Problems

$* *$

This section of the Journal offers readers an opportunity to exchange interesting mathematical problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics, Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions can be sent e-mail to eisenbt@013.net. Solutions to previously stated problems can be seen at http://www.ssma.org/publications.

Solutions to the problems stated in this issue should be posted before February 15, 2013

- 5230: Proposed by Kenneth Korbin, New York, NY

Given positive numbers x, y, z such that

$$
\begin{aligned}
x^{2}+x y+\frac{y^{2}}{3} & =41 \\
\frac{y^{2}}{3}+z^{2} & =16 \\
x^{2}+x z+z^{2} & =25
\end{aligned}
$$

Find the value of $x y+2 y z+3 x z$.

- 5231: Proposed by Panagiote Ligouras, "Leonardo da Vinci" High School, Noci, Italy

The lengths of the sides of the hexagon $A B C D E F$ satisfy $A B=B C, C D=D E$, and $E F=F A$. Prove that

$$
\sqrt{\frac{A F}{C F}}+\sqrt{\frac{C B}{E B}}+\sqrt{\frac{E D}{A D}}>2
$$

- 5232: Proposed by D. M. Bătinetu-Giurgiu, "Matei Basarab" National College, Bucharest and Neculai Stanciu, "George Emil Palade" Secondary School, Buzău, Romania
Prove that: If $a, b, c>0$, then,

$$
2 \sqrt{\frac{a^{2}+b^{2}+c^{2}}{3}} \cdot \frac{\sin x}{x}+\frac{a+b+c}{3} \cdot \frac{\tan x}{x}>a+b+c
$$

for any $x \in\left(0, \frac{\pi}{2}\right)$.

- 5233: Proposed by Anastasios Kotronis, Athens, Greece

Let $x \geq \frac{1+\ln 2}{2}$ and let $f(x)$ be the function defined by the relations:

$$
f^{2}(x)-\ln f(x)=x
$$

$$
f(x) \geq \frac{\sqrt{2}}{2} .
$$

- 1. Calculate $\lim _{x \rightarrow+\infty} \frac{f(x)}{\sqrt{x}}$, if it exists.
- 2. Find the values of $\alpha \in \Re$ for which the series $\sum_{k=1}^{+\infty} k^{\alpha}(f(k)-\sqrt{k})$ converges.
- 3. Calculate $\lim _{x \rightarrow+\infty} \frac{\sqrt{x} f(x)-x}{\ln x}$, if it exists.
- 5234: Proposed by José Luis Díaz-Barrero, Polytechnical University of Catalonia, Barcelona, Spain
Let $a<b$ be positive real numbers and let $f_{1}:[a, b] \rightarrow \Re(i=1,2)$ be continuous functions in $[a, b]$ and differentiable in (a, b). If f_{2} is strictly decreasing then prove that there exists an $\alpha \in(a, b)$ such that

$$
f_{2}(b)<f_{2}(\alpha)+2\left(\frac{f_{2}^{\prime}(\alpha)}{f_{1}^{\prime}(\alpha)}\right)<f_{2}(a)
$$

- 5235: Proposed by Albert Stadler, Herrliberg, Switzerland

On December 21, 2012 (" $12-21-12$ ") the Mayan Calendar's $13^{\text {th }}$ Baktun cycle will end. On this date the world as we know it will also change (see <http://www. mayan-calendar.org/2012/end-of-the-world.html>). Since every end is a new beginning we are looking for natural numbers n such that the decimal representation of 2^{n} starts and ends with the digit sequence 122112 . Let S be the set of natural numbers n such that $2^{n}=122112 \ldots . \ldots 22112$. Let $s(x)$ be the number of elements of S that are $\leq x$.
Prove that $\lim _{x \rightarrow \infty} \frac{s(x)}{x}$ exists and is positive. Calculate the limit.

Solutions

- 5212: Proposed by Kenneth Korbin, New York, NY

Solve the equation

$$
2 x+y-\sqrt{3 x^{2}+3 x y+y^{2}}=2+\sqrt{2}
$$

if x and y are of the form $a+b \sqrt{2}$ where a and b are positive integers.

