
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
February 15, 2012

• 5182: Proposed by Kenneth Korbin, New York, NY

Part I: An isosceles right triangle has perimeter P and its Morley triangle has
perimeter x. Find these perimeters if P = x+ 1.

Part II: An isosceles right triangle has area K and its Morley triangle has area y. Find
these areas if K = y + 1

• 5183: Proposed by Kenneth Korbin, New York, NY

A convex pentagon ABCDE, with integer length sides, is inscribed in a circle with
diameter AE.

Find the minimum possible perimeter of this pentagon.

• 5184: Proposed by Neculai Stanciu, Buzău, Romania

If x, y and z are positive real numbers, then prove that

(x+ y)(y + z)(z + x)

(x+ y + z)(xy + yz + zx)
≥ 8

9
.

• 5185: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Calculate, without using a computer, the value of

sin

[
arctan

(
1

3

)
+ arctan

(
1

5

)
+ arctan

(
1

7

)
+ arctan

(
1

11

)
+ arctan

(
1

13

)
+ arctan

(
111

121

)]
.

• 5186: Proposed by John Nord, Spokane, WA

Find k so that

∫ k

0

(
− b
a
x+ b

)n
dx =

1

2

∫ a

0

(
− b
a
x+ b

)n
dx.

• 5187: Proposed by Ovidiu Furdui, Cluj, Romania
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Let f : [0, 1]→ (0,∞) be a continuous function. Find the value of

lim
n→∞

 n

√
f( 1

n) + n

√
f( 2

n) + · · ·+ n

√
f(nn)

n


n

.

Solutions

• 5164: Proposed by Kenneth Korbin, New York, NY

A triangle has integer length sides (a, b, c) such that a− b = b− c. Find the dimensions
of the triangle if the inradius r =

√
13.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

If a, b and c are the side lengths of the triangle then the inradius r is given by the
formula

r =
1

2

√
(b+ c− a)(c+ a− b)(a+ b− c)

a+ b+ c
. (see, e.g.,http//mathworld.wolfram.com/Inradius.html).

By assumption, c = 2b− a. So

√
13 =

1

2

√
(3b− 2a)(2a− b)

3
, or equivalently

(3b− 2a)(2a− b) = 156.

Obviously b is even. (If b were odd, then both 3b− 2a and 2a− b are odd, and therefore
their product would be odd, which is not true.) So b = 2b′ and this gives the equation

(3b′ − a)(a− b′) = 39.

Note that 39 = xy is the product of two integers. So,

(x, y) ∈ {(1, 39), (3, 13), (13, 3), (39, 1), (−1,−39), (−3,−13), (−13,−3), (−39,−1)} .

If 3b′ − a = x and a− b′ = y, then

b′ =
x+ y

2
, and

a =
x+ 3y

2
.

We find (a, b, c) ∈ {(59, 40, 21), (21, 16, 11), (11, 16, 21), (21, 40, 59)}, and we easily verify
that each triplet satisfies the triangle inequality.

Solution 2 by Arkady Alt, San Jose, CA

Let F and s be the area and semiperimeter. Since a+ c = 2b then s =
a+ b+ c

2
=

3b

2
,
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and using F =
√
s (s− a) (s− b) (s− c) = sr we obtain

(s− a) (s− b) (s− c) = sr2 ⇐⇒
(

3b

2
− a

)(
3b

2
− b
)(

3b

2
− c
)

= 13 · 3b

2

⇐⇒
(

3b

2
− a

)(
3b

2
− c
)

= 39

⇐⇒
(

9b2

4
− (a+ c)

3b

2
+ ac

)
= 39 ⇐⇒

(
9b2

4
− 2b · 3b

2
+ ac

)
= 39

⇐⇒ 4ac− 3b2 = 12 · 13.

Thus we have

{
a+ c = 2b

4ac− 3b2 = 156
=⇒

{
4a (2b− a)− 3b2 = 156

c = 2b− a if, and only if,

{
4a (2b− a)− 3b2 = 156

c = 2b− a ⇐⇒
{

8ab− a2 − 3b2 = 156
c = 2b− a.

