
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
February 15, 2011

• 5134: Proposed by Kenneth Korbin, New York, NY

Given isosceles 4ABC with cevian CD such that 4CDA and 4CDB are also isosceles,
find the value of

AB

CD
− CD

AB
.

• 5135: Proposed by Kenneth Korbin, New York, NY

Find a, b, and c such that 
ab + bc + ca = −3
a2b2 + b2c2 + c2a2 = 9
a3b3 + b3c3 + c3a3 = −24

with a < b < c.

• 5136: Proposed by Daniel Lopez Aguayo (student, Institute of Mathematics, UNAM),
Morelia, Mexico

Prove that for every positive integer n, the real number(√
19− 3

√
2
)1/n

+
(√

19 + 3
√

2
)1/n

is irrational.

• 5137: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let a, b, c be positive numbers such that abc ≥ 1. Prove that∏
cyclic

1
a5 + b5 + c2

≤ 1
27

.

• 5138: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let n ≥ 2 be a positive integer. Prove that

n

FnFn+1
≤ 1

(n− 1)F 2
1 + F 2

2

+ · · ·+ 1
(n− 1)F 2

n + F 2
1

≤ 1
n

n∑
k=1

1
F 2

k

,

where Fn is the nth Fibonacci number defined by F0 = 0, F1 = 1 and for all
n ≥ 2, Fn = Fn−1 + Fn−2.
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• 5139: Proposed by Ovidiu Furdui, Cluj, Romania

Calculate ∞∑
n=1

∞∑
m=1

ζ(n + m)− 1
n + m

,

where ζ denotes the Riemann Zeta function.

Solutions

• 5116: Proposed by Kenneth Korbin, New York, NY

Given square ABCD with point P on side AB, and with point Q on side BC such that

AP

PB
=

BQ

QC
> 5.

The cevians DP and DQ divide diagonal AC into three segments with each having
integer length. Find those three lengths, if AC = 84.

Solution by David E. Manes, Oneonta, NY

Let E and F be the points of intersection of AC with DP and DQ respectively. Then
AE = 40, EF = 37 and FC = 7.

Since ABCD is a square with diagonal of length 84, it follows that the sides of the

square have length 42
√

2. Let
AP

PB
=

BQ

QC
= t > 5. Then AP = t · PB and

AP + PB = AB = 42
√

2. Therefore,

PB(t + 1) = 42
√

2

PB =
42
√

2
1 + t

, and

AP =
42
√

2 · t
1 + t

.

Similarly, QC =
42
√

2
1 + t

and BQ =
42
√

2 · t
1 + t

.

Coordinatize the problem so that

A = (0, 0), B = (42
√

2, 0), C = (42
√

2, 42
√

2), D = (0, 42
√

2),

P =

(
42
√

2 · t
1 + t

, 0

)
, and Q =

(
42
√

2,
42
√

2 · t
1 + t

)
.

Let L1 be the line through the points D and P . Then the equation of L1 is

y − 42
√

2 = −
(

1 + t

t

)
x. The point of intersection of L1 and the line y = x is the point

E. Therefore,

x− 42
√

2 = −
(

1 + t

t

)
x, and so
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x =
42
√

2 · t
2t + 1

. Thus,

E =

(
42
√

2 · t
2t + 1

,
42
√

2 · t
2t + 1

)
so that

AE =

√√√√2

(
42
√

2 · t
2t + 1

)2

=
84 · t
2t + 1

.

Let L2 be the line through D and Q. Then the equation of L2 is

y − 42
√

2 = −
(

1
1 + t

)
x. Since F is the point of intersection of L2 and y = x, we obtain

x =
42
√

2(t + 1)
t + 2

. Thus,

F =

(
42
√

2(t + 1)
t + 2

,
42
√

2(t + 1)
t + 2

)
so that

AF =
84(t + 1)

t + 2
.

Using the distance formula, one obtains

CF =

√√√√2

(
42
√

2− 42
√

2(t + 1)
t + 2

)2

=
84

t + 2
.

