
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
June 15, 2018

5493: Proposed by Kenneth Korbin, New York, NY

Convex quadrilateral ABCD is inscribed in a circle with diameter AC = 729. Sides AB
and CD each have positive integer length. Find the perimeter if BD=715.

5494: Proposed by Moshe Stupel, “Shaanan” Academic College of Education and
Gordon Academic College of Education, and Avi Sigler, “Shaanan” Academic College of
Education, Haifa, Israel

If a ≥ b ≥ c ≥ d are the lengths of four segments from which an infinite number of
convex quadrilaterals can be constructed, calculate the maximal product of the lengths
of the diagonals in such quadrilaterals.

5495: Proposed by D.M. Bătinetu-Giurgiu, “Matei Basarab” National College,
Bucharest and Neculai Stanciu, “George Emil Palade” School Buzău, Romania

Let {xn}n≥1, x1 = 1, xn = 1 ·
√

3!! · 3
√

5!! · . . . n
√

(2n− 1)!!.

Find:

lim
n→∞

(
(n+ 1)2

n+1
√
xn+1

− n2

n
√
xn

)
.

5496: Daniel Sitaru, “Theodor Costescu” National Economic College, Drobeta
Turnu-Severin, Mehedinti, Romania

Let a, b, c be real numbers such that 0 < a < b < c. Prove that:

∑
cyclic

(
ea−b + eb−a

)
≥ 2a− 2c+ 3 +

∑
cyclic

(
b

a

)√ab
.

5497: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain
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For all integers n ≥ 2, show that
n−1∏
k=1

2 sin

(
kπ

n

)
is an integer and determine it.

5498: Proposed by Ovidiu Furdui and Alina Sîntămărian, both at the Technical
University of Cluj-Napoca, Cluj-Napoca, Romania

Prove that
∞∑
n=1

{n!e}
n

=

∫ 1

0

ex − 1

x
dx

where {a} denotes the fractional part of a.

Solutions

5475: Proposed by Kenneth Korbin, New York, NY

Given positive integers a, b, c and d such that


a+ b = 14

√
ab− 48,

b+ c = 14
√
bc− 48,

c+ d = 14
√
cd− 48,

with a < b < c < d.

Express the values of b, c, and d in terms of a.

Solution 1 by David E. Manes, Oneonta, NY

If a = 1 < b = 97 < c = 18817 < d = 3650401, then it is easily verified that these
positive integers satisfy the system of equations. For the first equation
a+ b = 14

√
ab− 48, square both sides, simplify and write the equation as a quadratic in

b. Then one obtains b2 − (194a)b+ (a2 + 9408) = 0 with roots b = 97a± 56
√

3(a2 − 1).
Note that if a = 1, then b = 97. For the second equation, by symmetry,
c = 97b± 56

√
3(b2 − 1). If b = 97, then c = 972 ± 56

√
3(972 − 1) = 18817 or 1.

Therefore, c = 18817 since b < c. Writing c in terms of a, we first note that

b2 =
(

97a± 56
√

3(a2 − 1)
)2

= 18817a2 ± 10864a
√

3(a2 − 1)− 9408.

Therefore,

c = 97b± 56
√

3(b2 − 1)

= 97
(

97a± 56
√

3(a2 − 1)
)
± 56

√
3
(

18817a2 ± 10864a
√

3(a2 − 1)− 9409
)
.

If a = 1, then c = 18817 using the positive radicals. At this point, let α = 56
√

3(a2 − 1)

and β = 56

√
3
(

18817a2 ± 10864a
√

3(a2 − 1)− 9409. With these substitutions, the

equation for c reads c = 972a± 97α± β and if a = 1, then α = 0 and β = 9408. For the
last equation, d = 97c± 56

√
3(c2 − 1) again by symmetry. If c = 18817, then

d = 3650401 or 97 and c < d implies d 6= 97. Expressing d in terms of a, observe that

c2 =
(
972a± 97α± β

)2
= 974a2 + 972α2 + β2 ± 2 · 973aα± 2 · 972aβ ± 2 · 97αβ.
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Therefore,

d = 97c± 56
√

3(c2 − 1)

= 973a± 972α± 97β ± 56
√

3 (974a2 + 972α+ β2 ± 2 · 973aα± 2 · 972aβ ± 194αβ − 1).

Finally, note that if a = 1, then α = 0, β = 9408 and d = 3650401 for the positive signs.
This completes the solution.

Solution 2 by Ioannis D. Sfikas, National and Kapodistrian University of
Athens, Greece

Squaring the equation x+ y = 14
√
xy − 48 with x, y positive integers and x < y, yields

the quadratic equation of y = y(x).

y2 − 194xy + x2 + 9408 = 0 (1)

The discriminant ∆ is ∆ = 37632(x2 − 1). Since x and y are positive integers, hence
x ≥ 1 and y1 = 97x+ 56

√
3(x2 − 1) or y2 = 97x− 56

√
3(x2 − 1).

Nevertheless, there is x < y2 which holds for 1 ≤ x < 7. Applying (1) to the given
system there is

b2 = 97a− 56
√

3(a2 − 1), c2 = 97b2 − 56
√

3(b22 − 1) and d2 = 97c2 − 56
√

3(c22 − 1),

with 1 ≤ a < 7.

(1) For a = 1, then b2 = 97, c2 = 1 a contradiction.