Solution 1 by Bruno Salgueiro Fanego, Viveiro, Spain

In a similar way to the published solution to SSM problem 5105, we let $x=a+b \sqrt{2}, y=c+d \sqrt{2}$ and $y=\alpha x$, where a, b, c and d are positive integers and α is a positive real number. Substituting into the given equation gives
$2+\sqrt{2}=2 x+\alpha x-\sqrt{3 x^{2}+3 \alpha x^{2}+\alpha^{2} x^{2}}=\left(2+\alpha-\sqrt{3+3 \alpha+\alpha^{2}}\right) x=\varphi(\alpha)(a+b \sqrt{2})$,
where $\varphi(\alpha)=\frac{(2+\alpha)^{2}-\left(\sqrt{3+3 \alpha+\alpha^{2}}\right)^{2}}{2+\alpha+\sqrt{3+3 \alpha+\alpha^{2}}}$ is increasing (editor's note:
$\varphi^{\prime}(\alpha)=1-\frac{3+2 \alpha}{2 \sqrt{3+3 \alpha+\alpha^{2}}}>0$, for $3+3 \alpha+\alpha^{2}>(1.5+\alpha)^{2}$.) and such that

$$
\lim _{\alpha \rightarrow+\infty} \varphi(\alpha)=\lim _{\alpha \rightarrow+\infty} \frac{1 / \alpha+1}{2 / \alpha+1+\sqrt{3 / \alpha^{2}+3 / \alpha+1}}=\frac{0+1}{0+1+\sqrt{0+0+1}}=\frac{1}{2} .
$$

On the other hand,

$$
\begin{aligned}
\varphi(0) & =2-\sqrt{3}, \text { so } \varphi(0) \leq \varphi(\alpha)<\lim _{\alpha \rightarrow+\infty} \varphi(\alpha) \text { and hence, } \\
4+2 \sqrt{2} & <\frac{2+\sqrt{2}}{\varphi(\alpha)} \leq \frac{2+\sqrt{2}}{2-\sqrt{3}}, \text { that is, } \\
4+2 \sqrt{2} & <a+b \sqrt{2} \leq \frac{2+\sqrt{2}}{2-\sqrt{3}} .
\end{aligned}
$$

From this it follows that $b \leq 9$ and that

$$
\left\{\begin{array}{l}
\text { if } b=0 \text { then } 7 \leq a \leq 12, \\
\text { if } b=1 \text { then } 6 \leq a \leq 11, \\
\text { if } b=2 \text { then } 5 \leq a \leq 9, \\
\text { if } b=3 \text { then } 3 \leq a \leq 8, \\
\text { if } b=4 \text { then } 2 \leq a \leq 7, \\
\text { if } b=5 \text { then } 0 \leq a \leq 5, \\
\text { if } b=6 \text { then } 0 \leq a \leq 4, \\
\text { if } b=7 \text { then } 0 \leq a \leq 2, \\
\text { if } b=8 \text { then } 0 \leq a \leq 1, \text { and } \\
\text { if } b=9 \text { then } a=0 \text {. }
\end{array}\right.
$$

The given equation is equivalent to

$$
\begin{gathered}
{[2 x+y-(2+\sqrt{2})]^{2}=\left(\sqrt{3 x^{2}+3 x y+y^{2}}\right)^{2}, \text { that is, }} \\
4 x^{2}+4 x y+y^{2}-(8+4 \sqrt{2}) x-(4+2 \sqrt{2}) y+4+4 \sqrt{2}+2=3 x^{2}+3 x y+y^{2} .
\end{gathered}
$$