Since 8ab− a2 − 3b2 = (3b− 2a) (2a− b) and
a < s
b < s
c < s

⇐⇒
{

2a < 3b
c < s

⇐⇒
{

2a < 3b
2 (2b− a) < 3b

⇐⇒ b < 2a < 3b

then the problem is equivalent to the system

(1)

{
(3b− 2a) (2a− b) = 156

b < 2a < 3b.

Since 3b− 2a ≡ 2a− b (mod 2) and 156 = 22 · 3 · 13 = 2 · 78 = 6 · 26 then (1)
in positive integers is equivalent to

{
3b− 2a = k
2a− b = m

⇐⇒
{

2b = k +m
4a = k + 3m

⇐⇒


a =

k + 3m

4

b =
k +m

2

,

where (k,m) ∈ {(2, 78) , (78, 2) , (6, 26) , (26, 6)} .

Noting that the inequality b < 2a < 3b ⇐⇒ k +m

2
<
k + 3m

2
<

3 (k +m)

2
holds for any positive k,m we finally obtain

(a, b) ∈ {(59, 40) , (21, 40) , (21, 16) , (11, 16)} .
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Thus, (a, b, c) ∈ {(59, 40, 21) , (21, 40, 59) , (21, 16, 11) , (11, 16, 21)} are
all solutions of the problem.

Comment by David Stone and John Hawkins, Statesboro, GA. In their
featured solutions to SSM 5146 (May 2011 issue) both Kee-Wai Lau and Brian Beasley
found all integral triangles with in-radius

√
13. Note that the condition a− b = b− c is

equivalent to b = (a+ c)/2. That is, irrespective of how one might label or order the
sides, the side b must be the “middle-length” side , the average of the other two sides.

Also solved by Brain D. Beasley, Clinton, SC; Valmir Bucaj (student, Texas
Lutheran University), Seguin, TX; Elsie M. Campbell, Dionne T. Bailey and
Charles Diminnie (jointly), San Angelo TX; Bruno Salgueiro Fanego,
Viveiro, Spain; Tania Moreno Garćıa, University of Holgúın (UHO),
Holgúın, Cuba jointly with José Pablo Suárez Rivero, University of Las
Palmas de Gran Canaria (ULPGC), Spain; Paul M. Harms, North Newton,
KS; Enkel Hysnelaj, University of Technology, Sydney, Australia jointly with
Elton Bojaxhiu, Kriftel, Germany; Sugie Lee, John Patton, and Matthew
Fox (jointly; students at Taylor University), Upland, IN; Kee-Wai Lau, Hong
Kong, China; David E. Manes, Oneonta, NY; Charles McCracken, Dayton,
OH; Boris Rays, Brooklyn, NY; David Stone and John Hawkins (jointly),
Statesboro, GA; Jim Wilson, Athens, GA, and the proposer.

• 5165: Proposed by Thomas Moore, Bridgewater, MA

“Dedicated to Dr. Thomas Koshy, friend, colleague and fellow Fibonacci enthusiast.”

Let σ(n) denote the sum of all the different divisors of the positive integer n. Then n is
perfect, deficient, or abundant according as σ(n) = 2n, σ(n) < 2n, or σ(n) > 2n. For
example, 1 and all primes are deficient; 6 is perfect, and 12 is abundant. Find infinitely
many integers that are not the product of two deficient numbers.

Solution 1 by Kee-Wai Lau, Hong Kong, China

Let p1 = 2, p2 = 3, p3 = 5, . . . be the sequence of primes. We show that for any

positive integer n, the integer
n+10∏
k=1

pk is not the product of two deficient numbers.

Suppose , on the contrary, that
n+10∏
k=1

pk = ab, where both a and b are deficient numbers.

Clearly a and b are relatively prime and so

4

(
n+10∏
k=1

pi

)
= 4ab > σ(a)σ(b) = σ(ab) = σ

(
n+10∏
k=1

pk

)
=

n+10∏
k=1

(1 + pk) .

Hence,

4 >
n+10∏
k=1

(
1 +

1

pk

)
≥

11∏
k=1

(
1 +

1

pk

)
=

3822059520

955049953
= 4.0019 . . . ,

which is a contradiction. This completes the solution.