(2) For a = 2, then b2 = 26, c2 = 2, a contradiction.

(3) For a = 3, 4, 5, or 6, b2 is not an integer. So, the solution (a, b2, c2, d2) is rejected.

Furthermore, there is x < y1, which holds for x ≥ 1. We may generalize the problem:
given positive integers {xi}ni=1 such that xi + xi+1 = 14

√
xixi+1 − 48 with xi < xi+1,

then we have the recursive relation

xi+1 = 97xi + 56
√

3(x2i − 1).

Again, applying (1) to the given system there are the following recursive relations:

b1 = 97a+56
√

3(a2 − 1), c1 = 97b1+56
√

3(b21 − 1) and d1 = 97c1+56
√

3(c21 − 1), with a ≥ 1.

So, we may list some solutions:

a b1 c1 d1
1 97 18817 3650401
2 362 70226 13623482
7 1351 262087 50843527
26 5042 978122 189750626
97 18817 3650401 708158977

We can assume that equation (1) is a Diophantine equation. Then, possible solutions
are (x, y) = (1, 97), (2, 26), (92, 362), (26, 5042), (97, 18817). Equation (1) reduces to a
Diophantine equation of the Pell type. We may write x2 − 194xy + y2 in the matrix
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form
(
x, y

)( 1 −97
−97 1

)(
x,
y

)
. This matrix has eigen vectors (1,±1), which leads

us to consider u1 = x+ y and v1 = y − x. Then, equation (1) becomes
49v21 − 48u21 + 9408 = 0. Since 9408=26 · 3 · 72, this impies that u1 = 7u and v1 = 12v
and so, u2 − 3v2 = 4, a Pell equation. The Pell equation has an infinity of integer
solutions in general and the Pell equation implies

u =
(

2−
√

3
)n

+
(

2 +
√

3
)n
, v =

√
3

3

[(
2 +
√

3
)n
−
(

2−
√

3
)n]

,

with n ∈ N , or,

x =
u1 − v1

2
=

7u− 12v

2
=

1

2

[(
7 + 4

√
3
)(

2−
√

3
)n

+
(

7− 4
√

3
)(

2 +
√

3
)n]

.

So, we may list some solutions:

n x y c1 d1
1 2 362 70226 13623482
2 1 97 18817 3650401
3 2 362 70226 13623482
4 7 1351 262087 50843527
5 26 5042 978122 189750626
6 97 18817 3650401 708158977
7 362 70226 13623482 2642885282
8 1351 262087 50843527 9863382151
9 5042 978122 189750626 36810643322
10 18817 3650401 708158977 137379191137

Solution 3 by Kee-Wai Lau, Hong Kong, China

We show that either (a, b, c, d) = (2, 26, 5042, 978122) or(
(2 +

√
3)k + (2−

√
3)k

2
, 97a+ 56

√
3(a2 − 1), 18817a+ 10864

√
3(a2 − 1),

3650401a+ 2107560
√

3(a2 − 1)

)
,

for nonnegative integers k, there are k solutions.

Squaring both sides of the given equations, we obtain respectively,

b2 − 194ab+ a2 + 9408 = 0, (1)

c2 − 194bc+ b2 + 9408 = 0, (2)

d2 − 194cd+ c2 + 9408 = 0. (3)

By subtracting (1) from (2), we obtain (c− a)(c+ a− 194b) = 0. Since

c > a, so c = 194b− a. Similarly by subtracting (2) from (3), we obtain

d = 194c− b = 37635b− 194a. From (1), we obtain b = 97a± 56
√

3(a2 − 1).

Since b is an integer, so 3(a2 − 1) is a square, which leads to the Pell Equation
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a2 − 3t2 = 1. It is well known that a must be of the form
(2 +

√
3)k + (2−

√
3)k

2
.

We first suppose that: b = 97a− 56
√

3(a2 − 1), with a > 1. Since b > a, we

deduce with some algebra that a < 7. This gives a = 2 and hence b = 26,

c = 5042, d = 978122.

We next suppose that b = 97a+ 56
√

3(a2 − 1), where a ≥ 1. We the obtain the

solutions stated at the beginning and this completes the solution.

Solution 4 by Kenneth Korbin (the proposer) NewYork, NY

Sequence x = (1, 2, 7, 26, 97, 362, 1351, . . . , xN , . . . ) with xN+1 = 4xN − xN−1

xN + xN+4 = 14xN+2

= 14
√

(xN )(xN+4)− 48

1 + 97 = 14(7) = 14
√

(1)(97)− 48
2 + 362 = 14(26) = 14

√
(2)(362)− 48

7 + 1351 = 14(97) = 14
√

(7)(1351)− 48
etc.

If a = xN , then
b = xN+4, c = xN+8, d = xN+12,

Sequence

y = (xN , xN+4, xN+8, xN+12, xN+16, · · · )

y = (a, b, c, d, xN+16, xN+20, · · · )

c = 194b− a
ac− b2 = 9408

Therefore, c =
b2 + 9408

a

194b− a =
b2 + 9408

a
= c

Therefore, b = 97a+ 56
√

3a2 − 3

c = 194b− a
Therefore, c = 18817a+ 210864

√
3a2 − 3

d = 194c− b
Therefore, = 36590401a+ 2107560

√
3a2 − 3

Editor′s Comment : As with previous problems, David Stone and John Hawkins of
Georgia Southern University in Statesboro, GA attached comments about the
problem and their solution that I believe are both informative and instructive to the
readership. They are listed below.