So,

$$
\begin{aligned}
c+d \sqrt{2} & =y=\frac{x^{2}-(8+4 \sqrt{2}) x+6+4 \sqrt{2}}{4-x+2 \sqrt{2}} \\
& =\frac{a^{2}+2 b^{2}-8 a-8 b+6+(2 a b-4 a-8 b+4) \sqrt{2}}{(4-a)+(2-b) \sqrt{2}} \\
& =\frac{\left[a^{2}+2 b^{2}-8 a-8 b+6+(2 a b-4 a-8 b+4) \sqrt{2}\right][4-a+(b-2) \sqrt{2}]}{[4-a+(2-b) \sqrt{2}][4-a+(b-2) \sqrt{2}]} \\
& =\frac{-a^{3}+2 a b^{2}+12 a^{2}-8 b^{2}-8 a b-22 a+8 b+8}{(4-a)^{2}-2(2-b)^{2}}+
\end{aligned}
$$

$$
\frac{2 b^{3}-a^{2} b+8 a b+2 a^{2}-12 b^{2}-4 a-10 b+4}{(4-a)^{2}-2(2-b)^{2}} \sqrt{2} .
$$

So,
$c=\frac{-a^{3}+2 a b^{2}+12 a^{2}-8 b^{2}-8 a b-22 a+8 b+8}{(4-a)^{2}-2(2-b)^{2}}$ and
$d=\frac{2 b^{3}-a^{2} b+8 a b+2 a^{2}-12 b^{2}-4 a-10 b+4}{(4-a)^{2}-2(2-b)^{2}}$, where c and d are positive integers.
Restricting a, b, c, and d to be positive integers we see that there are eleven solutions (x, y) to the problem. These are obtained by letting $x=a+b \sqrt{2}$ and $y=c+d \sqrt{2}$, where

$$
\begin{aligned}
& (a, b) \in\{(6,1),(5,2),(6,2),(7,2),(3,3),(4,3),(5,3),(6,3),(2,4)(6,4),(1,5)\} \text { and respectively } \\
& (c, d) \in\{(28,22),(17,12),(7,6),(3,4),(43,29),(12,8),(5,5),(4,2),(23,13),(1,1),(17,7)\}
\end{aligned}
$$

Solution 2 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State University, San Angelo, TX

If we re-write the equation in the form

$$
2 x+y-(2+\sqrt{2})=\sqrt{3 x^{2}+3 x y+y^{2}}
$$

and then square both sides and simplify, we get successively

$$
\begin{aligned}
x^{2}-4(2+\sqrt{2}) x+x y-2(2+\sqrt{2}) y+2(3+2 \sqrt{2}) & =0 \text { and } \\
{[x-2(2+\sqrt{2})]^{2}+[x-2(2+\sqrt{2})] y } & =6(3+2 \sqrt{2}) .
\end{aligned}
$$

To simplify further, substitute $w=x-2(2+\sqrt{2})$ to obtain

$$
\begin{equation*}
w^{2}+w y=6(3+2 \sqrt{2}) \tag{1}
\end{equation*}
$$

From the given instructions for x and y, we have

$$
w=a_{1}+b_{1} \sqrt{2} \text { and } y=a_{2}+b_{2} \sqrt{2}
$$

where $a_{1}, b_{1}, a_{2}, b_{2}$ are integers with $a_{2}, b_{2} \geq 1, a_{1} \geq-3$, and $b_{1} \geq-1$. If these are substituted into (1) and we use the fact that for integers $a, b, c, d, a+b \sqrt{2}=c+d \sqrt{2}$ if and only if $a=c$ and $b=d$ we obtain the following system:

$$
\begin{equation*}
\left(b_{1}+b_{2}\right) a_{1}+\left(a_{1}+a_{2}\right) b_{1}=12 \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\left(a_{1}+a_{2}\right) a_{1}+2\left(b_{1}+b_{2}\right) b_{1}=18 \tag{3}
\end{equation*}
$$

Note that from the above information about $a_{1}, b_{1}, a_{2}, b_{2}$, it follows that $a_{1}+a_{2} \geq-2$ and $b_{1}+b_{2} \geq 0$.