As a result,

AE =
84 · t
2t + 1

, AF =
84(t + 1)

t + 2
, and CF =

84
t + 2

If t = 10, then AE = 40, AF = 77, and CF = 7. Therefore EF = AF −AE = 37,
yielding the claimed values. Finally, one checks that for these values all triangles in the
figure are defined.

Also solved by Shai Covo, Kiryat-Ono, Israel; Paul M. Harms, North
Newton, KS; Boris Rays, Brooklyn, NY; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposer.

• 5117: Proposed by Kenneth Korbin, New York, NY

Find positive acute angles A and B such that

sinA + sin B = 2 sin A · cos B.

Solution by David Stone and John Hawkins (jointly), Statesboro, GA

There are infinitely many solutions, given by
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A = sin−1

(√
1− t2

2t − 1

)
, B = cos−1 t , where

4
5

< t < 1 .

Here’s why.

The given condition is equivalent to

2 sinA(2 cos B − 1) = sin B

so we see that 2 cos B − 1 > 0, that is, 0 < B <
π

3
.

Solving for sinA, we must have sinA =
sinB

2 cos B − 1
, which requires 0 ≤ sinB

2 cos B − 1
≤ 1.

Upon squaring, this is equivalent to

sin2 B ≤ 4 cos2 B − 4 cos B + 1

1− cos2 B ≤ 4 cos2 B − 4 cos B + 1

cos B ≥ 4
5
.

So if we choose angle B to make cos B ≥ 4
5
, then we can choose angle A to make

sinA =
sinB

2 cos B − 1
.

Since cosine is decreasing in the first quadrant, the size condition on cos B forces

B ≤ cos−1

(
4
5

)
≈ 36.87◦.

In fact, for any t, with
4
5
≤ t ≤ 1, we can let B = cos−1 t, in which case

sinB =
√

1− t2 , and let A = sin−1

(√
1− t2

2t − 1

)
.

Note that the endpoint “solution” given by t = 1 is A = 0, B = 0, which we disregard.

Also, the endpoint solution given by t =
4
5

is A =
π

2
, B = cos−1 4

5
.

It is worth noting that we thus have a right triangle solution, but it doesn’t quite meet
the problem’s criteria, so we’ll disregard this one. Thus, there are infinitely many

solutions, given in terms of the parameter t for
4
5

< t < 1.

We also note that one could also say that all solutions are given by sinA =
sinB

2 cos B − 1
,

where angle B is chosen so that cos B >
4
5
.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie
(jointly), San Angelo, TX; Michael Brozinsky, Central Islip, NY; Shai Covo,
Kiryat-Ono, Israel; Paul M. Harms, North Newton, KS; David E. Manes,
Oneonta, NY; Charles McCracken, Dayton, OH; Raúl A. Simón, Santiago,
Chile; Taylor University Problem Solving Group; Upland, IN, and the
proposer.

4



• 5118: Proposed by David E. Manes, Oneonta, NY

Find the value of√
2011 + 2007

√
2012 + 2008

√
2013 + 2009

√
2014 + · · ·

Solution 1 by Shai Covo, Kiryat-Ono, Israel

The value is 2009. More generally, for any integer n ≥ 3 we have

n =

√√√√
(n + 2) + (n− 2)

√
(n + 3) + (n− 1)

√
(n + 4) + n

√
(n + 5) + · · ·

(n = 2009 corresponds to the original problem.) The claim follows from an iterative
application of the identity n =

√
(n + 2) + (n− 2)(n + 1), as follows:

n =
√

(n + 2) + (n− 2)(n + 1)

=
√

(n + 2) + (n− 2)
√

(n + 3) + (n− 1)(n + 2)

=

√
(n + 2) + (n− 2)

√
(n + 3) + (n− 1)

√
(n + 4) + n(n + 3)

= · · · .