Comment 1: The points (a, b), (b, c) and (c, d) all lie on the hyperbola
x2 − 194xy + y2 = −9408.

5



This is actually the hyperbola 48x2 − 49y2 = 4704, after a 45-degree rotation.

Our hyperbola lies in the first quadrant; it asymptotes are y =
(
4
√

3 + 7
)2
x and

y =
1(

4
√

3 + 7
)2x, and all of the points (a, b), (b, c), and (c, d) lie very close to the steep

asymptote whose equation is “almost” y = 194x.

Comment 2: Our function f should probably be denoted f+(x) = 97x+ 56
√

3 (x2 − 1).
(See solutions 1, 2 or 3 for the motivation of its derivation.) The companion function
f−(x) = 97x− 56

√
3 (x2 − 1) actually serves as the inverse of f with suitable restrictions

on the domain: f+ : [1,∞)→ [97,∞) is a bijection and (f+)−1 = f− : [97,∞)→ [1,∞).
Without the ordering conditions on a, b, c and d, we could use f+ and f− randomly to
generate solutions based upon an appropriate value for a.

Also solved by Ed Gray, Highland Beach, FL; David Stone and John
Hawkins, Georgia Southern University, Statesboro, GA.

5476: Proposed by Ed Gray, Highland Beach, FL

Find all triangles with integer area and perimeter that are numerically equal.

Solution 1 by Henry Ricardo, Westchester Area Math Circle, NY

If we assume that any triangle satisfying our condition must have integer sides, then this
is an old problem, that of finding all equable Heronian triangles [1], [2].

The solution is that there exist only five triangles with numerically equal area and
perimeter—those with sides (6, 8, 10), (5, 12, 13), (6, 25, 29), (7, 15, 20), (9, 10, 17). (The
first two are the only right triangles.)

Prielipp [3] has proved that a triangle has equal area and perimeter if and only if it can
be circumscribed about a circle of radius 2. Kilmer [4] uses Prielipp’s result to generate
triangles of equal area and perimeter. Markowitz [5] shows that there exists an infinite
number of right triangles having rational side lengths for which the area equals the
perimeter. Bates [6] has shown that a right triangle ∆ABC with 6 C = 900 has
numerically equal area and perimeter if and only if a+ b− c = 4.

References

[1] “Heronian Triangle,” Wikipedia article.

[2] “Equable Shape,” Wikipedia article.

[3] “Area = Perimeter,” Robert Prielipp, Math.Teacher 78 (February 1985), 90; 127.

[4] “Triangles of Equal Area and Perimeter and Inscribed Circles,” Jean Kilmer,
Math.Teacher 71 (January 1988), 65-70

[5] “Area = Perimeter,” Lee Markowitz, Math.Teacher 74 (March 1981), 222-223.

[6] “Serendipity on the Area of a Triangle,” Madelaine Bates, Math.Teacher 72 (April
1979), 273-275.

Solution 2 by Ioannis D. Sfikas, National and Kapodistrian University of
Athens, Greece
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A triangle whose sides and area are rational numbers is called a rational triangle. If the
rational triangle is right-angled, it is called a right-angled rational triangle or a numerical
right triangle. If the sides of a rational triangle is of integer length, it is called an integer
triangle. If further these sides have no common factor greater than unity, the triangle
called primitive integer triangle. A Heronian triangle (named after Heron of Alexandria)
is an integer triangle with the additional property that its area is also an integer [1].

In 1904, W.A. Whitworth and D. Biddle proved that there are only five Heronian
triangles with integer sides whose area equals the perimeter, namely (9,10,17), (7,15,20),
(6,25,29), (6,8,10) and (5,12,13) [2]. These Heronian triangles are called perfect
triangles. In 1955, R.R. Phelps suggested the problem of finding all Heronian triangles
whose integer valued sides add up to twice its area [3]. N. J. Fine solved the last problem
and found that there is only one such triangle, namely (3,4,5) [4]. Subbarao [5] proved
that the number of integer triangles, whose integer valued-sides add up to λ times their
area A is finite, namely P = λA, with λ > 0 and P is perimeter. Furthermore, he
showed that the number of integer triangles for λ >

√
8 is zero, while he didn’t

determine the particular values of sides of integer triangles for λ ≤
√

8 [specifically, he
mentioned other articles about perfect triangles and the right-angled triangle (3,4,5)]. A
similar problem concerns the search of the number of Heronian triangles whose integer

valued-sides add up to
1

n
times their area A, namely A = nP , with n ∈ N . Markov [6],

[7] found an algorithm for the listing of all Heronian triangles with the property A = nP .
In 1985, Goehl [8] solved that particular problem in the special case of right triangles.
In addition, the (3,4,5) right-angled triangle is the integer-sided triangle for which the

ratio
A

P
is a rational number less than 1, it actually has the smallest such ratio [9].