If $b_{1}+b_{2}=0$, then we must have $b_{1}=-1$ and $b_{2}=1$. Equation (2) becomes $a_{1}+a_{2}=-12$, which is clearly impossible. If $b_{1}+b_{2}=1$, then either $b_{1}=-1$ and $b_{2}=2$ or $b_{1}=0$ and $b_{2}=1$. When $b_{1}=-1$ and $b_{1}+b_{2}=1$, equation (2) reduces to $-a_{2}=12$, which is impossible. When $b_{1}=0$ and $b_{1}+b_{2}=1,(2)$ yields $a_{1}=12$ and (3) becomes $12\left(a_{1}+a_{2}\right)=18$, which is also impossible. Therefore, we will assume hereafter that $b_{1}+b_{2} \geq 2$.

If $a_{1}+a_{2}=-2$, then since $a_{1} \geq-3$ and $a_{2} \geq 1$, we get $a_{1}=-3$ and $a_{2}=1$. Equation (3) becomes $\left(b_{1}+b_{2}\right) b_{1}=6$. Since $b_{1}+b_{2} \geq 2$, it follows that $b_{1} \geq 1$. Then, (2) is of the form

$$
-3\left(b_{1}+b_{2}\right)-2 b_{1}=12
$$

which is clearly impossible with $b_{1} \geq 1$ and $b_{1}+b_{2} \geq 2$.
If $a_{1}+a_{2}=-1$, then since $a_{2} \geq 1$, it follows that $a_{1}<0$. However, equations (2) and (3) are

$$
\begin{aligned}
\left(b_{1}+b_{2}\right) a_{1}-b_{1} & =12 \\
-a_{1}+2\left(b_{1}+b_{2}\right) b_{1} & =18
\end{aligned}
$$

and we get

$$
a_{1}=6 \frac{4\left(b_{1}+b_{2}\right)+3}{2\left(b_{1}+b_{2}\right)^{2}-1}>0
$$

(since $b_{1}+b_{2} \geq 2$). Hence, this case is impossible .
If $a_{1}+a_{2}=0,(2)$ and (3) reduce to

$$
\begin{aligned}
\left(b_{1}+b_{2}\right) a_{1} & =12 \\
\left(b_{1}+b_{2}\right) b_{1} & =9
\end{aligned}
$$

Since $b_{1}+b_{2} \geq 2$, this makes $a_{1}>0$, which is inconsistent with $a_{1}+a_{2}=0$.
If $a_{1}+a_{2}=1$, then $a_{2} \geq 1$ implies that $a_{1} \leq 0$. However, (2) and (3) become

$$
\begin{aligned}
\left(b_{1}+b_{2}\right) a_{1}+b_{1} & =12 \\
a_{1}+2\left(b_{1}+b_{2}\right) b_{1} & =18
\end{aligned}
$$

and hence,

$$
a_{1}=6 \frac{4\left(b_{1}+b_{2}\right)-3}{2\left(b_{1}+b_{2}\right)^{2}-1}>0
$$

(since $b_{1}+b_{2} \geq 2$). Therefore, this case is also impossible and we may assume in the remainder of this solution that $a_{1}+a_{2} \geq 2$.

In (2) and (3), if we treat a_{1} and b_{1} as coefficients and use Cramer's Rule, we obtain

$$
a_{1}+a_{2}=6 \frac{4 b_{1}-3 a_{1}}{2 b_{1}^{2}-a_{1}^{2}}, \quad b_{1}+b_{2}=6 \frac{3 b_{1}-2 a_{1}}{2 b_{1}^{2}-a_{1}^{2}} \quad \text { or }
$$

$$
\begin{equation*}
a_{2}=6 \frac{4 b_{1}-3 a_{1}}{2 b_{1}^{2}-a_{1}^{2}}-a_{1}, \quad b_{2}=6 \frac{3 b_{1}-2 a_{1}}{2 b_{1}^{2}-a_{1}^{2}}-b_{1} \tag{4}
\end{equation*}
$$

If $a_{1}=-3$, then

$$
a_{2}=6 \frac{4 b_{1}+9}{2 b_{1}^{2}-9}+3=3\left(2 \frac{4 b_{1}+9}{2 b_{1}^{2}-9}+1\right)
$$

and

$$
b_{2}=18 \frac{b_{1}+2}{2 b_{1}^{2}-9}-b_{1}=\frac{-2 b_{1}^{3}+27 b_{1}+36}{2 b_{1}^{2}-9}
$$

Using elementary calculus, it is straightforward to show that when $b_{1} \geq 5$,
$-2 b_{1}^{3}+27 b_{1}+36<0$ and $2 b_{1}^{2}-9>0$, and hence, $b_{2}<0$. Also, by direct substitution, $b_{2}<0$ when $b_{1}=0, \pm 1$, or 2 . Therefore, we are left with $b_{1}=3$ or 4 . Of these, $b_{1}=4$ yields fractional values for a_{2} and b_{2}, while $b_{1}=3$ gives the solution $a_{1}=-3, b_{1}=3, a_{2}=17, b_{2}=7$. Therefore, our first solution is $w=-3+3 \sqrt{2}, x=w+2(2+\sqrt{2})=1+5 \sqrt{2}, y=17+7 \sqrt{2}$.

If $a_{1}=-2,(4)$ becomes

$$
a_{2}=2\left(3 \frac{2 b_{1}+3}{b_{1}^{2}-2}+1\right) \text { and } b_{2}=\frac{3 b_{1}+4}{2 b_{1}^{2}-4}-b_{1}=\frac{-b_{1}^{3}+11 b_{1}+12}{b_{1}^{2}-2}
$$

Proceeding as before, we see that $b_{2}<0$ for $b_{1} \geq 4$ and $a_{2}<0$ for $b_{1}=0$ or ± 1. If $b_{1}=3$, then a_{2} is a fraction. However, $b_{1}=2$ yields the solution $a_{1}=-2, b_{1}=2, a_{2}=23, b_{2}=13$. Therefore, our next solution is $w=-2+2 \sqrt{2}, x=2+4 \sqrt{2}, y=23+13 \sqrt{2}$.

If $a_{1}=-1,(4)$ reduces to

$$
a_{2}=6 \frac{4 b_{1}+3}{2 b_{1}^{2}-1}+1 \text { and } b_{2}=6 \frac{3 b_{1}+2}{2 b_{1}^{2}-1}-b_{1}=\frac{-2 b_{1}^{3}+19 b_{1}+12}{2 b_{1}^{2}-1}
$$

If $b_{1} \geq 4$, then $b_{2}<0$. Also, if $b_{1}=-1$ or $0, a_{2}<0$. Of the remaining choices, $b_{1}=2$ or 3 give fractional answers for a_{2}. When $b_{1}=1$, we get the solution $a_{1}=-1, b_{1}=1, a_{2}=43, b_{2}=29$. This contributes $w=-1+\sqrt{2}, x=3+3 \sqrt{2}, y=43+29 \sqrt{2}$ to our list of solutions.

If $a_{1}=0$, (4) becomes $a_{2}=\frac{12}{b_{1}}$ and $b_{2}=\frac{9}{b_{1}}-b_{1}=\frac{9-b_{1}^{2}}{b_{1}}$. In this case, $b_{1} \neq 0$ and we get $a_{2}<0$ when $b_{1}=-1$ and $b_{2} \leq 0$ when $b_{1} \geq 3$. Also, $b_{1}=2$ yields a fractional value for b_{2}. Hence, we are left with $b_{1}=1$, which gives the solution $a_{1}=0, b_{1}=1, a_{2}=12, b_{2}=8$ and we add $w=\sqrt{2}, x=4+3 \sqrt{2}, y=12+8 \sqrt{2}$ to our solution set.

We can now assume that $a_{1} \geq 1$ in the remainder of this solution.
If $b_{1}=-1,(4)$ is of the form

$$
a_{2}=6 \frac{3 a_{1}+4}{a_{1}^{2}-2}-a_{1}=\frac{-a_{1}^{3}+20 a_{1}+24}{a_{1}^{2}-2} \text { and } b_{2}=6 \frac{2 a_{1}+3}{a_{1}^{2}-2}+1
$$

As before, we get $a_{2}<0$ if $a_{1} \geq 5$ and $b_{2}<0$ if $a_{1}=1$. When $a_{1}=3$ or 4 , we get fractional values for b_{2}. Finally, $a_{1}=2$ gives the solution $a_{1}=2, b_{1}=-1, a_{2}=28, b_{2}=22$, which yields $w=2-\sqrt{2}, x=6+\sqrt{2}, y=28+22 \sqrt{2}$.

If $b_{1}=0,(4)$ becomes

$$
a_{2}=\frac{18}{a_{1}}-a_{1}=\frac{18-a_{1}^{2}}{a_{1}} \text { and } b_{2}=\frac{12}{a_{1}} .
$$

If $a_{1} \geq 5$, we get $a_{2}<0$ and $a_{1}=4$ gives a fractional value for a_{2}. The remaining values $a_{1}=1,2,3$ produce the solutions listed below.

$$
\begin{array}{ccccccc}
\frac{a_{1}}{1} & \frac{b_{1}}{0} & \frac{a_{2}}{17} & \frac{b_{2}}{12} & \frac{w}{1} & \underline{x} & \underline{y} \sqrt{2} \\
2 & 0 & 7 & 6 & 2 & 6+2 \sqrt{2} & 7+6 \sqrt{2} 2 \sqrt{2} \\
2 & 0 & 3 & 4 & 3 & 7+2 \sqrt{2} & 3+4 \sqrt{2}
\end{array}
$$

Finally, we are down to the situation where $a_{1} \geq 1, b_{1} \geq 1, a_{1}+a_{2} \geq 2$, and $b_{1}+b_{2} \geq 2$.
Then, (2) implies that $1 \leq a_{1} \leq 6$ and $1 \leq b_{1} \leq 6$. By trying the 36 possibilities this presents for the system consisting of (2) and (3), we find that the remaining solutions are as follows:

$$
\begin{array}{ccccccc}
\frac{a_{1}}{1} & \frac{b_{1}}{1} & \frac{a_{2}}{5} & \frac{b_{2}}{5} & \underline{w} & \underline{x} & \underline{y} \\
2 & 1 & 4 & 2 & 2+\sqrt{2} & 5+3 \sqrt{2} & 5+5 \sqrt{2} \\
2 & 2 & 1 & 1 & 2+2 \sqrt{2} & 6+4 \sqrt{2} & 4+2 \sqrt{2}
\end{array} .
$$

Our conclusion is that the full solution set for this problem is displayed below. With some algebraic fortitude, it can be checked that all are solutions to the original equation.

$$
\begin{array}{cc}
\underline{x} & \underline{y} \\
1+5 \sqrt{2} & 17+7 \sqrt{2} \\
2+4 \sqrt{2} & 23+13 \sqrt{2} \\
3+3 \sqrt{2} & 43+29 \sqrt{2} \\
4+3 \sqrt{2} & 12+8 \sqrt{2} \\
5+2 \sqrt{2} & 17+12 \sqrt{2} \\
5+3 \sqrt{2} & 5+5 \sqrt{2} \\
6+\sqrt{2} & 28+22 \sqrt{2} \\
6+2 \sqrt{2} & 7+6 \sqrt{2} \\
6+3 \sqrt{2} & 4+2 \sqrt{2} \\
6+4 \sqrt{2} & 1+\sqrt{2} \\
7+2 \sqrt{2} & 3+4 \sqrt{2}
\end{array}
$$

Comments: David Stone and John Hawkins of Statesboro GA noted that the solutions (x, y) lie on the hyperbola

$$
y=\frac{x^{2}-4(2+\sqrt{2}) x+(2+\sqrt{2})^{2}}{x-2(2+\sqrt{2})}
$$

and it is not evident that there should be only finitely many solutions. However, imposing the specific form $a+b \sqrt{2}$ on x and y forces this to be the case.

And Ken Korbin (the proposer of the problem) characterized the solutions as follows:
Letting

$$
(c, d)=(1,2+\sqrt{2}),(2+\sqrt{2}, 1),(\sqrt{2}, 1+\sqrt{2}),(1+\sqrt{2}, \sqrt{2})
$$

then

$$
\left\{\begin{array} { l }
{ x = c (2 d + 1) } \\
{ y = c (3 d ^ { 2 } - 1) \quad \text { with } x < y , }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
x=c(2 d+3) \\
y=c\left(d^{2}-3\right) \quad \text { with } x<y
\end{array}\right.\right.
$$

Also solved by Brian D. Beasley, Presbyterian College, Clinton, SC; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong, China; David E. Manes, SUNY College at Oneonta, Oneonta, NY; Titu Zvonaru and Comănesti Romania, Neculai Stanciu, Buzău, Romania (jointly); David Stone and John Hawkins of Georgia Southern University, Statesboro, GA (jointly), and the proposer.

5213: Proposed by Tom Moore, Bridgewater, MA
The triangular numbers T_{n} begin $1,3,6,10, \ldots$ and, in general, $T_{n}=\frac{n(n+1)}{2}, n=1,2,3, \ldots$.
For every positive integer $n>1$, prove that n^{4} is a sum of four triangular numbers.

Solution by Boris Rays, Brooklyn, NY

$$
\begin{aligned}
n^{4} & =n^{4}-n^{2}+n^{2}=2 \frac{n^{4}-n^{2}}{2}+2 \frac{n^{2}}{2} \\
& =2 \frac{n^{2}}{2}+2 \frac{n^{4}-n^{2}}{2} \\
& =\frac{n^{2}-n+n^{2}+n}{2}+2 \frac{n^{2}\left(n^{2}-1\right)}{2} \\
& =\frac{(n-1) n}{2}+\frac{n(n+1)}{2}+\frac{\left(n^{2}-1\right) n^{2}}{2}+\frac{\left(n^{2}-1\right) n^{2}}{2} \\
& =T_{n-1}+T_{n}+T_{n^{2}-1}+T_{n^{2}-1}
\end{aligned}
$$

Comments: Albert Stadler of Herrliberg, Switzerland. A.M. Legendre concluded from formulas in his treatise on elliptic functions [1] that the number of ways in which n is a sum of four triangular numbers equals the sum of the divisors of $2 n+1$. As a result of this, every natural number can be represented as a sum of four triangular numbers. Reference: [1] Adrien Marie Legendre, Fonctions elliptiques et des intégrales Eulériennes: avec des tables pour en faciliter le calcul numérique; Vol 3 (1828), 133-134.

David Stone and John Hawkins of Statesboro, GA noted in their solution that n^{4} is also the sum of two triangular numbers: $n^{4}=T_{n^{2}-1}+T_{n^{2}}$.

Also solved by Brian D. Beasley, Presbyterian College, Clinton, SC; Elsie Campbell, Dionne Bailey, and Charles Diminnie, Angelo State University, San Angelo, TX; Paul M. Harms, North Newton, KS; Kenneth Korbin, New York, NY; Kee-Wai Lau, Hong Kong, China; David E. Manes, SUNY College at Oneonta, Oneonta, NY; Adrian Naco, Tirana, Albania; Ángel Plaza, University of Las Palmas de Gran Canaria, Spain; Armend Sh. Shabani, (student, University of Prishtina), Republic of Kosova; Howard Sporn, Great Neck, NY; Albert Stadler, Herrliberg, Switzerland; David Stone and John Hawkins, Georgia Southern University, Statesboro, GA (jointly); Titu Zvonaru, Comănesti, Romania and Neculai Stanciu Buzău, Romania (jointly), and the proposer.

5214: Proposed by Pedro H. O. Pantoja, Natal-RN, Brazil

Let a, b, c be positive real numbers. Prove that

$$
\frac{a^{3}(b+c)^{2}+1}{1+a+2 b}+\frac{b^{3}(c+a)^{2}+1}{1+b+2 c}+\frac{c^{3}(a+b)^{2}+1}{1+c+2 a} \geq \frac{4 a b c(a b+b c+c a)+3}{a+b+c+1} .
$$

Solution 1 by David E. Manes, SUNY College at Oneonta, Oneonta, NY
Let $L=\frac{a^{3}(b+c)^{2}+1}{1+a+2 b}+\frac{b^{3}(c+a)^{2}+1}{1+b+2 c}+\frac{c^{3}(a+b)^{2}+1}{1+c+2 a}$. Note that by the $A M-G M$ inequality, $(b+c)^{2} \geq 4 b c,(c+a) \geq 4 c a$, and $(a+b)^{2} \geq 4 a b$ with equality if and only if $a=b=c$. Therefore,
$L \geq \frac{4 a^{3} b c+1}{1+a+2 b}+\frac{4 b^{3} c a+1}{1+b+2 c}+\frac{4 c^{3} a b+1}{1+c+2 a}$

$$
=4 a b c\left(\frac{a^{2}}{(1+a+2 b)}+\frac{b^{2}}{(1+b+2 c)}+\frac{c^{2}}{(1+c+2 a)}\right)+\left(\frac{1^{2}}{(1+a+2 b)}+\frac{1^{2}}{(1+b+2 c)}+\frac{1^{2}}{(1+c+2 a)}\right) .
$$

The Cauchy-Schwarz inequality implies

$$
\begin{gathered}
\frac{a}{\sqrt{1+a+2 b}} \cdot \sqrt{1+a+2 b}+\frac{b}{\sqrt{1+b+2 c}} \cdot \sqrt{1+b+2 c}+\frac{c}{\sqrt{1+c+2 a}} \cdot \sqrt{1+c+2 a}{ }^{2} \leq \\
\left(\frac{a^{2}}{1+a+2 b}+\frac{b^{2}}{1+b+2 c}+\frac{c^{2}}{1+c+2 a}\right)(3 a+3 b+3 c+3) ;
\end{gathered}
$$

hence,

$$
\frac{a^{2}}{1+a+2 b}+\frac{b^{2}}{1+b+2 c}+\frac{c^{2}}{1+c+2 a} \geq \frac{(a+b+c)^{2}}{3(a+b+c+1)} .
$$

Similarly,

$$
\frac{1^{2}}{1+a+2 b}+\frac{1^{2}}{1+b+2 c}+\frac{1^{2}}{1+c+2 a} \geq \frac{(1+1+1)^{2}}{3(a+b+c+1)}=\frac{3}{a+b+c+1} .
$$

Therefore,

$$
L \geq 4 a b c\left(\frac{(a+b+c)^{2}}{3(a+b+c+1)}\right)+\frac{3}{a+b+c+1} .
$$

Furthermore, the Cauchy-Schwarz inequality also implies $a^{2}+b^{2}+c^{2} \geq a b+b c+c a$ using vectors $\langle a, b, c\rangle$ and $\langle b, c, a\rangle$. Therefore,

$$
\begin{aligned}
(a+b+c)^{2} & =a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a \\
& \geq a b+b c+c a+2(a b+b c+c a) \\
& =3(a b+b c+c a)
\end{aligned}
$$

Hence,

$$
\frac{(a+b+c)^{2}}{3(a+b+c+1)} \geq \frac{a b+b c+c a}{a+b+c+1}
$$

Accordingly,

$$
\begin{aligned}
L & \geq 4 a b c\left(\frac{(a+b+c)^{2}}{3(a+b+c+1)}\right)+\frac{3}{a+b+c+1} \\
& \geq \frac{4 a b c(a b+b c+c a)}{a+b+c+1}+\frac{3}{a+b+c+1} \\
& =\frac{4 a b c(a b+b c+c a)+3}{a+b+c+1}
\end{aligned}
$$

with equality if and only if $a=b=c$.

Solution 2 by Paolo Perfetti, Department of Mathematics, Tor Vergata University, Rome, