
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
February 15, 2015

• 5325: Proposed by Kenneth Korbin, New York, NY

Given the sequence x = (1, 7, 41, 239, 1393, 8119, . . . ), with xn = 6xn−1 − xn−2.

Let y =
x2n + x2n−1

xn
. Find an explicit formula for y expressed in terms of n.

• 5326: Proposed by Armend Sh. Shabani, University of Prishtina, Republic of Kosova

Find all positive integer solutions to m! + 24k−1 = l2.

• 5327: Proposed by D.M. Bătinetu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” School, Buzău,
Romania

Show that in any triangle ABC, with the usual notations, that(
ab

a+ b

)2

+

(
bc

b+ c

)2

+

(
ca

c+ a

)2

≥ 9r2.

• 5328: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Without the aid of a computer, find the positive solutions of the equation

2x+1
(

1−
√

1 + x2 + 2x
)

=
(
x2 + 2x

) (
1−

√
1 + 2x+1

)
.

• 5329: Proposed by Arkady Alt, San Jose, CA

Find the smallest value of
x3

x2 + y2
+

y3

y2 + z2
+

z3

z2 + x2
where real x, y, z > 0 and

xy + yz + zx = 1.

• 5330: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let B(x) =

(
x 1
1 x

)
and let n ≥ 2 be an integer.
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Calculate the matrix product
B(2)B(3) · · ·B(n).

Solutions

• 5307: Proposed by Haishen Yao and Howard Sporn, Queensborough Community College,
Bayside, NY

Solve for x: √
x15 =

√
x10 − 1 +

√
x5 − 1.

Solution 1 by Arkady Alt, San Jose, CA

Let a =
√
x10 − 1 and b =

√
x5 − 1 then

x5 = b2 + 1, x10 = a2 + 1,

x15 = x10 · x5 =
(
a2 + 1

) (
b2 + 1

)
and therefore,√

(a2 + 1) (b2 + 1) = a+ b ⇐⇒(
a2 + 1

) (
b2 + 1

)
= (a+ b)2 ⇐⇒

(ab− 1)2 = 0 ⇐⇒

ab = 1.

Also we have

x10 =
(
x5
)2

=⇒ a2 + 1 =
(
b2 + 1

)2 ⇐⇒ b4 + 2b2 = a2 ⇐⇒ b6 + 2b4 = a2b2.

Since ab = 1 then

b6 + 2b4 − 1 = 0 ⇐⇒(
b2 + 1

) (
b4 + b2 − 1

)
= 0 ⇐⇒

b4 + b2 − 1 = 0 ⇐⇒

b2 =
−1 +

√
5

2
. Hence,

x5 = b2 + 1

=
−1 +

√
5

2
+ 1

=
1 +
√

5

2
⇐⇒ x =

5

√
1 +
√

5

2
.
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Solution 2 by Charles McCracken, Dayton, OH

Let µ = x5 then
√
µ2 =

√
µ2 − 1 +

√
µ− 1.

It is readily seen that 1 < x < 2. A few successive approximations give µ ≈ 1.618. So we

try µ = φ =
1 +
√

5

2
, also known as, the Golden Ratio.

The equation then becomes√
φ
3

=
√
φ2 − 1 +

√
φ− 1

φ
√
φ =

√
φ+ 1− 1 +

√
1

φ

φ
√
φ =

√
φ+

√
1

φ

φ2 = φ+ 1. A well known identity.

Since φ = µ, x = 5
√
φ ≈ 1.101025882.

Solution 3 by Becca Rousseau, Ellie Erehart, and David Weerheim (jointly,
students at Taylor University), Upland, IN

The common domain of definition for
√
x15,
√
x10 − 1, and

√
x5 − 1 is x ≥ 1. We now

solve for x:

x15 = (x10 − 1) + 2
√

(x10 − 1)(x5 − 1) + (x5 − 1)

x15 − x10 − x5 + 2 = 2
√
x15 − x10 − x5 + 1

x5
(
x10 − x5 − 1

)
+ 2 = 2

√
x5 (x10 − x5 − 1) + 1.

Letting u = x5
(
x10 − x5 − 1

)
, we obtain

u+ 2 = 2
√
u+ 1

u2 + 4u+ 4 = 4(u+ 1)

u2 + 4u+ 4 = 4u+ 4

u2 = 4u+ 4− 4u− 4

u2 = 0, u = 0.

Substituting x5(x10 − x5 − 1)for u see that

x5
(
x10 − x5 − 1) = 0, so

x5 = 0 or x 10 − x 5 − 1 = 0.
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x5 = 0 x5 =
1±
√

5

2
.

Therefore, x = 0, x =
5

√
1−
√

5

2
, or x =

5

√
1 +
√

5

2
.

The first two roots must be discarded, because they are outside the domain of definition
of x, as noted above.

Solution 4 by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy

It is not specified whether x is real or not, so let’s assume x ∈ R. The domain of x is
[1,∞) since both x10 − 1 and x5 − 1 are the product of (x− 1) for a positive polynomial
respectively of order 9 and 4. Let x5 = y. Squaring we get

y3 = y2 − 1 + y − 1 + 2(y − 1)
√
y + 1 ⇐⇒ y3 − y2 + 1− y + 1 = 2(y − 1)

√
y + 1.

The r.h.s. is nonnegative for y ≥ 1. Moreover for y ≥ 0

y3

2
+
y3

2
+

1

2
≥ 3

2
y2,

1

2
y2 +

1

2
≥ y

and then

y3 − y2 − y + 2 ≥ 1 + y2 + y > y2 + y.

We square both sides again getting

y2(y2 − y − 1)2 = 0 ⇐⇒ y = (1 +
√

5)/2

and then x =
(
(1 +

√
5)/2

)1/5
.

Comment: Brian D. Beasley, Presbyterian College, Clinton, SC, Moti Levy
of Rehovot, Israel, Michael Thew (student at Saint George’s School),
Spokane, WA, Neculai Stanciu, Buzău, Romania and Titu Zvonaru,
Comănesti, Romania, and David Stone and John Hawkins of Georgia
Southern University, Statesboro, Georgia noted in their solutions that if complex
roots are allowed, the full set of roots is:

x = 0, xk =
(

(1 +
√

5)/2
)1/5(

cos
2kπ

5
+ i sin

2kπ

5

)
, k = 0, 1, 2, 3, 4, and

xm =
(

(1−
√

5)/2
)1/5(

cos
2mπ

5
+ i sin

2mπ

5

)
,m = 0, 1, 2, 3, 4.

David Stone and John Hawkins also noted that if we let y1 =
√
x15 and

y2 =
√
x10 − 1 +

√
x5 − 1, the graphs of these two functions intersect at the real root,

and at this point the graphs are tangent to one another.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX; Bruno Salgueiro Fanego, Viveiro, Spain;
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Ed Gray, Highland Beach, FL; Paul M. Harms, North Newton, KS; Kenneth
Korbin, New York, NY; Kee-Wai Lau, Hong Kong, China; Kelley McKaig,
Madison Thompson, and Melanie Schmocker, (Students at Taylor
University), Upland, IN; Angel Plaza, Universidad de Las Palmas de Gran
Canaria, Spain, and the proposers.

• 5308: Proposed by Kenneth Korbin, New York, NY

Given the sequence
t = (1, 7, 41, 239, . . .)

with tn = 6tn−1 − tn−2. Let (x, y, z) be a triple of consecutive terms in this sequence
with x < y < z.

Part 1) Express the value of x in terms of y and express the value of y in terms of x.

Part 2) Express the value of x in terms of z and express the value of z in terms of x.