In the usual notation, we have from the hypothesis and the classical area formula of
Heron 2s = m √

s(s− a)(s− b)(s− c). (1)

With x = s− a, y = s− b, z = s− c, we have s = x+ y + z and (1) becomes

4(x+ y + z) = xyz. (2)

Suppose (without loss of generality) x ≤ y ≤ z. Then 3 < x implies xyz ≥ 16z and
x+ y + z ≤ 3z so that

4(x+ y + z)) ≤ 12z < 16z ≤ xyz,

and (2) would be impossible. Hence, we need try only x = 1, 2, 3. (a) For x = 1, (2)
becomes (y − 4)(z − 4) = 20. For y ≥ 9 , then y − 4 ≥ 5 and (y − 4)(z − 4) ≥ 25, a
contradiction. Furthermore, for y ≤ 4 and y = 7, a contradiction. So, for y = 5, 6, 8, we
have the following three perfect triangles:
T1 = (6, 25, 29), T2 = (7, 15, 20), T3 = (9, 10, 17).

(b) For x = 2, (2) becomes (y − 2)(z − 2) = 8. For y ≥ 5, then y − 2 ≥ 3 and
(y − 2)(z − 2) ≥ 9, a contradiction. Furthermore, for y = 1, 2, a contradiction. So, for
y = 3, 4 we have the following two perfect triangles: T4 = (5, 12, 13) and T5 = (6, 8, 10).
Notice that each of the pairs (T1, T5) and (T3, T5) have a common side. These pairs can
be placed along their common sides to form a large triangle in each case [10]. In
particular, the perfect triangle T4 and T5 are right-angled triangles [11].

(c) For x = 3, (2) becomes (3y − 4)(3z − 4) = 52. Then, y 6= 3, since 3y − 4 = 5 is not a
factor of 52. Furthermore, y ≤ 3, since 4 ≤ y ≤ z implies 8 ≤ 3y − 4, whence
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(3y − 4)(3− 4) ≥ 64, a contradiction.

References

[1] Carmichael, Robert D. (1915). Diophantine analysis. New York: John Wiley and
Sons.

[2] Dickson, Leonard Eugene (2005). History of the theory of numbers, Volume II:
Diophantine Analysis. Dover Publications.

[3] Bankoff, Leon; Olds, C. D.; Phelps, R. R.; Lehner, Joseph and Linis, Viktors (1955).

Problems for solution: E1166-E1170. The American Mathematical Monthly, 62 (5):
364-365.

[4] Phelps, R. R. and Fine, N. J. (1956). E1168. The American Mathematical Monthly,
63 (1): 43-44.

[5] Subbarao, M. V. (1971). Perfect triangles. The American Mathematical Monthly, 78
(4): 384-385.

[6] Markov, Lubomir P. (2006). Pythagorean triples and the problem A = mP for
triangles. Mathematics Magazine, 79 (2): 114-121.

[7] Markov, Lubomir (2007). Heronian triangles whose areas are integer multiples of
their perimeters. Forum Geometricorum, 7: 129-135.

[8] Goehl Jr., John F. (1985). Area = k(perimeter). The Mathematics Teacher, 78 (5):
330-332.

[9] Dolan, Stan (2016). Less than equable Heronian triangles. The Mathematical
Gazette, 100 (549): 482-489.

[10] Rabinowitz, Stanley (1992). Index to Mathematical Problems 1980-1984 (Indexes to
mathematical problems). Mathpro Press.

[11] Markowitz, Lee (1981). Area = Perimeter. The Mathematics Teacher, 74 (3):
222-223.

Comment submitted by Dionne Bailey, Elsie Campbell, Charles Diminnie,
and Trey Smith, Angelo State University, San Angelo, TX

There are only five examples of triangles with integer sides for which the area and
perimeter are equal and integer-valued. These are the triangles for which
(a, b, c) = (5, 12, 13), (6, 8, 10), (6, 25, 29), (7, 15, 20), and (9, 10, 17). These can be found
by using an algorithm described in Reference [1].

However, it’s possible to find an infinite number of examples of triangles where at least
one side is irrational and yet the area and perimeter are equal and integer-valued. For
example, if n is an integer and n ≥ 4, let
a = 2n−

√
n2 − 12, b = 2n, and c = 2n+

√
n2 − 12. When n = 4,

(a, b, c) = (6, 8, 10). It is easily shown that when n > 4, n2 − 12 cannot be a perfect
square and hence, a and c are irrational. We note also that for all n ≥ 4, a < b < c and

a+ b− c = 2
(
n−
√
n2 − 12

)
> 0. Consequently, we have a < b < c and a+ b > c, which

guarantees that there is a non-degenerate triangle with sides a, b, and c. For this
triangle, the perimeter P = 6n and the semi-perimeter s = 3n. Then, Heron’s Formula
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for the area A yields

A =
√
s (s− a) (s− b) (s− c)

=

√
(3n)

(
n+

√
n2 − 12

)
(n)
(
n−

√
n2 − 12

)
=
√

3n2 [n2 − (n2 − 12)]

=
√

36n2

= 6n

= P.

References:

[1] T. Leong, D. Bailey, E. Campbell, C. Diminnie, and P. Swets, Another Approach to
Solving A = mP for Triangles, Mathematics Magazine 80, pp. 363 - 368, 2007.

Editor′s comment : Some readers asked if the side lengths had to be integers, and from
the history of the problem we can see that that was the intent originally. But as
mentioned in the comment by Bailey, Campbell, Diminnie, and Smith, the side lengths
need not be integers and this is the territory where the solution of Stone and Hawkins
took them.