Solution 2 by Stephen Chou, Talbot Knighton, and Tom Peller (students at
Taylor University), Upland, IN

All negative numbers have the same numerical divisors as their positive counterparts;

4



however, the negatives also include all the negative forms of those divisors. For instance,
−6 has divisor of 1, 2, 3, 6,−1− 2,−3,−6. Therefore σ(n) = 0 because the divisors will
all negate themselves. Knowing that 2n of any negative will result in a lower negative,
we see that all the negatives are abundant. Since the negatives are all abundant
numbers and the only way to have a negative product is to multiply a negative by a
positive, then at most a negative number can have only one deficient factor. Therefore,
there are infinitely many integers, namely the negatives, that are not the product of two
deficient numbers.

Editor’s comment: Once again the students have out smarted the professors; the
intent of the problem was to find infinitely many positive integers that are not the
product of two deficient numbers. But the problem wasn’t explicitly stated that way,
and so the students win; mea culpa.

Solution 3 by Pat Costello, Richmond, KY

Let n = 2k · 3780 = 2k+2 · 33 · 5 · 7 = 2k+2 · 945 for any non-negative integer k. We want
to show that for any divisor d of n and pair (d, n/d), one of the two values is either
perfect or abundant. Since the σ function is multiplicative, we have

σ(945) = σ(33 · 5 · 7)
= σ(33) · σ(5) · σ(7)
= 40 · 6 · 8
= 1920
> 2 · 945.

So 945 is abundant. Then in the pair (945, n/945), the 945 is abundant.

By multiplicativity,

σ
(
2k+2 · 945

)
= σ

(
2k+2) · σ(945)

> σ
(
2k+2

)
· 2 · 945,by the above

> 2k+2 · 2 · 945, since σ(m) > m for m > 1

= 2
(
2k+2 · 945

)
.

This means all the n values are themselves abundant so in the pair (1, n), the value n is
the abundant value. This argument also shows that in the pair (2j , n/2j), the second
value is the abundant value.

In the following table, we list the divisors d > 1 of 945 and the values of the fractions
σ(d)/d.

d 3 5 7 9 15 21 27 35 45 63 105 135 189 315 945

σ(d)/d 1.3 1.2 1.14 1.4 1.6 1.5 1.48 1.37 1.73 1.65 1.82 1.77 1.69 1.98 2.03

The key thing we want to see from the table is that the minimum value in the second
row corresponds to d = 7.

Suppose that d is a divisor of 2k+2 · 945 that is of the form 2j ·m where j ≥ 2 and m is a
divisor of 945 greater than 1. The fractions σ(2j)/2j are easily seen to be strictly
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increasing with a limit of 2. Then

σ
(
2j ·m

)
/2j ·m = σ

(
2j
)
· σ(m)/2j ·m

= σ(2j)/2j · σ(m)/m

≥ 7

4
· 8

7
from the table and that j ≥ 2

= 2.

Hence the divisor 2j ·m is perfect or abundant.

Suppose that d is a divisor of 945 and less than 945, say d = 945/m for an m ≥ 1. Then
the pair is (945/m, 2k+2 ·m) and the second value is perfect or abundant.

All pairs (d, n/d) have at least one value which is perfect or abundant. Since k is an
arbitrary nonnegative integer, we have the desired infinite set.

Solution 4 by Brian D. Beasley, Clinton, SC

We make use of the following three facts:

(1) 945 is abundant (in fact, it is the smallest odd abundant number);

(2) any nontrivial multiple of a perfect number is abundant;

(3) any multiple of an abundant number is abundant.

Given any integer k ≥ 2, we show that nk = 2k · 945 is not the product of two deficient
numbers. For contradiction, if nk = 2k · 33 · 5 · 7 = xy for deficient numbers x and y,
then the perfect number 6 divides neither x nor y, so without loss of generality, we
assume that 2k divides x and 33 divides y. Next, we consider cases:

(a) If 5 divides x, then x is abundant, since it is a multiple of the abundant number 20.

(b) If 7 divides x, then x is either perfect or abundant, since it is a multiple of the
perfect number 28.

(c) If neither 5 nor 7 divides x, then y = 33 · 5 · 7 = 945 is abundant.