Solution 2 by Taylor University Problem Solving Group, Upland, IN

We use Ramanujan’s nested radical approach. Beginning with

(x + n + a)2 = x2 + n2 + a2 + 2ax + 2nx + 2an,

we see that

x + n + a =
√

x2 + n2 + a2 + 2ax + 2nx + 2an

=
√

ax + n2 + a2 + 2an + x (x + 2n + a)

=
√

ax + (n + a)2 + x (x + 2n + a).

However, the (x + 2n + a) term on the right is basically of the same form as the left
(with n replaced by 2n). We can make the corresponding substitution, and continue this
process indefinitely, until we are left with x + n + a =√

ax + (n + a)2 + x

√
a(x + n) + (n + a)2 + (x + n)

√
a (x + 2n) + (n + a)2 + (x + 2n)

√
· · ·

Substituting in x = 2007, n = a = 1 produces

2009 =

√
2007 + 4 + 2007

√
2008 + 4 + 2008

√
2009 + 4 + 2009

√
· · ·

=

√
2011 + 2007

√
2012 + 2008

√
2013 + 2009

√
· · ·.
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Hence, the value is 2009.

Also solved by Scott H. Brown, Auburn University, Montgomery, AL; G. C.
Greubel, Newport News, VA; Paul M. Harms, North Newton, KS: Kenneth
Korbin, NY, NY; Charles McCracken, Dayton, OH; Paolo Perfetti,
Department of Mathematics, University of Rome, Italy; Boris Rays,
Brooklyn, NY; David Stone and John Hawkins (jointly), Stateboro GA, and
the proposer.

• 5119: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain

Let n be a non-negative integer. Prove that

2 +
1

2n+1

n∏
k=0

csc
(

1
Fk

)
< Fn+1

where Fn is the nth Fermat number defined by Fn = 22n
+ 1 for all n ≥ 0.

Solution by Charles R. Diminnie, San Angelo, TX

To begin, we note that for x ∈
(

0,
π

3

)
, cos x is decreasing and the Mean Value Theorem

for Derivatives implies that there is a point cx ∈ (0, x) such that

sinx = sin x− sin 0

= cos cx (x− 0)

> cos
π

3
· x

=
x

2
.

As a result, when x ∈
(

0,
π

3

)
,

x csc x < 2.

Since Fn ≥ F0 = 3 for all n ≥ 0, it follows that 0 <
1
Fn

≤ 1
3

<
π

3
and hence,

1
Fn

csc
(

1
Fn

)
< 2, or

csc
(

1
Fn

)
< 2Fn (1)

Let P (n) be the statement

n∏
k=0

csc
(

1
Fk

)
< 2n+1 (Fn+1 − 2) (2)

By (1),

csc
(

1
F0

)
< 2F0 = 2 · 3 = 2 (F1 − 2)
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and P (0) is true. If P (n) is true for some n ≥ 0, then by (1),

n+1∏
k=0

csc
(

1
Fk

)
= csc

(
1

Fn+1

) n∏
k=0

csc
(

1
Fk

)
< csc

(
1

Fn+1

)
· 2n+1 (Fn+1 − 2)

< 2Fn+1 · 2n+1 (Fn+1 − 2)

= 2n+2
(
22n+1

+ 1
) (

22n+1 − 1
)

= 2n+2
(
22n+2 − 1

)
= 2n+2 (Fn+2 − 2)

and P (n + 1) follows. By Mathematical Induction, P (n) is true for all n ≥ 0.

Since (2) is equivalent to the given inequality, the proof is complete.

Also solved by Shai Covo, Kiryat-Ono, Israel; Bruno Salgueiro Fanego,
Viveiro, Spain; David Stone and John Hawkins (jointly), Statesboro, GA,
and the proposers.

• 5120: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Calculate

lim
n→∞

1
2n

n∑
k=0

(−1)k

(
n

k

)
log

(
2n− k

2n + k

)
.

Solution 1 by Ovidiu Furdui, Cluj, Romania

The limit equals 0. More generally, we prove that if f : [0, 1] → < is a continuous
function then

lim
n→∞

1
2n

n∑
k=0

(−1)k

(
n

k

)
f

(
k

n

)
= 0.

