− x+ C.

For our scenario, we have

1

6a6

∫ π/2

π/4
cot6 θdθ =

1

6a6

(
−cot5 θ

5
+

cot3 θ

3
− cot θ

1
− θ

)∣∣∣∣π/2
π/4

=
1

6a6

(
1

5
− 1

3
+ 1− π

4

)
.

So finally, putting putting all of the numerical terms together yields:∫ ∞
a

∫ ∞
a

dxdy

x6(x2 + y2)
=

π

12a6
− π

24a6
+

1

6a6

(
13

15
− π

4

)
=

13

90a6
.

Solution 3 by Ulrich Abel, Technische Hochschule Mittelhessen, Germany

We show that, for a > 0,

I :=

∫ ∞
a

∫ ∞
a

dxdy

x6 (x2 + y2)
=

13

90a6
.

Integrating both sides of the identity

1

x6 (x2 + y2)
+

1

y6 (x2 + y2)
=

x6 + y6

x6y6 (x2 + y2)
=
x4 − x2y2 + y4

x6y6
=

1

x2y6
− 1

x4y4
+

1

x6y2

we conclude that

2I =

∫ ∞
a

∫ ∞
a

(
1

x2y6
− 1

x4y4
+

1

x6y2

)
dxdy

=

(
1

x · 5y5
− 1

3x3 · 3y3
+

1

5x5 · y

)∣∣∣∣∞
x=a

∣∣∣∣∞
y=a

= −
(

1

5
− 1

9
+

1

5

)
1

a6
=

13

45a6
.

Solution 4 by Brian Bradie, Christopher Newport University, Newport, News, VA

Let a > 0, n be a positive integer, and consider∫ ∞
a

∫ ∞
a

dx dy

xn(x2 + y2)
.
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With the substitutions u = x/a and v = y/a,∫ ∞
a

∫ ∞
a

dx dy

xn(x2 + y2)
=

1

an

∫ ∞
1

∫ ∞
1

du dv

un(u2 + v2)

=
1

an

∫ ∞
1

1

un
tan−1(v/u)

u

∣∣∣∣∞
1

du

=
1

an

∫ ∞
1

1

un+1

(
π

2
− tan−1

1

u

)
du

=
1

an

∫ ∞
1

1

un+1
tan−1 u du.

By integration by parts, we next find∫ ∞
a

∫ ∞
a

dx dy

xn(x2 + y2)
=

1

nan

(
π

4
+

∫ ∞
1

u−n

1 + u2
du

)
;

the substitution u = 1/w then yields∫ ∞
a

∫ ∞
a

dx dy

xn(x2 + y2)
=

1

nan

(
π

4
+

∫ 1

0

un

1 + u2
du

)
.

Let

In =

∫ 1

0

un

1 + u2
du

Then

I1 =

∫ 1

0

u

1 + u2
du =

1

2
ln 2;

I2 =

∫ 1

0

u2

1 + u2
du =

∫ 1

0

(
1− 1

1 + u2

)
du = 1− π

4
;

and, for n > 2,

In =
1

n− 1
−
∫ 1

0

un−2

1 + u2
du =

1

n− 1
− In−2.

Thus,

I3 =
1

2
− I1 =

1

2
− 1

2
ln 2;

I4 =
1

3
− I2 =

π

4
− 2

3
;

I5 =
1

4
− I3 =

1

2
ln 2− 1

4
; and

I6 =
1

5
− I4 =

13

15
− π

4
.
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Finally, ∫ ∞
a

∫ ∞
a

dx dy

x(x2 + y2)
=

1

a

(
π

4
+

1

2
ln 2

)
∫ ∞
a

∫ ∞
a

dx dy

x2(x2 + y2)
=

1

2a2

(π
4

+ 1− π

4

)
=

1

2a2∫ ∞
a

∫ ∞
a

dx dy

x3(x2 + y2)
=

1

3a3

(
π

4
+

1

2
− 1

2
ln 2

)
∫ ∞
a

∫ ∞
a

dx dy

x4(x2 + y2)
=

1

4a4

(
π

4
+
π

4
− 2

3

)
=

1

4a4

(
π

2
− 2

3

)
∫ ∞
a

∫ ∞
a

dx dy

x5(x2 + y2)
=

1

5a5

(
π

4
+

1

2
ln 2− 1

4

)
∫ ∞
a

∫ ∞
a

dx dy

x6(x2 + y2)
=

1

6a6

(
π

4
+

13

15
− π

4

)
=

13

90a6

Solution 5 by Kee-Wai Lau, Hong Kong, China

We show that the integral of the problem, denoted by I, equals
13

90a6
.

Since

∫ ∞
a

dy

x2 + y2
=

1

x

[
arctan

(y
x

)]∞
a

=
arctan

(x
a

)
x

for x > 0, so I =

∫ ∞
a

arctan
(x
a

)
x7

.

By the substitution t =
x

a
,we obtain I =

1

a6

∫ ∞
1

arctan t

t7
dt. Integrating by parts, we obtain

I =
π

24a6
+

J

6a6
, where J =

∫ ∞
1

dt

(1 + t2)t6
. We now substitute t = cot θ to reduce J to the

standard integral

∫ π/4

0
tan6 θdθ. which equals

13

15
− π

4
. Hence our result for I.

Also solved by Michel Bataille, Rouen, France; Pat Costello, Eastern Kentucky
University, Richmond, KY; Ed Gray, Highland Beach, FL; Ioannis D. Sfikas, Na-
tional and Kapodistrian University, Athens, Greece, and the proposer.
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