Solution 1 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX

From the recursive formula
tn+2 = 6tn+1 − tn (1)

and the initial conditions t1 = 1 and t2 = 7, we can find a closed form expression for tn
by using the customary techniques for solving homogeneous linear difference equations.
If we consider solutions of the form tn = λn, with λ 6= 0, equation (1) provides us with
the auxiliary equation

λ2 = 6λ− 1

whose solutions are
λ = 3± 2

√
2.

Then, there are constants c1, c2 such that

tn = c1

(
3 + 2

√
2
)n

+ c2

(
3− 2

√
2
)n

for all n ≥ 1. The initial conditions t1 = 1 and t2 = 7 give

c1 =

√
2− 1

2
and c2 = −

√
2 + 1

2

and we have

tn =

√
2− 1

2

(
3 + 2

√
2
)n
−
√

2 + 1

2

(
3− 2

√
2
)n
.

Finally, since (
3 + 2

√
2
)

=
(√

2 + 1
)2

and
(
3− 2

√
2
)

=
(√

2− 1
)2
,

we conclude that

tn =

√
2− 1

2

(√
2 + 1

)2n
−
√

2 + 1

2

(√
2− 1

)2n
=

(√
2 + 1

)2n−1 − (√2− 1
)2n−1

2
(2)
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for all n ≥ 1.

Equation (2) shows that tn > 0 for all n and then an elementary Mathematical
Induction argument using (1) establishes that tn+1 > tn for all n. Therefore, if (x, y, z)
is a triple of consecutive terms in this sequence with x < y < z, we must have x = tn,
y = tn+1, and z = tn+2 for some n ≥ 1.

For Part 1), we note that

y = tn+1

=
1

2

[(√
2 + 1

)2n+1
−
(√

2− 1
)2n+1

]
=

1

2

[(
3 + 2

√
2
)(√

2 + 1
)2n−1

−
(

3− 2
√

2
)(√

2− 1
)2n−1]

=
3 + 2

√
2

2

[(√
2 + 1

)2n−1
−
(√

2− 1
)2n−1]

+ 2
√

2
(√

2− 1
)2n−1

=
(

3 + 2
√

2
)
tn + 2

√
2
(√

2− 1
)2n−1

=
(

3 + 2
√

2
)
x+ 2

√
2
(√

2− 1
)2n−1

.

Then,

x =
1

3 + 2
√

2

[
y − 2

√
2
(√

2− 1
)2n−1]

=
(

3− 2
√

2
)[
y − 2

√
2
(√

2− 1
)2n−1]

=
(

3− 2
√

2
)
y − 2

√
2
(√

2− 1
)2 (√

2− 1
)2n−1

=
(

3− 2
√

2
)
y − 2

√
2
(√

2− 1
)2n+1

.

For Part 2), equation (1) and Part 1) imply that

z = tn+2

= 6tn+1 − tn

= 6

[(
3 + 2

√
2
)
x+ 2

√
2
(√

2− 1
)2n−1]

− x

=
(

17 + 12
√

2
)
x+ 12

√
2
(√

2− 1
)2n−1

.

Hence,

x =
1

17 + 12
√

2

[
z − 12

√
2
(√

2− 1
)2n−1]

=
(

17− 12
√

2
)[
z − 12

√
2
(√

2− 1
)2n−1]

=
(

17− 12
√

2
)
z − 12

√
2
(√

2− 1
)4 (√

2− 1
)2n−1

=
(

17− 12
√

2
)
z − 12

√
2
(√

2− 1
)2n+3

.
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Remark. On page 253 of Recreations in the Theory of Numbers by A. H. Beiler (Dover
Publications, Inc., 1966), it is shown that the sequence {tn} provides the solutions for x
in the Pell Equation x2 − 2y2 = −1. The corresponding y solutions satisfy the recursive
formula yn+2 = 6yn+1 − yn with y1 = 1 and y2 = 5. This yields

yn =

(√
2 + 1

)2n−1
+
(√

2− 1
)2n−1

2
√

2

for n ≥ 1.

