Problems

This section of the Journal offers readers an opportunity to exchange interesting mathematical problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics, Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions can be sent e-mail to eisenbt@013.net. Solutions to previously stated problems can be seen at http://ssmj.tamu.edu.

Solutions to the problems stated in this issue should be posted before February 15, 2010

- 5086: Proposed by Kenneth Korbin, New York, NY

Find the value of the sum

$$
\frac{2}{3}+\frac{8}{9}+\cdots+\frac{2 N^{2}}{3^{N}} .
$$

- 5087: Proposed by Kenneth Korbin, New York, NY

Given positive integers a, b, c, and d such that $(a+b+c+d)^{2}=2\left(a^{2}+b^{2}+c^{2}+d^{2}\right)$ with $a<b<c<d$. Rationalize and simplify

$$
\frac{\sqrt{x+y}-\sqrt{x}}{\sqrt{x+y}+\sqrt{x}} \quad \text { if } \quad\left\{\begin{array}{l}
x=b c+b d+c d, \\
y=a b+a c+a d .
\end{array}\right.
$$

- 5088: Proposed by Isabel Iriberri Díaz and José Luis Díaz-Barrero, Barcelona, Spain

Let a, b be positive integers. Prove that

$$
\frac{\varphi(a b)}{\sqrt{\varphi^{2}\left(a^{2}\right)+\varphi^{2}\left(b^{2}\right)}} \leq \frac{\sqrt{2}}{2},
$$

where $\varphi(n)$ is Euler's totient function.

- 5089: Proposed by Panagiote Ligouras, Alberobello, Italy

In $\triangle A B C$ let $A B=c, B C=a, C A=b, r=$ the in-radius and r_{a}, r_{b}, and $r_{c}=$ the ex-radii, respectively.
Prove or disprove that
$\frac{\left(r_{a}-r\right)\left(r_{b}+r_{c}\right)}{r_{a} r_{c}+r r_{b}}+\frac{\left(r_{c}-r\right)\left(r_{a}+r_{b}\right)}{r_{c} r_{b}+r r_{a}}+\frac{\left(r_{b}-r\right)\left(r_{c}+r_{a}\right)}{r_{b} r_{a}+r r_{c}} \geq 2\left(\frac{a b}{b^{2}+c a}+\frac{b c}{c^{2}+a b}+\frac{c a}{a^{2}+b c}\right)$.

- 5090: Proposed by Mohsen Soltanifar (student), University of Saskatchewan, Canada

Given a prime number p and a natural number n. Calculate the number of elementary matrices $E_{n \times n}$ over the field Z_{p}.

- 5091: Proposed by Ovidiu Furdui, Cluj, Romania

Let $k, p \geq 0$ be nonnegative integers. Evaluate the integral

$$
\int_{-\pi / 2}^{\pi / 2} \frac{\sin ^{2 p} x}{1+\sin ^{2 k+1} x+\sqrt{1+\sin ^{4 k+2} x}} d x .
$$

Solutions

- 5068: Proposed by Kenneth Korbin, New York, NY.

Find the value of

$$
\sqrt{1+2009 \sqrt{1+2010 \sqrt{1+2011 \sqrt{1+\cdots}}}}
$$

Solution by Dmitri V. Skjorshammer (student, Harvey Mudd College), Claremont, CA

To solve this, we apply Ramanujan's nested radical. Consider the identity $(x+n)^{2}=x^{2}+2 n x+n^{2}$, which can be rewritten as

$$
x+n=\sqrt{n^{2}+x((x+n)+n)} .
$$

Now, the $(x+n)+n$ term has the same form as the left-hand side, so we can write it in terms of a radical:

$$
x+n=\sqrt{n^{2}+x \sqrt{n^{2}+(x+n)((x+2 n)+n)}}
$$

Repeating this process, ad infinitum, yields Ramanujan's nested radical:

$$
x+n=\sqrt{n^{2}+x \sqrt{n^{2}+(x+n) \sqrt{n^{2}+\cdots}}}
$$

With $n=1$ and $x=2009$, the right-hand side becomes the expression in the problem. It follows that the value is 2010 .