Since each case leads to a contradiction, we are done. In fact, it follows that for k ≥ 3, if
nk = xy, then at least one of x or y is abundant.

Addendum. Facts (1) and (2) above may be found in Burton’s Elementary Number
Theory (6th edition) on page 235, while fact (3) follows by applying an argument similar
to that used to prove fact (2).

Solution 5 by proposer

A computer program shows that there are 55 such numbers below 105, the smallest
being 3780. The canonical factorization of these numbers is revealing. One notices that
the list includes all numbers of the from 3780p were p ∈ {11, 13, 17, 19, 23}. This suggest
that N = 3780p is such a number, for all primes p ≥ 11.

To prove this, lent N = 3780p = ab with 1 ≤ a ≤ b ≤ N . Now 3780p = 22 · 33 · 5 · 7 · p
has 96 divisors, many of which are multiples of 12. But 12 is an abundant number and
so is any multiple of 12. (More generally, any multiple of an abundant number is also
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abundant.) So we need only consider factorizations N = ab where neither a nor b is a
multiple of 12. We list all these factorizations in the tables below showing the
companion factors a and b, along with their type (P: perfect; D: deficient; A: abundant).

a type b type a type b type
1 D 3780p A p D 3780 A
2 D 1890p A 2p D 1890 A
4 D 945p A 4p D 945 A
6 P 630p A 6p A 630 A
10 D 378p A 10p D 378 A
14 D 270p A 14p D 270 A
18 A 210p D 18p A 210 D
20 A 189p D 20p A 189 D
27 D 140p A 27p D 140 A
28 P 135p D 28p A 135 D
30 A 126p D 30p A 126 D
42 A 90p A 42p A 90 A
54 A 70p A 54p A 70 A

Also solved by David E. Manes, Oneonta, NY; Albert Stadler, Herrliberg,
Switzerland, and David Stone and John Hawkins (jointly), Statesboro, GA.

• 5166: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let a, b, c be lengths of the sides of a triangle ABC. Prove that(
3a+b +

c

b
3−b

)(
3b+c +

a

c
3−c

)(
3c+a +

b

a
3−a

)
≥ 8.

Solution by Boris Rays, Brooklyn, NY

By the Arithmetic-Geometric-Mean Inequality for each expression in the parentheses
above we have:

3a+b +
c

b
3−b ≥ 2

√
3a+b · c

b
3−b = 2

√
c

b
3a

3b+c +
a

c
3−c ≥ 2

√
3b+c · a

c
3−c = 2

√
a

c
3b

3c+a +
b

a
3−a ≥ 2

√
3c+a · b

a
3−a = 2

√
b

a
3c.

Therefore,

(
3a+b +

c

b
3−b

)(
3b+c +

a

c
3−c

)(
3c+a +

b

a
3−a

)
≥ 8

√
c

b
· a
c
· b
a
· 3a · 3b · 3c

= 8
√

3a+b+c
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= 8 · 3
a+ b+ c

2
.

The factor 3(a+b+c)/2 is an exponential expression with base 3 (3 > 1) and exponent
(a+ b+ c)/2 > 0. Hence, 3(a+b+c)/2 > 1. Therefore,(

3a+b +
c

b
3−b

)(
3b+c +

a

c
3−c

)(
3c+a +

b

a
3−a

)
≥ 8.

Also solved by Arkady Alt, San Jose, CA; Bruno Salgueiro Fanego Viveiro
Spain; Enkel Hysnelaj, University of Technology, Sydney, Australia jointly
with Elton Bojaxhiu, Kriftel, Germany; Valmir Bucaj (student, Texas
Lutheran University), Seguin, TX; Elsie M. Campbell, Dionne T. Bailey and
Charles Diminnie (jointly), San Angelo TX; Kee-Wai Lau, Hong Kong,
China; David E. Manes, Oneonta, NY; Paolo Perfetti, Department of
Mathematics, University “Tor Vergata,” Rome, Italy; Albert Stadler,
Herrliberg, Switzerland: Neculai Stanciu, Buzău, Romania; David Stone and
John Hawkins (jointly), Statesboro, GA, and the proposer.