Solution 2 by Moti Levy, Rehovot, Israel

The solution of this type of recurrence formulas is

tn = aαn + bβn,

where α and β are the roots of r2 − 6r + 1.

Here,

tn = aαn − (a+ 1)α−n; a =

(
1

2

√
2− 1

2

)
; α = 3 + 2

√
2.

Part 1):

x = aαn − (a+ 1)α−n

y = aαn+1 − (a+ 1)α−n−1

Solving for αn in terms of x, we get,

αn =
(√

2 + 1
)(

x+
√
x2 + 1

)
,

y = 3x+ 2
√

2
√
x2 + 1.

Solving for αn in terms of y, we get,

αn =
(√

2− 1
)(

y +
√
y2 + 1

)
,

x = 3y − 2
√

2
√
y2 + 1.

Part 2):
z = aαn+2 − (a+ 1)α−n−2,

z = 17x+ 12
√

2
√
x2 + 1.

Solving for αn in terms of z, we get,

αn =
(

5
√

2− 7
)(

z +
√
z2 + 1

)
,

x = 17z − 12
√

2
√
z2 + 1.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland
Beach, FL; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong,
China; Titu Zvonaru, Comănesti, Romania (jointly with) Neculai Stanciu,
“Geroge Emil Palade School,” Buzău, Romania, and the proposer.
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• 5309: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

Consider the expression 3n + n2 for positive integers n. It is divisible by 13 for n = 18
and n = 19. Prove, however, that it is never divisible by 13 for three consecutive values
of n.

Solution 1 by Bruno Salgueiro Fanego Viveiro, Spain

Let n be an integer such that n ≥ 1. We argue by contradiction. If, for the three
consecutive values n− 1, n, and n+ 1 the expressions 3n−1 + (n− 1)2, 3n + n2, and
3n+1 + (n+ 1)2 are each divisible by 13, then their sum,

(
1 + 3 + 32) · 3n−1 + 3n2 + 2 is

divisible by 13, or equivalently, the expression 3n2 + 2 is divisible by 13.

If we divide n by 13, we obtain an integer quotient c and remainder r, 0 ≤ r < 13, such
that n = 13c+ r, so 3n2 + 2 = 3 (13c+ r)2 + 2 = 13 ·

(
39c2 + 2cr

)
+ 3r2 + 2, which is

divisible by 13, so 3r2 + 2 is also divisible by 13.

Since 0 ≤ r ≤ 12, 3r2 + 2 ∈ {5, 14, 29, 50, 77, 110, 149, 194, 245, 302, 365, 434} and hence
3r2 + 2 is not divisible by 13 (because each remainder of the division of 5, 14, 29, 50, 77,
110, 149, 194, 245, 302, 365, and 434 by 13 is not zero. The remainders are, respectively,
5, 1, 3, 11, 12, 6, 6, 12,11, 3, 1, and 5. Thus we have a contradiction showing that the
expressions 3n−1 + (n− 1)2, 3n + n2, and 3n+1 + (n+ 1)2 cannot all be divisible by 13.

Solution 2 by Ed Gray, Highland Beach, FL

Suppose there were three consecutive integers, say, n, n+ 1 and n+ 2 for which 3n + n2

is divisible by 13. Then we have the three congruences:

(1) 3n + n2 ≡ 0 (mod 13)
(2) 3n+1 + n2 + 2n+ 1 ≡ 0 (mod 13)
(3) 3n+2 + n2 + 4n+ 4 ≡ 0 (mod 13)

Multiple (1) by 9, multiply (2) by 1 and multiply (3) by 3. Then

(4) 9 · 3n + 9n2 ≡ 0 (mod 13)
(5) 3 · 3n + n2 + 2n+ 1 ≡ 0 (mod 13)
(6) 27 · 3n + 3n2 + 12n+ 12 ≡ 0 (mod 13)

Adding the three congruences:

(7) 39 · 3n + 13n2 + 14n+ 13 ≡ 0 (mod 13) =⇒ 13

∣∣∣∣n,
which is equivalent to saying n ≡ 0 (mod 13). Therefore, if it were possible to have three
consecutive integers such that 3n + n2 were divisible by 13, then 13 would have to divide
n and this implies (in eq. 1) that 13 divides 3n , but this is impossible because the only
divisors of 3n are multiples of 3.