Before we give the solution of the problem we collect the following equality from [1]
(Formula 0.154(3), p.4): If p ≥ 0 is a nonnegative integer, then the following equality
holds

n∑
k=0

(−1)k

(
n

k

)
kp = 0. (1)

Now we are ready to solve the problem. First we note that for a polynomial

P (x) =
m∑

j=0

ajx
j we have, based on (1), that

1
2n

n∑
k=0

(−1)k

(
n

k

)
P

(
k

n

)
=

m∑
j=0

aj

nj
· 1
2n

(
n∑

k=0

(−1)k

(
n

k

)
kj

)
= 0. (2)

Let ε > 0 and let Pε be the polynomial that uniformly approximates f , i.e.
|f(x)− Pε(x)| < ε for all x ∈ [0, 1]. We have, based on (2), that
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1
2n

n∑
k=0

(−1)k

(
n

k

)
Pε

(
k

n

)
= 0. Thus,

∣∣∣∣ 1
2n

n∑
k=0

(−1)k

(
n

k

)
f

(
k

n

) ∣∣∣∣ =
∣∣∣∣ 1

2n

n∑
k=0

(−1)k

(
n

k

)(
f

(
k

n

)
− Pε

(
k

n

)) ∣∣∣∣
≤ 1

2n

n∑
k=0

(
n

k

) ∣∣∣∣ f (k

n

)
− Pε

(
k

n

) ∣∣∣∣
≤ ε

2n

n∑
k=0

(
n

k

)
= ε.

Thus, the limit is 0 and the problem is solved.

[1] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, Sixth Edition,
Alan Jeffrey, Editor, Daniel Zwillinger, Associate Editor, 2000.

Solution 2 by Shai Covo, Kiryat-Ono, Israel

We will show that

lim
n→∞

1
2n

n∑
k=0

(−1)k

(
n

k

)
log

(
2n− k

2n + k

)
= 0. (1)

(The log function in (1) has no significant role in the analysis below, we could replace it by
any other continuous function.)

The lemma below follows straightforwadly from the Central Limit Theorem (CLT). We recall
that, according to the CLT, if X1, X2, . . . is a sequence of independent and identically
distributed (i.i.d) random variables with expectation µ and variance σ2, then

P

(
a <

X1 + · · ·+ Xn − nµ

σ
√

n
≤ b

)
→ Φ(b)− Φ(a) (2)

as n →∞, for any a, b ∈ < with a < b where Φ is the distribution function of the Normal
(0, 1) distribution (i.e., Φ(x) = (2π)−1/2

∫ x
−∞ e−µ2/2du).

Lemma: For any ε > 0, there exists an r > 0 such that

1
2n

∑
0≤k≤n/2−r

√
n

n/2+r
√

n<k≤n

(
n

k

)
< ε (3)

for all n sufficiently large.

Proof: Fix ε > 0. Choose r > 0 sufficiently large so that Φ(2r)− Φ(−2r) > 1− ε. Let
X1, X2 . . . be a sequence of i.i.d. variables with P (Xi = 0) = P (Xi = 1) = 1/2. Put
Yn =

∑n
i=1 Xi. Thus Yn has a binomial (n, 1/2) distribution. The Xi’s have expectation

µ = 1/2 and variance σ2 = 1/4. Hence by (2) (with a = −2r and b = 2r),

P (n/2− r
√

n < Yn ≤ n/2 + r
√

n) > 1− ε
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for all n sufficiently large. In turn, by taking complements, we conclude (3), since the

distribution of Yn is given by P (Yn = k) =
1
2n

(
n

k

)
, k = 0, . . . , n.