Daivd Stone and John Hawkins of Georgia Southern University, seem to have
rediscovered a version of the result cited by Bailey, et.al., that the side lengths need not
be rational. In their solution they stated and proved the following algorithm:

For any integer P ≥ 21, there are infinitely many triangles with A = P . All such
triangles are given by the following prescription;

Let P ≥ 21 be an integer. Choose b such that b > 4 and 2b3 − Pb2 + 16P ≤ 0.

Compute z = b2 − 16P

P − 2b
.

Let a =
P − b

2
− 1

2

√
z and c=

P − b
2

+
1

2

√
z.

Then a, b, c form a triangle with area and perimeter P .

(After verifying the above algorithm they presented the following examples.)

Example 1: The first example has two irrational sides, but still has A = P = integer.

Let P = 26. Then we must choose b such that 2b3 − 26b2 + 432 ≤ 0.
That is, 5.146 < b < 11.399.

Let b = 8, then z =
112

5
, so
√
z =

4
√

35

5
.

Thus the other two sides of our triangle are

a =
26− 8

2
− 1

2

4
√

35

5
= 9− 2

√
35

5
=

45− 2
√

35

5
≈ 6.6336

and

c =
45 + 2

√
35

5
≈ 11.3664

Example 2: This example demonstrates that the minimum value for P, 21 is actually
achieved.

Let P = 21. Then we must choose b such that 2b3 − 21b2 + 336 ≤ 0.

That is, 6.405 < b < 7.562.
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Let b = 7. Then z = 1 so a = 7− 1

2
=

13

2
and = 7 +

1

2
=

15

2
.

Here we have the triangle

(
13

2
,
14

2
,
15

2

)
with rational, non-integer sides with

A = P = 21.

Example 3: Note that the previous example used b = P/3. This is always a valid value
for b. In this case, we have the triangle(
P

3
− 1

6

√
P 2 − 432,

P

3
,
P

3
+

1

6

√
P 2 − 432

)
which has A = P . This triangle has rational sides only for P = 21, 24, 31, 39, 56 and 109.

Also solved by Kee-Wai Lau, Hong Kong, China David E. Manes, Oneonta,
NY; Albert Stadler, Herrliberg, Switzerland, and the proposer

5477: Proposed by Daniel Sitaru, “Theodor Costescu” National Economic College,
Drobeta Turnu-Sevrin, Meredinti, Romania

Compute:

L = lim
n→∞

(
lnn+ lim

x→0

1−
√

1 + x2 3
√

1 + x2 · . . . · n
√

1 + x2

x2

)
.

Solution 1 by Ed Gray, Highland Beach, FL

We rewrite the expression as:

1. lim
x→0

[
1− (1 + x2)

1
2
+ 1

3
+ 1
n
+...+ 1

n

]
x2

.

2. Let N =
k=n∑
k=2

1

k
, i.e., the harmonic series −1

3. Now consider lim
x→0

[
1−

(
1 + x2)N

]
x2

.

We expand (1 + x2)N by the Binomial Theorem:

4. (1 + x2)N = 1 +Nx2 +
N(N − 1)

2!
x4 + . . .

Then

5. lim
x→0

[
1−

(
1 +Nx2 +

N(N − 1)

2
x4 + . . .

)]
x2

, or

6. lim
x→0

[
−Nx2 +

−N(N − 1)

2
x4 + . . .

]
x2

=
−Nx2

x2
= −N .

The original limit becomes

7. lim
n→∞

(ln(n)−N) = lim
n→∞

(
ln(n)−

k=n∑
k=2

1

k

)
= lim

n→∞
(ln(n) + 1−Harmonic series).

The Euler-Mascheroni Constant is defined as γ = lim
n→∞

The Harmonic series− ln(n).

Therefore our expression in step 7 equals 1− γ.

10



Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

Since

lim
x→0

1−
(
1 + x2

) 1
2
+ 1

3
+...+

1
n

x2
= lim

x→0

1−
(
1 + x2

)Hn−1
x2

[
0

0
= Indet.

]
=

L′Hospital

lim
x→0

0− (Hn − 1) (1 + x)Hn−2 2x

2x
= (1−Hn) lim

x→0

(
1 + x2)Hn−2 = 1−Hn,

L = lim
n→∞

(lnn+ 1−Hn) = 1− lim
n→∞

(Hn − lnn) = 1− γ,

where Hn is the n-th harmonic number and γ is the Euler-Mascheroni constant.

Solution 3 by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy

√
1 + x2

3
√

1 + x2 · · · n
√

1 + x2 = (1 + x2)
1
2
+ 1

3
+ 1
n = (1 + x2)Hn−1

We have

lim
n→∞

(
lnn+ lim

x→0

1− (1 + x2)Hn−1

x2

)
Now

lim
x→0

1− (1 + x2)Hn−1

x2
= −Hn + 1

thus
L = lim

n→∞
(ln− lnn− γ + o(1) + 1) = −γ + 1

Solution 4 by Julio Cesar Mohnsam and Mateus Gomes Lucas, both from
IFSUL, Campus Pelots-RS, Brazil, and Ricardo Capiberibe Nunes of E.E.
Amlio de Caravalho Bas, Campo Grande-MS, Brazil

L = lim
n→∞

(
lnn+ lim

x→0

1− (1 + x2)Hn−1

x2

)
= lim

n→∞

(
lnn+ lim

x→0
(1−Hn)(1 + x2)Hn−2

)
.

because,

lim
x→0

[1− (1 + x2)Hn−1]

(x2)

0
0= lim
x→0

[1− (1 + x2)Hn−1]′

(x2)′
= lim

x→0
(−Hn+1)(1+x2)Hn−2 = −Hn+1

Therefore:

L = lim
n→∞

(lnn−Hn + 1) = lim
n→∞

(lnn−Hn) + 1 = 1 + lim
n→∞

(lnn−Hn) = 1− γ

Note: γ is Euler-Mascheroni constant and Hn = 1 + 1
2 + · · ·+ 1

n .