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Pat Costello, Richmond, KY; Michael N. Fried, Kibbutz Revivim, Israel; David E. Manes, Oneonta, NY; Paolo Perfetti, Department of Mathematics, University Tor Vergata, Rome, Italy; David Stone and John Hawkins (jointly), Statesboro, GA; Nguyen Van Vinh (student, Belarusian State University), Minsk, Belarus, and the proposer.

- 5069: Proposed by Kenneth Korbin, New York, NY.

Four circles having radii $\frac{1}{14}, \frac{1}{15}, \frac{1}{x}$ and $\frac{1}{y}$ respectively, are placed so that each of the circles is tangent to the other three circles. Find positive integers x and y with $15<x<y<300$.
Solution by Bruno Salgueiro Fanego, Viveiro, Spain

If all the circles are tangent in a point, the problem is not interesting because x and y can take on any value for which $15<x<y<300$. So we assume that the circles are not mutually tangent at a point.
By Descarte's circle theorem with $\epsilon_{1}, \epsilon_{2}$ and ϵ_{3} being the curvature of the first three circles, the curvature ϵ_{4} of the fourth circle can be obtained with Soddy's formula:

$$
\begin{aligned}
\epsilon_{4} & =\epsilon_{1}+\epsilon_{2}+\epsilon_{3} \pm 2 \sqrt{\epsilon_{1} \epsilon_{2}+\epsilon_{2} \epsilon_{3}+\epsilon_{3} \epsilon_{1}}, \text { that is, } \\
y & =14+15+x \pm 2 \sqrt{14 \cdot 15+15 \cdot x+x \cdot 14} \\
y & =29+x+ \pm 2 \sqrt{210+29 x}
\end{aligned}
$$

Then, $210+29 x$ must be a perfect square, say a^{2}. Since, $15<x<300$,

$$
\begin{gathered}
25^{2}<210+29 x<95^{2}, \text { so } \\
26 \leq a \leq 94 .
\end{gathered}
$$

Thus,

$$
29 \mid\left(a^{2}-210\right)
$$

The only integers $a, 26 \leq a \leq 94$, which satisfy this condition are $35,52,64,81$, and 93 . Taking into account that $15<x<y<300$, we have:

$$
\begin{aligned}
& \text { For } a=35, x=35 \text { and so } y=29+x \pm 2 a=134 \\
& \text { For } a=52, x=86 \text { and } y=219 ; \\
& \text { For } a=64, x=134 \text { and } y=291
\end{aligned}
$$

and for $a \in\{81,93\}$, none of the obtained values of y is valid.
Thus the only pairs of integers x and y with $15<x<y<300$ are

$$
(x, y) \in\{(35,134),(86,219),(134,291)\}
$$

Also solved by Michael N. Fried, Kibbutz Revivim, Israel; Paul M. Harms, North Newton, KS; John Hawkins and David Stone (jointly), Statesboro, GA; Antonio Ledesma Vila, Requena-Valencia, Spain, and the proposer.

- 5070: Proposed by Isabel Iriberri Díaz and José Luis Díaz- Barrero, Barcelona, Spain. Find all real solutions to the system

$$
\left.\begin{array}{c}
9\left(x_{1}^{2}+x_{2}^{2}-x_{3}^{2}\right)=6 x_{3}-1, \\
9\left(x_{2}^{2}+x_{3}^{2}-x_{4}^{2}\right)=6 x_{4}-1, \\
\cdots \cdots \\
9\left(x_{n}^{2}+x_{1}^{2}-x_{2}^{2}\right)=6 x_{2}-1
\end{array}\right\}
$$

Solution by Antonio Ledesma Vila, Requena -Valencia, Spain

Add all

$$
\left.\begin{array}{c}
9\left(x_{1}^{2}+x_{2}^{2}-x_{3}^{2}\right)=6 x_{3}-1 \\
9\left(x_{2}^{2}+x_{3}^{2}-x_{4}^{2}\right)=6 x_{4}-1 \\
\cdots
\end{array}\right] \begin{gathered}
9 x_{2}-1 \\
9\left(x_{n}^{2}+x_{1}^{2}-x_{2}^{2}\right)=6 \sum_{i=1}^{n} x_{i}-n \\
9\left(\sum_{i=1}^{n} x_{i}^{2}+\sum_{i=1}^{n} x_{i}^{2}-\sum_{i=1}^{n} x_{i}^{2}\right)=6 \\
9 \sum_{i=1}^{n} x_{i}^{2}=6 \sum_{i=1}^{n} x_{i}-n \\
\sum_{i=1}^{n}\left(3 x_{i}\right)^{2}=2 \sum_{i=1}^{n}\left(3 x_{i}\right)-n \\
\sum_{i=1}^{n}\left(3 x_{i}\right)^{2}-2 \sum_{i=1}^{n}\left(3 x_{i}\right)+n=0 \\
\sum_{i=1}^{n}\left(3 x_{i}-1\right)^{2}=0 \\
x_{i}=\frac{1}{3} \text { for all } i
\end{gathered}
$$

Also solved by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie (jointly), San Angelo, TX; Bruno Salgueiro Fanego, Viveiro, Spain; Kee-Wai Lau, Hong Kong; China; David E. Manes, Oneonta, NY; John Nord, Spokane, WA; Paolo Perfetti, Department of Mathematics, University Tor Vergata, Rome, Italy; Boris Rays, Brooklyn, NY; Dmitri V. Skjorshammer (student, Harvey Mudd College), Claremont, CA, and the proposer.

- 5071: Proposed by José Luis Díaz-Barrero, Barcelona, Spain.

Let h_{a}, h_{b}, h_{c} be the altitudes of $\triangle A B C$ with semi-perimeter s, in-radius r and circum-radius R, respectively. Prove that

$$
\frac{1}{4}\left(\frac{s(2 s-a)}{h_{a}}+\frac{s(2 s-b)}{h_{b}}+\frac{s(2 s-c)}{h_{c}}\right) \leq \frac{R^{2}}{r}\left(\sin ^{2} A+\sin ^{2} B+\sin ^{2} C\right)
$$

Solution by Charles McCracken, Dayton, OH
Multiply both sides of the inequality by 4 to obtain

$$
\begin{aligned}
& \frac{s(2 s-a)}{h_{a}}+\frac{s(2 s-b)}{h_{b}}+\frac{s(2 s-c)}{h_{c}} \leq \frac{(2 R)^{2}}{r}\left[\sin ^{2} A+\sin ^{2} B+\sin ^{2} C\right] \\
& \frac{s(2 s-a)}{h_{a}}+\frac{s(2 s-b)}{h_{b}}+\frac{s(2 s-c)}{h_{c}} \leq \frac{1}{r}\left[(2 R)^{2} \sin ^{2} A+(2 R)^{2} \sin ^{2} B+(2 R)^{2} \sin ^{2} C\right]
\end{aligned}
$$

Now $2 R=\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$ so the inequality becomes

$$
\frac{s(2 s-a)}{h_{a}}+\frac{s(2 s-b)}{h_{b}}+\frac{s(2 s-c)}{h_{c}} \leq \frac{1}{r}\left(a^{2}+b^{2}+c^{2}\right)
$$

From Johnson (Roger A. Johnson, Advanced Euclidean Geometry, Dover, 2007, p. 11) we have

$$
h_{a}=\frac{2 \Delta}{a}, h_{b}=\frac{2 \Delta}{b}, h_{c}=\frac{2 \Delta}{c}, \text { where } \Delta \text { represents the area of the triangle. }
$$

The inequality now takes the form

$$
\frac{a s(2 s-a)}{2 \Delta}+\frac{b s(2 s-b)}{2 \Delta}+\frac{c s(2 s-c)}{2 \Delta} \leq \frac{1}{r}\left(a^{2}+b^{2}+c^{2}\right)
$$

Since $\Delta=r s$, we now have our inequality in the form

$$
\begin{aligned}
\frac{a s(2 s-a)}{2 r s}+\frac{b s(2 s-b)}{2 r s}+\frac{c s(2 s-c)}{2 r s} & \leq \frac{1}{r}\left(a^{2}+b^{2}+c^{2}\right) \\
\frac{a(2 s-a)}{2}+\frac{b(2 s-b)}{2}+\frac{c(2 s-c)}{2} & \leq\left(a^{2}+b^{2}+c^{2}\right)
\end{aligned}
$$

Substituting $a+b+c$ for $2 s$ we have

$$
\begin{aligned}
a(b+c)+b(c+a)+c(a+b) & \leq 2 a^{2}+2 b^{2}+2 c^{2} \\
a b+a c+b c+b a+c a+c b & \leq 2 a^{2}+2 b^{2}+2 c^{2} \\
a b+b c+c a & \leq a^{2}+b^{2}+c^{2}
\end{aligned}
$$

This last inequality, $a b+b c+c a \leq a^{2}+b^{2}+c^{2}$, can be readily proved true for any triple of positive numbers a, b, c by letting $b=a+\delta$ and $c=a+\epsilon$ with $0<\delta<\epsilon$. Hence the original inequality holds.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong, China; Boris Rays, Brooklyn, NY; David Stone and John Hawkins (jointly), Statesboro, GA, and the proposer.