It follows from the lemma and the fact that
∣∣∣∣(−1)k log

(
2n− k

2n + k

) ∣∣∣∣ is bounded uniformly in k

(say, by 2) that (1) will be proved if we show that

lim
n→∞

1
2n

∑
n/2−r

√
n<k<n/2+r

√
n

(−1)k

(
n

k

)
log

(
2n− k

2n + k

)
= 0 (4)

for any fixed r > 0. This is shown as follows. We first write∣∣∣∣(−1)k

(
n

k

)
log

(
2n− k

2n + k

)
+ (−1)k

(
n

k + 1

)
log

(
2n− (k + 1)
2n + (k + 1)

) ∣∣∣∣
=

(
n

k

)∣∣∣∣ log
(

2n− k

2n + k

)
− n− k

k + 1
log

(
2n− (k + 1)
2n + (k + 1)

) ∣∣∣∣. (5)

Clearly, the expression multipying

(
n

k

)
on the right of the equality in (5) can be made

arbitrarily small uniformly in k ∈ [n/2− r
√

n, n/2 + r
√

n], where r > 0 is fixed, by choosing

n sufficiently large. Then, in view of the triangle inequality, (4) follows from
1
2n

n∑
k=0

(
n

k

)
ε = ε

(where ε > 0 is arbitrarily small) and

(
n

k

)/
2n unif.−→ 0 (to be used if the sum in (4) consists of

an odd number of terms). The desired result (1) is thus proved.

Also proved by Boris Rays, Brooklyn, NY and the proposer.

5121: Proposed by Tom Leong, Scotrun, PA

Let n, k and r be positive integers. It is easy to show that

∑
n1+n2+···+nr=n

(
n1

k

)(
n2

k

)
· · ·
(

nr

k

)
=

(
n + r − 1
kr + r − 1

)
, n1, n2, · · ·nr ∈ N

using generating functions. Give a combinatorial argument that proves this identity.

Solution 1 by Shai Covo, Kiryat-Ono, Israel

Suppose we have n identical boxes and kr (≤ n) identical balls. The stated equality is trivial
if r = 1, hence we can assume r > 1.

We begin with the left-hand side of the stated equality. Assuming n1, . . . , nr ≥ k, it gives the
number of ways to divide the n boxes into r groups–the ith group having ni ≥ k elements–and
put exactly k balls in each group.
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As for the right-hand side, suppose that in addition to the n boxes and the kr balls we have
r − 1 separators. This gives rise to an (n + r − 1)-tuple of boxes and separators. We denote
this tuple by M . We identify a sequence (i1, i2, . . . , ikr+r−1) such that
1 ≤ i1 < i2 < · · · < ikr+r−1 ≤ n + r − 1 with the following arrangement: the ijth
(j = 1, . . . , kr + r − 1) element of M is a separator if j is a multiple of k + 1 and a box
containing a ball otherwise. (The remaining n− kr elements are empty boxes.) We thus

conclude that

(
n + r − 1
kr + r − 1

)
gives the number of ways to place r − 1 separators between the n

boxes and kr balls into the boxes, such that each of the resulting r groups contains exactly k
balls. This establishes the equality of the left-and right-hand sides.

Solution 2 by the proposer

Both sides count the number of possible ways to arrange kr + r− 1 green balls and n− kr red
balls in a row. This is clearly true for the right side. In the left side, note that any term in the
sum with ni < k for some i is equal to zero; so we may assume ni ≥ k for all i. For each
composition n1 + · · ·+ nr = n of n, consider the row of n red and r− 1 green balls arranged as

RR · · ·R︸ ︷︷ ︸G
n1 balls

RR · · ·R︸ ︷︷ ︸G
n2 balls

RR · · ·R︸ ︷︷ ︸G · · ·
n3 balls

G RR · · ·R︸ ︷︷ ︸
nr−1 balls

G RR · · ·R︸ ︷︷ ︸
nr balls

From each block of red balls, choose k of them and paint them green. The number of ways to

do this is

(
n1

k

)(
n2

k

)
· · ·
(

nr

k

)
. This results in a row consisting of kr + r − 1 green balls and

n− kr red balls. Conversely, in any row consisting of kr + r − 1 green balls and n− kr red
balls, we can determine a unique composition n1 + n2 + · · ·+ nr = n of n by reversing the
process.
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