Also solved by Yen Tung Chung, Taichung, Taiwan; Serban George Florin,
Romania; Kee-Wai Lau, Hong Kong, China; Moti Levy, Rehovot, Israel;
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Angel Plaza, University of Las Palmas de Granada Canaria Spain; Ravi
Prakash, New Delhi, India; Henry Ricardo, Westchester Area Math Circle,
NY; Ioannis D. Sfikas, National and Kapodistrian University of Athens,
Greece; Shivam Sharma, New Delhi, India; Albert Stadler, Herrliberg,
Switzerland, and the proposer.

5478: Proposed by D. M. Btinetu-Giurgiu, “Matei Basarab” National Collge, Bucharest,
Romania and Neculai Stanciu, “George Emil Palade” Secondary School, Buzu, Romania

Compute: ∫ π/2

0
cos2 x

(
sinx sin2

(π
2

cosx
)

+ cosx sin2
(π

2
sinx

))
dx.

Solution 1 by Karl Havlak, Angelo State University, San Angelo, TX

Let u = cosx. Then du = − sinxdx and sin(x) =
√

1− u2. We may rewrite the given
integral as ∫ 1

0

(
u2 sin2

(π
2
u
)

+
u3√

1− u2
sin2

(π
2

√
1− u2

))
du.

Considering the second term in the integrand, we let v =
√

1− u2 so that

dv = − u√
1− u2

du and u2 = 1− v2. We may write the integral above as

∫ 1

0
u2 sin2

(π
2
u
)
du+

∫ 1

0
(1− v2) sin2

(π
2
v
)
dv.

This reduces to

∫ 1

0
sin2

(π
2
v
)
dv, which can be easily shown to be 1

2 .

Solution 2 by Moti Levy, Rehovot, Israel)

I :=

∫ π
2

0

(
cos2 x

) (
sinx sin2

(π
2

cosx
)

+ cosx sin2
(π

2
sinx

))
dx

=

∫ π
2

0
cos2 x sinx sin2

(π
2

cosx
)
dx+

∫ π
2

0
cos2 x cosx sin2

(π
2

sinx
)
dx

Change of variables, u = cosx in the first integral and v = sinx in the second integral
gives

I =

∫ 1

0
u2 sin2

(π
2
u
)
du+

∫ 1

0

(
1− u2

)
sin2

(π
2
u
)
du

=

∫ 1

0
sin2

(π
2
u
)
du =

1

2
.

Solution 3 by Bruno Salgueiro Fanego, Viveiro, Spain

I =

∫ π/2

0
cos2 x

(
sinx sin2

(π
2

cosx
)

+ cosx sin2
(π

2
sinx

))
dx

12



=

∫ π/2

0

(
1− sin2 x

)
sinx sin2

(π
2

cosx
)

+

∫ π/2

0
cos3 x sin2

(π
2

sinx
)
dx

= I1 − I2 + I3 where

I1 =

∫ π/2

0
sinx sin2

(π
2

cosx
)
, I2 =

∫ π/2

0
sin3 x sin2

(π
2

cosx
)
dx and

I3 =

∫ π/2

0
cos3 x sin2

(π
2

sinx
)
dx.

Since

I1 =

∫ π/2

0
sinx

1− cos(π cosx)

2
dx =

∫ π/2

0

sinx

2
− sinx(cosπ cosx)

2
dx

=

[
−cosx

2
− sin(π cosx)

2π

]x=π/2
x=0

=
cos(π/2)

2
− sin(π cos(π/2))

2π
−
(
−cos 0

2
− sin(π cos 0)

2π

)

= 0− 0 +
1

2
+ 0 =

1

2
.

With the substitution t =
π

2
− x, one obtains that

I2 =

∫ π/2

0
sin3 x sin2

(π
2

cosx
)
dx =

∫ 0

π/2
sin3

(π
2
− t
)

sin2
(π

2
cos
(π

2
− t
))

(−dt)

=

∫ π/2

0
cos3 t sin2

(π
2

sin t
)
dt = I3.

The value of the given integral is therefore I = I1 =
1

2
.

Also solved by Yen Tung Chung, Taichung, Taiwan; Ed Gray, Highland
Beach, FL; Kee-Wai Lau, Hong Kong, China; Paolo Perfetti, Department of
Mathematics, Tor Vergata, Rome, Italy; Ángel Plaza, University of Las
Palmas de Gran Canaria, Spain; Ravi Prakash, New Delhi, India; Ioannis D.
Sfikas, National and Kapodistrian University of Athens, Greece; Shivam
Sharma, New Delhi, India; Albert Stadler, Herrliberg, Switzerland, and the
proposers.
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5479: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let f : [0, 1]→ < be a continuous convex function. Prove that

2

5

∫ 1/3

0
f(t)dt+

3

10

∫ 2/3

0
f(t)dt ≥ 5

8

∫ 8/15

0
f(t)dt.