- 5072: Proposed by Panagiote Ligouras, Alberobello, Italy.

Let a, b and c be the sides, l_{a}, l_{b}, l_{c} the bisectors, m_{a}, m_{b}, m_{c} the medians, and h_{a}, h_{b}, h_{c} the heights of $\triangle A B C$. Prove or disprove that
a) $\frac{(-a+b+c)^{3}}{a}+\frac{(a-b+c)^{3}}{b}+\frac{(a+b-c)^{3}}{c} \geq \frac{4}{3}\left(m_{a} \cdot l_{a}+l_{b} \cdot h_{b}+h_{c} \cdot m_{c}\right)$
b) $3 \sum_{c y c} \frac{(-a+b+c)^{3}}{a} \geq 2 \sum_{c y c}\left[m_{a}\left(l_{a}+h_{a}\right)\right]$.

Solution by proposer

We have

$$
\begin{equation*}
\frac{(-a+b+c)^{3}}{a}+\frac{(a-b+c)^{3}}{b}+\frac{(a+b-c)^{3}}{c} \geq a^{2}+b^{2}+c^{2} . \tag{1}
\end{equation*}
$$

In fact, the equality is homogeneous and putting $a+b=c=1$ gives
$\frac{(-a+b+c)^{3}}{a}+\frac{(a-b+c)^{3}}{b}+\frac{(a+b-c)^{3}}{c} \geq a^{2}+b^{2}+c^{2} \Leftrightarrow \sum_{c y c} \frac{(1-2 a)^{3}}{a} \geq \sum_{c y c} a^{2}$.
Applying Chebyshev's Inequality gives

$$
\begin{equation*}
\sum_{c y c} \frac{(1-2 a)^{3}}{a}=\sum_{c y c} \frac{1}{a}(1-2 a)^{3} \geq \frac{1}{3}\left(\sum_{c y c} \frac{1}{a}\right) \cdot\left[\sum_{c y c}(1-2 a)^{3}\right] . \tag{3}
\end{equation*}
$$

Using the well known equalities

$$
\begin{align*}
& \sum x^{3}=\left(\sum x\right)^{3}-3(x+y)(y+z)(z+x) . \tag{4}\\
& (a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \geq 3^{2}=9 \tag{5}
\end{align*}
$$

and applying (4), (3), and (5) we have

$$
\begin{align*}
& \sum_{c y c} \frac{(1-2 a)^{3}}{a} \geq \frac{1}{3}\left(\sum_{\text {cyc }} \frac{1}{a}\right) \cdot\left[\sum_{c y c}(1-2 a)^{3}\right] \\
= & \frac{1}{3}\left(\sum_{c y c} \frac{1}{a}\right) \cdot\left[(1-2 a+1-2 b+1-2 c)^{3}-3(1-2 a+1-2 b)(1-2 b+1-2 c)(1-2 c+1-2 a)\right] \\
= & \frac{1}{3}\left(\sum_{c y c} \frac{1}{a}\right) \cdot[1-24 a b c] \\
= & \frac{1}{3}\left(\sum_{c y c} \frac{1}{a}\right) \cdot\left(\sum^{a} a\right)-\frac{24}{3}\left(\sum_{c y c} a b\right) \\
\geq & \frac{1}{3} \cdot 9-8\left(\sum_{\text {cyc }} a b\right) \\
\Leftrightarrow & \sum_{c y c} \frac{(1-2 a)^{3}}{a} \geq 3-8\left(\sum_{\text {cyc }} a b\right) . \tag{6}
\end{align*}
$$

We have

$$
\begin{equation*}
3-8\left(\sum_{c y c} a b\right) \geq \sum_{c y c} a^{2} . \tag{7}
\end{equation*}
$$

In fact,

$$
3-8\left(\sum_{c y c} a b\right) \geq \sum_{c y c} a^{2} \Leftrightarrow 3-6\left(\sum_{c y c} a b\right) \geq \sum_{c y c} a^{2}+2\left(\sum_{c y c} a b\right)
$$

$$
\begin{aligned}
& \Leftrightarrow \quad 3-6\left(\sum_{c y c} a b\right) \geq\left(\sum_{c y c} a\right)^{2}=1 \Leftrightarrow 3-6\left(\sum_{c y c} a b\right) \geq 1-3 \\
& \Leftrightarrow \sum_{c y c} a b \leq \frac{1}{3}=\frac{\left(\sum a\right)^{2}}{3} \\
& \Leftrightarrow \sum_{c y c}(a-b)^{2} \geq 0, \text { and this last statement is true. }
\end{aligned}
$$

Using (6) and (7) we have

$$
\begin{aligned}
& \sum_{c y c} \frac{(1-2 a)^{3}}{a} \geq 3-8\left(\sum_{c y c} a b\right) \geq \sum_{\text {cyc }} a^{2} \\
\Leftrightarrow & \sum_{c y c} \frac{(1-2 a)^{3}}{a} \geq \sum_{c y c} a^{2}, \text { and (1) is true. }
\end{aligned}
$$

Is well known that

$$
\begin{align*}
& a^{2}+b^{2}=2 m_{c}^{2}+\frac{1}{2} c^{2} \tag{A}\\
& c^{2}+b^{2}=2 m_{a}^{2}+\frac{1}{2} a^{2} \tag{B}\\
& c^{2}+a^{2}=2 m_{b}^{2}+\frac{1}{2} b^{2} \tag{C}
\end{align*}
$$

For (A),(B), and (C)

$$
\begin{align*}
m_{a}^{2}+m_{b}^{2}+m_{c}^{2} & =\frac{3}{4}\left(a^{2}+b^{2}+c^{2}\right) \text { and } \\
a^{2}+b^{2}+c^{2} & =\frac{4}{3}\left(m_{a}^{2}+m_{b}^{2}+m_{c}^{2}\right) \tag{8}
\end{align*}
$$

It is also well known that

$$
\begin{equation*}
m_{a} \geq l_{a} \geq h_{a}, \quad m_{b} \geq l_{b} \geq h_{b}, \quad m_{c} \geq l_{c} \geq h_{c} . \tag{9}
\end{equation*}
$$

Using (9) we have

$$
\begin{align*}
& m_{a}^{2} \geq m_{a} \cdot l_{a} \geq m_{a} \cdot h_{a}, \quad m_{b}^{2} \geq m_{b} \cdot l_{b} \geq m_{b} \cdot h_{b}, \quad m_{c}^{2} \geq m_{c} \cdot l_{c} \geq m_{c} \cdot h_{c} \\
& m_{a}^{2} \geq l_{a} \cdot h_{a}, \quad m_{b}^{2} \geq l_{b} \cdot h_{b}, \quad m_{c}^{2} \geq l_{c} \cdot h_{c}, \quad \text { (E) } \tag{E}
\end{align*}
$$

Using (8) and (D) we have

$$
\begin{equation*}
a^{2}+b^{2}+c^{2} \geq \frac{4}{3}\left(m_{a} l_{a}+m_{b} l_{b}+m_{c} l_{c}\right) . \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
a^{2}+b^{2}+c^{2} \geq \frac{4}{3}\left(m_{a} h_{a}+m_{b} h_{b}+m_{c} h_{c}\right) \tag{11}
\end{equation*}
$$

And using (8), (D), and (E) we have

$$
\begin{equation*}
a^{2}+b^{2}+c^{2} \geq \frac{4}{3}\left(m_{a} l_{a}+l_{b} h_{b}+h_{c} m_{c}\right) \tag{12}
\end{equation*}
$$

For part a of the problem, using (1) and (12) we have

$$
\frac{(-a+b+c)^{3}}{a}+\frac{(a-b+c)^{3}}{b}+\frac{(a+b-c)^{3}}{c} \geq \frac{4}{3}\left(m_{a} \cdot l_{a}+l_{b} \cdot h_{b}+h_{c} \cdot m_{c}\right)
$$

For part b of the problem, using (1), (10) and (11) we have

$$
\begin{aligned}
& 2\left[\frac{(-a+b+c)^{3}}{a}+\frac{(a-b+c)^{3}}{b}+\frac{(a+b-c)^{3}}{c}\right] \geq \\
& \frac{4}{3}\left(m_{a} \cdot l_{a}+m_{b} \cdot l_{b}+m_{c} \cdot l_{c}\right)+\frac{4}{3}\left(m_{a} \cdot h_{a}+m_{b} \cdot h_{b}+m_{c} \cdot h_{c}\right) \\
\Leftrightarrow & \frac{(-a+b+c)^{3}}{a}+\frac{(a-b+c)^{3}}{b}+\frac{(a+b-c)^{3}}{c} \\
\geq & \frac{2}{3}\left(m_{a} \cdot l_{a}+m_{b} \cdot l_{b}+m_{c} \cdot l_{c}+m_{a} \cdot h_{a}+m_{b} \cdot h_{b}+m_{c} \cdot h_{c}\right) \\
\Leftrightarrow & \frac{(-a+b+c)^{3}}{a}+\frac{(a-b+c)^{3}}{b}+\frac{(a+b-c)^{3}}{c} \\
\geq & \frac{2}{3}\left[m_{a} \cdot\left(l_{a}+h_{a}\right)+m_{b} \cdot\left(l_{b}+h_{b}\right)+m_{c} \cdot\left(l_{c}+h_{c}\right)\right]
\end{aligned}
$$

- 5073: Proposed by Ovidiu Furdui, Campia-Turzii, Cluj, Romania.

Let $m>-1$ be a real number. Evaluate

$$
\int_{0}^{1}\{\ln x\} x^{m} d x
$$

where $\{a\}=a-[a]$ denotes the fractional part of a.

Solution 1 by Bruno Salgueiro Fanego, Viveiro, Spain

$$
I_{m}=\int_{0}^{1}\{\ln x\} x^{m} d x=\int_{0}^{1}(\ln x-[\ln x]) x^{m} d x=\int_{0}^{1}(\ln x) x^{m} d x-\int_{0}^{1}[\ln x] x^{m} d x=A-B
$$

where $A=\int_{0}^{1}(\ln x) x^{m} d x$ and $B=\int_{0}^{1}[\ln x] x^{m} d x$. Integrating by parts $\left(\int u d v=u v-\int v d u\right.$ with $u=\ln x$ and $\left.d v=x^{m} d x\right)$, and by using Barrow's and
L'Hospital's rule we obtain,

$$
\int(\ln x) x^{m} d x=\frac{(\ln x) x^{m+1}}{m+1}-\int \frac{x^{m}}{m+1} d x=\frac{(\ln x) x^{m+1}}{m+1}-\frac{x^{m+1}}{(m+1)^{2}}
$$

$$
\begin{aligned}
\Longrightarrow A & =\frac{(\ln x) x^{m+1}}{m+1}-\left.\frac{x^{m+1}}{(m+1)^{2}}\right|_{0} ^{1} \\
& =\frac{(\ln 1) 1^{m+1}}{m+1}-\frac{1^{m+1}}{(m+1)^{2}}-\left(\lim _{x \rightarrow 0^{+}} \frac{(\ln x) x^{m+1}}{m+1}-\frac{0^{m+1}}{(m+1)^{2}}\right) \\
& =\frac{-1}{(m+1)^{2}}-\lim _{x \rightarrow 0^{+}} \frac{(\ln x)}{(m+1) x^{-(m+1)}} \\
& =\frac{-1}{(m+1)^{2}}-\lim _{x \rightarrow 0^{+}} \frac{x^{-1}}{-(m+1)^{2} x^{-(m+2)}} \\
& =\frac{-1}{(m+1)^{2}}+\lim _{x \rightarrow 0^{+}} \frac{x^{m+1}}{(m+1)^{2}} \\
& =\frac{-1}{(m+1)^{2}}
\end{aligned}
$$

With the partition $\left\{\ldots, e^{-n}, e^{-n+1}, e^{-n+2}, \ldots, e^{-2}, e^{-1}, e^{0}=1\right\}$ of (0,1$]$, being $[\ln x]=-n$ for $e^{-n} \leq x<e^{-n+1}$, and $\left|e^{-m-1}\right|<1$,

$$
\begin{aligned}
B & =\int_{0}^{1}[\ln x] x^{m} d x=\sum_{n=1}^{\infty} \int_{e^{-n}}^{e^{-n+1}}[\ln x] x^{m} d x \\
& =\sum_{n=1}^{\infty} \int_{e^{-n}}^{e^{-n+1}}(-n) x^{m} d x=\left.\sum_{n=1}^{\infty} \frac{-n x^{m+1}}{m+1}\right|_{e^{-n}} ^{e^{-n+1}} \\
& =\sum_{n=1}^{\infty} \frac{-n\left(e^{(-n+1)(m+1)}-e^{-n(m+1)}\right)}{m+1} \\
& =\sum_{n=1}^{\infty} \frac{-n\left(e^{m+1} e^{(-n)(m+1)}-e^{-n(m+1)}\right)}{m+1} \\
& =\sum_{n=1}^{\infty} \frac{-n\left(e^{(m+1)}-1\right) e^{-n(m+1)}}{m+1} \\
& =\sum_{n=1}^{\infty} \frac{\left(1-e^{(m+1)}\right) n\left(e^{-m-1}\right)^{n}}{m+1}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\left(1-e^{m+1}\right) e^{-m-1}}{m+1} \sum_{n=1}^{\infty}\left(e^{-m-1}\right)^{n-1} \\
& =\left.\frac{e^{-m-1}-1}{m+1} \sum_{n=1}^{\infty} \frac{d}{d x} x^{n}\right|_{x=e^{-m-1}} \\
& =\left.\frac{e^{-m-1}-1}{m+1} \frac{d}{d x} \sum_{n=1}^{\infty} x^{n}\right|_{x=e^{-m-1}} \\
& =\left.\frac{e^{-m-1}-1}{m+1} \frac{d}{d x} \frac{x}{1-x}\right|_{x=e^{-m-1}} \\
& =\left.\frac{e^{-m-1}-1}{(m+1)(1-x)^{2}}\right|_{x=e^{-m-1}} \\
& =\frac{e^{-m-1}-1}{(m+1)\left(e^{-m-1}-1\right)^{2}}=\frac{1}{(m+1)\left(e^{-m-1}-1\right)}, \text { so } \\
I_{m} & =A-B=-\frac{1}{(m+1)^{2}}-\frac{1}{(m+1)\left(e^{-m-1}-1\right)} \\
& =\frac{m e^{m+1}+1}{(m+1)^{2}\left(e^{m+1}-1\right)} .
\end{aligned}
$$

Solution 2 by the proposer

The integral equals

$$
\frac{e^{m+1}}{(m+1)\left(e^{m+1}-1\right)}-\frac{1}{(1+m)^{2}} .
$$

We have, by making the substitution $\ln x=y$, that

$$
\begin{aligned}
\int_{0}^{1}\{\ln x\} x^{m} d x & =\int_{-\infty}^{0}\{y\} e^{(m+1) y} d y \\
& =\sum_{k=0}^{\infty} \int_{-k-1}^{-k}\{y\} e^{(m+1) y} d y \\
& =\sum_{k=0}^{\infty} \int_{-k-1}^{-k}(y-(-k-1)) e^{(m+1) y} d y \\
& \left.=\sum_{k=0}^{\infty} \int_{-k-1}^{-k}(y+k+1)\right) e^{(m+1) y} d y
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k=0}^{\infty}\left(\left.\frac{y+k+1}{m+1} e^{(m+1) y}\right|_{-k-1} ^{-k}-\left.\frac{e^{(m+1) y}}{(m+1)^{2}}\right|_{-k-1} ^{-k}\right) \\
& =\sum_{k=0}^{\infty} \frac{e^{-(m+1) k}}{m+1}-\frac{1}{(m+1)^{2}} \sum_{k=0}^{\infty}\left(e^{-(m+1) k}-e^{-(m+1)(k+1)}\right) \\
& =\frac{e^{m+1}}{(m+1)\left(e^{m+1}-1\right)}-\frac{1}{(1+m)^{2}}
\end{aligned}
$$

and the problem is solved.
Also solved by Valmir Bucaj (student, Texas Lutheran University), Seguin, TX; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong, China; Paolo Perfetti, Department of Mathematics, University Tor Vergata, Rome, Italy; and David Stone and John Hawkins (jointly), Statesboro, GA.