Solution 3 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX

Suppose that there are positive integers n, x, y, z such that

3n + n2 = 13x, 3n+1 + (n+ 1)2 = 13y, and 3n+2 + (n+ 2)2 = 13z.
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Then,

13z = 3 · 3n+1 + (n+ 1)2 + (2n+ 3)

=
[
3n+1 + (n+ 1)2

]
+ 2 · 3n+1 + 2n+ 3

= 13y + 6 · 3n + 2n+ 3

= 13y + 6
(
13x− n2

)
+ 2n+ 3

= 13 (y + 6x)− 6n2 + 2n+ 3.

Hence,
13 (6x+ y − z) = 6n2 − 2n− 3

which implies that
6n2 − 2n− 3 ≡ 0 (mod 13) .

However, as shown in the following table, this is impossible.

n (mod 13) 6n2 − 2n− 3 (mod 13)

0 10
1 1
2 4
3 6
4 7
5 7
6 6
7 4
8 1
9 10
10 5
11 12
12 5

Therefore, no such n, x, y, z exist and 3n + n2 is never divisible by 13 for three
consecutive values of n.

Solution 4 by Kee-Wai Lau, Hong Kong, China

Suppose the contrary, that 3m +m2, 3m+1 + (m+ 1)2, 3m+2 + (m+ 2)2 are divisible by
13 for some positive integer m. Hence their sum

13(3m) + 3m2 + 6m+ 5

is also divisible by 13. However this contradicts the fact that 3m2 + 6m+ 5 is congruent
to 5, 1, 3, 11, 12, 6, 6, 12, 11, 3, 1, 5, 2 modulo 13 according as m is congruent to
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 modulo 13. Hence the assertion of the problem.

Also solved by Arkady Alt, San Jose, CA; Brian D. Beasely, Presbyterian
College, Clinton, SC; Paul M. Harms, North Newton, KS; Kenneth Korbin,
New York, NY; Moti Levy, Rehovot, Israel; David E. Manes, SUNY College
at Oneonta, Oneonta, NY; David Stone and John Hawkins of Georgia
Southern University, Statesboro, Georgia; Titu Zvonaru, Comănesti,
Romania (jointly with) Neculai Stanciu, “Geroge Emil Palade School,”
Buzău, Romania, and the proposer.
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• 5310: Proposed by D. M. Bătinetu-Giurgiu,“Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” Secondary School,
Buzău, Romania

Let a > 0 and a sequence {En}n≥0, be defined by En =

n∑
k=0

1

k!
. Evaluate:

lim
n→∞

n
√
n!
(
a
n√En−1 − 1

)
.

Solution 1 by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy

We know that

e =

n∑
k=0

1

k!
+

c

(n+ 1)!
, c = eξ, 0 ≤ ξ < 1.

It follows that n
√
En → 1 and then

(
a
n√En−1 − 1

)
/( n
√
En − 1)→ ln a, as well as

lim
n→∞

n
√
n!
(
a
n√En−1 − 1

)
= lim

n→∞
n
√
n!( n
√
En − 1) ln a.

Moreover,

lim
n→∞

n
(
E1/n
n − 1

)
= 1,

and then

lim
n→∞

n
√
n!( n
√
En − 1) ln a = lim

n→∞

n
√
n!

n
ln a.

Finally, the Cesaro–Stolz theorem yields

lim
n→∞

n
√
n!

n
ln a = lim

n→∞
n

√
n!

nn
ln a = ln a lim

n→∞

(n+ 1)!

(n+ 1)n+1

nn

n!
= ln a lim

n→∞

nn

(n+ 1)n
=

ln a

e
.