• 5167: Paolo Perfetti, Department of Mathematics, University “Tor Vergata,” Rome,
Italy

Find the maximum of the real valued function

f(x, y) = x4 − 2x3 − 6x2y2 + 6xy2 + y4

defined on the set D = {(x, y) ∈ <2 : x2 + 3y2 ≤ 1}.

Solution 1 by Michael Brozinsky, Central Islip, NY

We note that the given constraint x2 + 3y2 ≤ 1 implies that −1 ≤ x ≤ 1 and y2 ≤ 1

3
.

Now, f(−1, 0) = 3, and to show that 3 is the maximum it suffices to show that
f(x, y) ≤ 3 ·

(
x2 + 3y2

)
. That is

x4 − 2x3 − 6x2y2 + 6xy2 + y4 ≤ 3 · (x2 + 3y2) or equivalently,

x2 ·
(
x2 − 2x− 3

)
+ y2 ·

(
y2 + 6x

)
≤ y2

(
6x2 + 9

)
when (x , y) is in D . (1)

Now x2 − 2x− 3 ≤ 0 if −1 ≤ x ≤ 3 and y2 + 6x ≤ 1

3
+ 6x ≤ 6x2 + 9 for all x, (as the

minimum of 6x2 − 6x+ 9 is 7.5), and so (1) is obvious as x2
(
x2 − 2x− 3

)
≤ 0 and

y2 ·
(
y2 + 6x

)
≤ y2 ·

(
x2 + 9

)
when (x, y) is in D.

Solution 2 by Enkel Hysnelaj, University of Technology, Sydney, Australia
and Elton Bojaxhiu, Kriftel, Germany

First we will look for extreme points inside the region, which is the set
{(x, y) ∈ <2 : x2 + 3y2 < 1}, and such points will be the critical points of the function
f(x, y). The partial derivatives of the function f(x, y) will be{

fx = 4x3 − 6x2 − 12xy2 + 6y2

fy = −12x2y + 12xy + 4y3
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Solving the system of the equations{
4x3 − 6x2 − 12xy2 + 6y2 = 0
−12x2y + 12xy + 4y3 = 0,

we have that the only critical point inside the region will be (x, y) = (0, 0), which will be
considered a point where the function might get the maximum value.

Now we will find the extremes on the contour of the region, which is

{(x, y) ∈ <2 : x2 + 3y2 = 1}. For any point on the contour we have y2 =
1− x2

3
and

substituting this into the formula of f(x, y) we obtain the function g(x) such that

g(x) = x4 − 2x3 − 6x2
1− x2

3
+ 6x

1− x2

3
+

(
1− x2

3

)2

=
1

9
+ 2x− 20x

9
− 4x3 +

28x4

9

so, we have to find the extremes of the function g(x) on the segment [−1, 1].

If x = ±1 we have f(−1, 0) = 3 and f(1, 0) = 1, and so far, we shown that a local
maximum point is when (x, y) = (−1, 0). Now we much check to see if there is a
maximum point inside the segment [−1, 1]. Taking the derivative of the function g(x) we
obtain

g′(x) = 2− 40x

9
− 12x2 +

112x3

9
.

The equation g′(x) = 0 has no solution inside the segment [−1, 1], which implies that
there is no extreme point inside this segment. And so we may conclude that 3 is the
absolute maximum of the real valued function f(x, y) on the given domain and that it is
achieved at the point (x, y) = (−1, 0).

Solution 3 byÁngel Plaza, University of Las Palmas de Gran Canaria, Spain

Function f(x, y) is harmonic. Then, by the maximum principle its maximum (and
minimum) is attained at the boundary of compact subset D. Since the boundary of D is
an ellipse, by using its parametrization the problem is reduced to a one variable
optimization problem.

The parametric equations of the given ellipse are

x = cos t; y =
1√
3

sin t

and the problem yields to maximizing the function

g(t) = cos4 t− 2 cos3 t− 2 cos2 t sin2 t+ 2 cos2 t sin2 t+
sin4 t

9
= −2 cos3 t+ cos4 t+

sin4 t

9
.

Since g′(t) = −2
9 cos t sin t

(
−27 cos t+ 18 cos2 t− 2 sin2 t

)
it is deduced that the

maximum is attained at t = π with the value f(π) = 3.

Also solved by Pat Costello, Richmond, KY; Bruno Salgueiro Fanego,
Viveiro, Spain; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong
Kong, China; David E. Manes, Oneonta, NY; Boris Rays, Brooklyn, NY;
Albert Stadler, Herrliberg, Switzerland; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposer.
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• 5168: Proposed by G. C. Greubel, Newport News, VA

Find the value of an in the series

7t+ 2t2

1− 36t+ 4t2
= a0 +

a1
t

+
a2
t2

+ · · ·+ an
tn

+ · · · .

Solution 1 by Bruno Salgueiro Fanego, Viveiro, Spain

By direct division, 4t2 − 36t+ 1|2t2 + 7t we see that a0 =
1

2
, a1 =

25

4
. Moreover, the

characteristic equation of the denominator is 1− 36r + 4r2 = 0, whose roots are

r1 =
9− 4

√
5

2
, r2 =

9 + 4
√

5

2
, so an = Arn1 +Brn2 for some real numbers A and B .

Taking n = 0, we obtain

A+B = A · 1 +B · 1 = Ar01 +Br02 = a0 =
1

2
,

and taking n = 1 we obtain

A
9 + 4

√
5

2
+B

9− 4
√

5

2
= Ar11 +Br12 = a1 =

25

4
.

So, by solving the system of equations


A+B =

1

2

18(A+B) + 8
√

5(A−B) = 25

we obtain

A =
5− 4

√
5

20
, B =

5 + 4
√

5

20
.

Hence,

an = Arn1 +Brn2 =
5− 4

√
5

20

(
9− 4

√
5

2

)n
+

5 + 4
√

5

20

(
9 + 4

√
5

2

)n
.

Solution 2 by Kee-Wai Lau, Hong Kong, China

It can be checked readily that

7t+ 2t2

1− 36t+ 4t2
=

5 + 4
√

5

20

 1

1− 9 + 4
√

5

2t

+
5− 4

√
5

20

 1

1− 9− 4
√

5

2t

 .

For t >
9 + 4

√
5

2
, we have

1

1− 9 + 4
√

5

2

=
∞∑
n=0

(
9 + 4

√
5

2t

)n
and

1

1− 9− 4
√

5

2t

=
∞∑
n=0

(
9− 4

√
5

2t

)n
. Hence for positive integer n

an =
5 + 4

√
5

20

(
9 + 4

√
5

2

)n
+

5− 4
√

5

20

(
9− 4

√
5

2

)n
.
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Solution 3 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, San
Angelo, TX

Let {fn} be the Fibonacci sequence defined by f0 = 0, f1 = 1, and fn+2 = fn+1 + fn for

n ≥ 0. Also, let φ =
1 +
√

5

2
and φ =

1−
√

5

2
. Then, we will use Binet’s Formula

fn =
φn − φn√

5

for n ≥ 0 and the known results

φn = fnφ+ fn−1,φ
n

= fnφ+ fn−1, and φφ = −1 (1)

for n ≥ 1.

To begin, make the change of variable s =
1

t
and simplify to get

7t+ 2t2

1− 36t+ 4t2
=

7s+ 2

s2 − 36s+ 4
.

Note that (1) implies that φ6 = f6φ+ f5 = 8φ+ 5 = 9 + 4
√

5 and similarly,

φ
6

= 9− 4
√

5. Then, the roots of s2 − 36s+ 4 are s = 18± 8
√

5 = 2φ6, 2φ
6

and we have

7s+ 2

s2 − 36s+ 4
=

7s+ 2

(s− 2φ6)
(
s− 2φ

6
) .

If we perform a partial fraction expansion and use Binet’s Formula, (1), and the formula
for a geometric series, we obtain

7s+ 2

s2 − 36s+ 4
=

7φ6 + 1

8
√

5

1

s− 2φ6
− 7φ

6
+ 1

8
√

5

1

s− 2φ
6

=
1

8
√

5

−7φ6 + 1

2φ6
1

1−
(

s
2φ6

) +
7φ

6
+ 1

2φ
6

1

1−
(

s

2φ
6

)


=
1

16
√

5

(7 + φ6
) ∞∑
n=0

1(
2φ

6
)n sn − (7 + φ

6
) ∞∑
n=0

1

(2φ6)n
sn



=
1

16
√

5

∞∑
n=0

1

2n

[
7 + φ6

φ
6n − 7 + φ

6

φ6n

]
sn

=
1

16
√

5

∞∑
n=0

1

2n

(
7 + φ6

)
φ6n −

(
7 + φ

6
)
φ
6n

(−1)6n
sn

=
∞∑
n=0

1

2n+4

[
7

(
φ6n − φ6n√

5

)
+

(
φ6n+6 − φ6n+6

√
5

)]
sn
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=
∞∑
n=0

7f6n + f6n+6

2n+4
sn

=
∞∑
n=0

2f6n+1 + 3f6n
2n+2

sn

=
∞∑
n=0

2f6n+1 + 3f6n
2n+2

1

tn
.

Also, since
∣∣∣φ∣∣∣ < φ, the series converges when

|s| < min

{
2
∣∣∣φ∣∣∣6 , 2φ6} = 2

∣∣∣φ∣∣∣6 ,
i.e., when

|t| > 1

2
∣∣∣φ∣∣∣6 =

φ6

2
.

Therefore,

an =
2f6n+1 + 3f6n

2n+2

for n ≥ 0.

Also solved by Arkady Alt, San Jose, CA; Brian D. Beasley, Clinton, SC;
Paul M. Harms, North Newton, KS; Enkel Hysnelaj, University of
Technology, Sydney, Australia jointly with Elton Bojaxhiu, Kriftel,
Germany; David E. Manes, Oneonta, NY; Ángel Plaza (University of Las
Palmas de Gran Canaria), Spain; Boris Rays, Brooklyn, NY; Albert Stadler,
Herrliberg, Switzerland; David Stone and John Hawkins (jointly),
Statesboro, GA; Boris Rays, Brooklyn, NY, and the proposer.

• 5169: Proposed by Ovidiu Furdui, Cluj, Romania

Let n ≥ 1 be an integer and let i be such that 1 ≤ i ≤ n. Calculate:∫ 1

0
· · ·
∫ 1

0

xi
x1 + x2 + · · ·+ xn

dx1 · · · dxn.

Solutions 1 and 2 by Albert Stadler, Herrliberg, Switzerland

1) Let Ii =

∫ 1

0
· · ·
∫ 1

0

xi
x1 + x2 + · · ·+ xn

dx1 · · · dxn. Then by symmetry,

I1 = I2 = · · · In. So,

I1 + I2 + · · ·+ In =

∫ 1

0
· · ·
∫ 1

0

x1 + x2 + · · ·xn
x1 + x2 + · · ·+ xn

dx1 · · · dxn = 1,

and Ii =
1

n
for 1 ≤ i ≤ n.

12



2) Another albeit less elegant proof runs as follows:∫ 1

0
· · ·
∫ 1

0

xi
x1 + x2 + · · ·+ xn

dx1 · · · dxn =

∫ ∞
0

∫ 1

0
· · ·
∫ 1

0
xie
−t(x1+x2+···xn)dx1 · · · dxndt

=

∫ ∞
0

(
1− e−t

)n−1 (
1− (1 + t)e−t

)
tn+1

dt

= − 1

n

∫ ∞
0

d

dt

(1− e−t)n

tn
dt

=
1

n
lim
t→0

(1− e−t)n

tn
=

1

n
.

The above is so because:∫ 1

0
e−txjdxj =

1− e−t

t
,

∫ 1

0
xie
−txidxi =

1− (1 + t)e−t

t2
,

d

dt

(1− e−t)n

tn
= −n(1− e−t)n

tn+1
+
n(1− e−t)n−1e−t

tn
= −n(1− e−t)n−1(1− (1 + t)e−t)

tn+1
.

Also solved by Michael N. Fried, Kibbutz Revivim, Israel; Enkel Hysnelaj,
University of Technology, Sydney, Australia jointly with Elton Bojaxhiu,
Kriftel, Germany; Kee-Wai Lau, Hong Kong, China; Paolo Perfetti,
Department of Mathematics, University “Tor Vergata,” Rome, Italy; David
Stone and John Hawkins (jointly), Statesboro, GA, and the proposer.
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