Solution 1 by Dionne Bailey, Elsie Campbell, Charles Diminnie, and Trey
Smith, Angelo State University, San Angelo, TX

If c ∈ (0, 1), then for all t ∈ [0, 1], ct ∈ [0, c] ⊂ [0, 1] and hence, f (ct) is continuous on
[0, 1]. Further, by making the substitution u = ct, we get∫ 1

0
f (ct) dt =

1

c

∫ c

0
f (u) du =

1

c

∫ c

0
f (t) dt

and thus, ∫ c

0
f (t) dt = c

∫ 1

0
f (ct) dt. (1)

By (1),

2

5

∫ 1
3

0
f (t) dt+

3

10

∫ 2
3

0
f (t) dt

=

(
2

5

)(
1

3

)∫ 1

0
f

(
1

3
t

)
dt+

(
3

10

)(
2

3

)∫ 1

0
f

(
2

3
t

)
dt

=
1

3

∫ 1

0

[
2

5
f

(
1

3
t

)
+

3

5
f

(
2

3
t

)]
dt. (2)

Since f (t) is convex on [0, 1] and 1
3 t,

2
3 t ∈ [0, 1] for all t ∈ [0, 1], Jensen’s Theorem

implies that

2

5
f

(
1

3
t

)
+

3

5
f

(
2

3
t

)
≥ f

[(
2

5

)(
1

3
t

)
+

(
3

5

)(
2

3
t

)]
= f

(
8

15
t

)
(3)

for all t ∈ [0, 1]. By combining (1), (2), and (3), we obtain

2

5

∫ 1
3

0
f (t) dt+

3

10

∫ 2
3

0
f (t) dt =

1

3

∫ 1

0

[
2

5
f

(
1

3
t

)
+

3

5
f

(
2

3
t

)]
dt

≥ 1

3

∫ 1

0
f

(
8

15
t

)
dt

=

(
1

3

)(
15

8

)∫ 8
15

0
f (t) dt

=
5

8

∫ 8
15

0
f (t) dt.

Solution 2 by Michael Brozinsky, Central Islip, NY
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We have by the Mean Value Theorem for Integrals that there exists constants C on(
0,

1

3

)
, D on

(
0,

2

3

)
, E on

(
0,

8

15

)
, S on

(
1

3
,
2

3

)
such that

∫ 1/3

0
f(t)dt =

1

3
f(C),

∫ 2/3

0
f(t)dt =

2

3
f(D),

∫ 8/15

0
f(t)dt =

8

15
f(E) and so

1

5
f(S) =

∫ 8/15

1/3
f(t)dt =

∫ 8/15

0
f(t)dt−

∫ 1/3

0
f(t)dt =

8

15
f(E)− 1

3
f(C) and

2

15
f(T ) =

∫ 2/3

8/15
f(t)dt =

∫ 2/3

0
f(t)dt−

∫ 8/15

0
f(t)dt =

2

3
f(D)− 8

15
f(E)dt.

The first of these last two equations gives f(E) =
3

8
f(S) +

5

8
f(C) and so the second

then gives f(D) =
1

5
f(T ) +

3

10
f(S) +

1

2
f(C).

The desired inequality
2

5

∫ 1/3

0
f(t)dt+

3

10

∫ 12/3

0
f(t)dt ≥ 5

8

∫ 8/15

0
f(t)dt can be written

as
2

15
f(C) +

3

10
· 2

3
· f(D) ≥ 5

8
· 8

15
· f(E), or equivalently as

2

15
f(C) +

1

5

(
1

5
f(T ) +

3

10
f(S) +

1

2
f(C)

)
≥ 1

3

(
3

8
f(S) +

5

8
f(C)

)
which is equivalent to(

2

15
+

1

10
− 5

24

)
f(C) +

1

25
f(T ) ≥

(
1

8
− 3

50
f(S)

)
and then to

1

40
f(C) +

1

25
f(T ) ≥ 13

200
f(S) and finally to

5

13
f(C) +

8

13
f(T ) ≥ f(S) which is true by the convexity since C < S < T .

Note: A function is convex on [a, b] means that for all 0 ≤ λ ≤ 1 whenever
a ≤ X < Z ≤ b we have

f(X) + λ (f(Z)− f(X)) ≤ f(X + λ(Z −X)) which can be cast as

(1− λ)f(X) + λf(Z) ≥ f (X + λ(Z −X)) and so in the above taking X = C, Z = T ,

and λ =
S − C
T − C

we have X + λ(Z −X) = S.

Solution 3 by Henry Ricardo, Westchester Area Math Circle, NY

If f is convex on [0, 1], then for all x, y ∈ [0, 1] and for all λ ∈ [0, 1], we have

λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y). (1)

Setting λ = 2/5, x = t/3, and y = 2t/3 in (1), 0 ≤ t ≤ 3/2, we get

2

5
f(t/3) +

3

5
f(2t/3) ≥ f(8t/15).

Integrating from t = 0 to t = 1 yields

2

5

∫ 1

0
f(t/3)dt +

3

5

∫ 1

0
f(2t/3)dt ≥

∫ 1

0
f(8t/15)dt. (2)
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Setting u = t/3 in the first integral of (2), we have

2

5

∫ 1

0
f(t/3)dt =

6

5

∫ 1/3

0
f(u)du.

Similarly, setting u = 2t/3 in the second integral, we get

3

5

∫ 1

0
f(2t/3)dt =

9

10

∫ 2/3

0
f(u)du.

Finally, setting u = 8t/15, we find that∫ 1

0
f(8t/15)dt =

15

8

∫ 8/15

0
f(u)du.

Substituting these into (2) and dividing by 3, we obtain

2

5

∫ 1/3

0
f(u)du +

3

10

∫ 2/3

0
f(u)du ≥ 5

8

∫ 8/15

0
f(u)du.

Solution 4 by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain

By changing variables it follows that α

∫ a

0
f(t) dt =

∫ αa

0
f(s/α) ds. Therefore, the

left-hand side of the proposed inequality, say LHS, is

LHS =
2

5

∫ 1/3

0
f(t) dt+

3

5

∫ 1/3

0
f(2t) dt

≥
∫ 1/3

0
f

(
2

5
t+

6

5
t

)
dt

=

∫ 1/3

0
f

(
8

5
t

)
dt

where we have used that f is convex, so
2

5
f(t) +

3

5
f(2t) ≥ f

(
2

5
t+

6

5
t

)
. Since the

right-hand side is
5

8

∫ 8/15

0
f(t) dt =

∫ 1/3

0
f

(
8

5
t

)
dt, the conclusion follows.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland
Beach, FL; Kee-Wai Lau, Hong Kong, China; Moti Levy, Rehovot, Israel;
Paolo Perfetti, Department of Mathematics, Tor Vergata University, Rome,
Italy; Albert Sadler, Herrliberg, Switzerland; Ioannis D. Sfikas, National and
Kapodistrian University of Athens, Greece, and the proposer.

5480: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let n ≥ 1 be a nonnegative integer. Prove that in C[0, 2π]

span{1, sinx, sin(2x), . . . , sin(nx)} = span{1, sinx, sin2 x, . . . , sinn x}

if and only if n = 1.
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We mention that span{v1, v2, . . . , vk} =
k∑
j=1

ajvj , aj ∈ <, j = 1, . . . , k, denotes the set of

all linear combinations with v1, v2, . . . , vk.

Solution 1 by Moti Levy, Rehovot, Israel

If n = 1 then the spans are trivially equal.

Let n > 1. Suppose that sin2 x can be expressed as a linear combination of the functions
{1, sinx, sin(2x), ..., sin(nx)} ,

sin2 x = a0 +
n∑
k=1

ak sin (kx) . (1)

By setting x = 0, we have a0 = 0.

The following definite integral vanish for integer k.∫ 2π

0
sin2x · sin(kx)dx =

1

2

∫ 2π

0
(1− cos (2x)) · sin(kx)dx (2)

=
1

2

∫ 2π

0
sin(kx)dx− 1

2

∫ 2π

0
cos (2x) · sin(kx)dx = 0.

Now we multiply both sides of (1) by sin2 x and integrate from 0 to 2π,∫ 2π

0
sin4 (x) dx =

n∑
k=1

ak

∫ 2π

0
sin2x sin (kx) dx. (3)

The right hand side of (3) is equal to 3
4π but the left hand side is equal to zero, by (2).

This contradiction leads to the conclusion that sin2 x cannot be expressed as a linear
combination of the functions {1, sinx, sin(2x), ..., sin(nx)} , hence the spans are not
equal for n > 1.

Solution 2 by David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA

For n = 1 it is certainly true that span{1, sinx} = span{1, sinx}.

For n > 1,

span{1, sinx, sin(2x), sin(3x), . . . , sin(nx)} 6= span{1, sinx, sin2 x, sin3 x, . . . , sinn x}

because sin2 x cannot be written as a linear combination of
1, sinx, sin(2x), sin(3x), . . . , sin(nx).

To see this, suppose that
sin2 x = c0 · (1) + c1 sin(x) + c2 sin(2x) + c3 sin(3x) + . . . ,+cn sin(nx).

Then this equation must hold for all values of x in C [0, 2π].

Letting x = 0, shows that c0 = 0.

Letting x =
π

2
gives us 1 = 0 + c1 · 1 + c2 · 0 + c3 · (−1) + c4 · 0 + c5 · 1 + . . .

or (1) 1 = c1 − c3 + c5 − c7 + c9 + . . ..
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Letting x =
3π

2
gives us 1 = 0 + c1 · (−1) + c2 · 0 + c3 · 1 + c4 · 0 + c5 · (−1) + . . .

or (2) 1 = −c1 + c3 − c5 + c7 − c9 + . . ..

The final term in each summation depends upon the of parity of n, but the terms on the
right hand sides match up in any case. So, adding (1) + (2) gives us 2 = 0, which is
certainly a contradiction.

Thus, sin2 x cannot be written in terms of 1, sinx, sin(2x), sin(3x), . . . , sin(nx).

Also solved by Kee-Wai Lau, Hong Kong, China; Ioannis D. Sfikas, National
and Kapodistrian University of Athens, Greece, and the proposer

Mea Culpa

The names Dionne Bailey, Elsie Campbell, and Charles Diminnie all at
Angelo State University in San Angelo, TX were inadvertently omitted from the
list of those who had solved problem 5470.

Paolo Perfetti of the Mathematics Department at Tor Vergata University in
Rome, Italy should be credited for having solved 5472.
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