Solution 2 by Ed Gray, Highland Beach, FL

We first show that the limit to be evaluated is of the form ∞ · 0, and then we use
L’Hospital’s rule to evaluate it.

lim
n→∞

n
√
En = lim

n→∞
(En)1/n = lim

n→∞

(
n∑
k=0

1

k!

)1/n

= lim
n→∞

{(
1 +

1

n

)n}1/n

= lim
n→∞

(1 + 1/n) = 1, so,

lim
n→∞

(
a
n√En−1 − 1

)
= 0.

Let y = lim
n→∞

(n!)1/n. Then

ln(y) = (1/n) ln(n!)→

10



ln(y) = (1/n) ln (1 · 2 · 3 · · ·n) and

ln(y) = (1/n)

(
ln(1) + ln(2) + ln(3) + · · ·+ ln(n)

)
ln(y) ≈ (1/n)

∫ x=n

x=1
ln(x)dx

ln(y) = (1/n)

(
x ln(x)− x

)∣∣∣∣n
x=1

ln(y) = (1/n)

(
n (ln(n))− n

)
ln(y) = ln(n)− 1

ln(y) = ln(n)− ln e

ln(y) = ln
(n
e

)
y =

n

e

So we see that our problem, to evaluate lim
n→∞

n
√
n!
(
a
n√En−1 − 1

)
, is of the form ∞ · 0,

and this allows us to use L’Hospital’s rule, to differentiate the numerator and
denominator separately with respect to n.

For the numerator, let u = a1/n − 1.

u = a1/n − 1

(u+ 1)n = a

n ln(u+ 1) = ln(a)

lim
n→∞

ln(u+ 1) = lim
n→∞

(1/n) ln(a)

lim
n→∞

1

u+ 1

du

dn
= lim

n→∞
− ln(a)

n2

du

dn
=
−(u+ 1) ln(a)

n2
= −

(
a1/n ln(a)

n2

)

For the denominator,
d

dn
(e/n) = − e

n2
.

So,

lim
n→∞

−a1/n ln(a)

n2

− e

n2

= lim
n→∞

a1/n ln(a)

e
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=
ln a

e
.

Solution 3 by Kee-Wai Lau, Hong Kong, China

It is known that for real x tending to zero, we have ex = 1 + x+O
(
x2
)
.

Since lim
n→∞

En = e, so n
√
En − 1 = e

lnEn
n − 1 =

lnEn
n

+O

(
1

n2

)
, and

a
n√En−1 − 1 = e(

n√En−1) ln a − 1 =
(lnEn) (ln a)

n
+O

(
1

n2

)
, where the last constant

implied by O depends at most on a. Hence, by Stirling’s formula

n! =
√

2πn
(n
e

)n(
1 +O

(
1

n

))
as n tends to infinity, we obtain

lim
n→∞

n
√
n!
(
a
n√En−1 − 1

)
=

ln a

e
.

Also solved by Arkady Alt, San Jose, CA; Bruno Salgueiro Fanego, Viveiro,
Spain; Moti Levy, Rehovot, Israel, and the proposers.

• 5311: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let x, y, z be positive real numbers. Prove that

∑
cyclic

√(
x2

3
+ 3y2

)(
2

xy
+

1

z2

)
≥ 3
√

10.

Solution 1 by Arkady Alt, San Jose, CA

Since by AM-GM Inequality
x2

3
+ 3y2 =

x2 + 9y2

3
≥ 1

3
· 10

10

√
x2 · (y2)9 =

10

3
5
√
xy9 and

2

xy
+

1

z2
≥ 3

3

√(
1

xy

)2

· 1

z2
=

3
3
√
x2y2z2

then

√(
x2

3
+ 3y2

)(
2

xy
+

1

z2

)
≥
√

10

3
5
√
xy9 · 3

3
√
x2y2z2

⇐⇒
√

10
3
√
xyz
· x

1

10 y
9
10 and,

therefore,

using again AM-GM Inequality we obtain

∑
cyclic

√(
x2

3 + 3y2
)(

2
xy + 1

z2

)
≥
√

10
3
√
xyz
·
∑
cyclic

x

1

10 y

9

10 ≥

√
10

3
√
xyz
· 3

3

√
x

1
10 y

9
10 · y

1
10 z

9
10 · z

1
10x

9
10 =

√
10

3
√
xyz
· 3 3
√
xyz = 3

√
10.

Equality holds if x = y = z.
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Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

By the AM-GM inequality

x3

3
+ 3y2 =

x2

3
+

9 times︷ ︸︸ ︷
y2

3
+ . . .+

y2

3
≥ 10

10

√√√√√x2

3
+

9 times︷ ︸︸ ︷
y2

3
+ . . .+

y2

3
=

5
√

105xy9

3
with equality iff

x2

3
=
y2

3
, that is, iff x = y, and

2

xy
+

1

z2
=

1

xy
+

1

xy
+

1

z2
≥ 3 3

√
1

xy
· 1

xy
· 1

z2
=

3
3
√
x2y2z2

with equality iff 1xy =
1

z2
,

that is, iff xy = z2.

Hence, √(
x2

3
+ 3y2

)(
2

xy
+

1

z2

)
≥

√
5
√

105xy9

3

3
3
√
x2y2z2

= 30

√
1015x3y27

x10y10z10

with equality iff x = y = z, and cyclically. This and the AM-GM inequality prove the
inequality, because

∑
cyclic

√(
x2

3
+ 3y2

)(
2

xy
+

1

z2

)
≥

∑
cyclic

30

√
1015x3y27

x10y10z10

≥ 3 3

√√√√∏
cyclic

30

√
1015x3y27

x10y10z10
= 3

3

√√√√ 30

√
1045x30y30z30

x30y30z30
= 3
√

10,

with equality iff x = y = z and
1015x3y27

x10y10z10
=

1015y3z27

x10y10z10
=

1015z3x27

x10y10z10
, that is iff

x = y = z.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX; Ed Gray, Highland Beach, FL; Kee-Wai
Lau, Hong Kong, China; Moti Levy, Rehovot, Israel; Paolo Perfetti,
Department of Mathematics, Tor Vergata University, Rome, Italy, Titu
Zvonaru, Comănesti, Romania (jointly with) Neculai Stanciu, “Geroge Emil
Palade School,” Buzău, Romania, and the proposer.

• 5312: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Calculate: ∫ 1

0
ln |
√
x−
√

1− x|dx.

Solution 1 by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy
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∫ 1

0
ln |
√
x−
√

1− x|dx =

∫ 1

1/2
ln(
√
x−
√

1− x)dx+

∫ 1/2

0
ln(
√

1− x−
√
x)dx.

Moreover, ∫ 1/2

0
ln(
√

1− x−
√
x)dx =︸︷︷︸

1−x=y

∫ 1

1/2
ln(
√
y −

√
1− y)dy

and then,

∫ 1

0
ln |
√
x−
√

1− x|dx = 2

∫ 1/2

0
ln(
√

1− x−
√
x)dx

=

∫ 1/2

0
ln(1− x)dx+ 2

∫ 1/2

0
ln

(
1−

√
x

1− x

)
dx =

[
x = t2/(1 + t2)

]

=

∫ 1

1/2
lnxdx+ 2

∫ 1

0
ln(1− t) 2t

(1 + t2)2
dt

= (x lnx− x)
∣∣∣1
1/2

+ lim
a→1

2
t2

1 + t2
ln(1− t)

∣∣∣a
0
+ lim
a→1

∫ a

0

2t2

1 + t2
1

1− t
dt. (∗)

2

∫ a

0

t2

1 + t2
1

1− t
dt = 2

∫ a

0

(
1

1− t
− 1

(1 + t2)(1− t)

)
dt

=

∫ a

0

(
2

1− t
− 1

1− t
− 1 + t

1 + t2

)
dt

=

(
− ln(1− t)− arctan t− 1

2
ln(1 + t2)

) ∣∣∣a
0

= − ln(1− a)− arctan a− 1

2
ln(1 + a2).

The quantity (*) becomes

1

2
ln 2− 1

2
+ lim
a→1

ln(1− a)

(
2a2

1 + a2
− 1

)
− π

4
− ln 2

2
= −1

2
− π

4
.

Solution 2 by Kee-Wai Lau, Hong Kong, China

By the substitution x = sin2(θ/2) we have∫ 1

0
ln

∣∣∣∣√x−√1− x
∣∣∣∣dx

14



=
1

2

∫ 1

0
ln
((√

x−
√

1− x
)2)

dx

=
1

2

∫ 1

0
ln
(

1− 2
√
x(1− x)

)
dx

=
1

4

∫ π

0
ln(1− sin θ) sin θdθ

=
−1

4
[ln(1− sin θ) cos θ]π0 −

1

4

∫ π

0

cos2 θ

1− sin θ
dθ

=
−1

4

∫ π

0
(1 + sin θ)dθ

=
−1

4
[θ − cos θ]

∣∣∣∣π
0

= −π + 2

4
.

Solution 3 by Moti Levy, Rehovot, Israel

Using the symmetry of the integrand and substituting u = 2x,∫ 1

0
ln
∣∣√x−√1− x

∣∣ dx = 2

∫ 1
2

0
ln

(√
1

2
+ x−

√
1

2
− x

)
dx

= −1 + ln
√

2−
∫ 1

0
ln
(√

1 + u+
√

1− u
)
du. (1)

To evaluate the integral in (1), we substitute u = cos 2x, integrate by parts and use the
trigonometric equality, (

cosx− sinx

cosx+ sinx

)
cos 2x = 1− sin 2x.
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∫ 1

0
ln
(√

1 + u+
√

1− u
)
du

= 2

∫ π
4

0
ln
(√

1 + cos 2x+
√

1− cos 2x
)

sin 2xdx

= 2

∫ π
4

0
ln
(√

2 (cosx+ sinx)
)

sin 2xdx

= − ln
(√

2 (cosx+ sinx)
)

cos 2x
]π

4

0
+

∫ π
4

0

(
cosx− sinx

cosx+ sinx

)
cos 2xdx

= ln
√

2 +

∫ π
4

0
(1− sin 2x) dx

= ln
√

2 +
π

4
− 1

2
. (2)

By (1) and (2), we obtain,∫ 1

0
ln
∣∣√x−√1− x

∣∣ dx = −π
4
− 1

2
.

Solution 4 by Brian D. Beasely, Presbyterian College, Clinton, SC

We denote the given integral by I and let A =
∫ 1/2
0 ln(

√
1− x+

√
x)dx and

B =
∫ 1/2
0 ln(

√
1− x−

√
x)dx. We then show that A+B = −1/2 and A−B = π/4, so

we conclude that

I = 2B = −1/2− π/4.

Using L’Hopital’s Rule, we have

A+B =

∫ 1/2

0
ln(1− 2x)dx =

(1− 2x) ln(1− 2x)− (1− 2x)

−2
= −1

2
.

Next, we integrate by parts to calculate A−B:∫
ln

(√
1− x+

√
x√

1− x−
√
x

)
dx =

(
x− 1

2

)
ln

(√
1− x+

√
x√

1− x−
√
x

)
+

∫
1

2
√
x(1− x)

dx

=

(
x− 1

2

)
ln

(√
1− x+

√
x√

1− x−
√
x

)
+ sin−1(

√
x) + C.

Using L’Hopital once again, we conclude A−B = π/4 as needed.

Also solved by Arkady Alt, San Jose, CA; Bruno Salgueiro Fanego,Viveiro,
Spain; Ed Gray, Highland Beach, FL, and the proposer.

16


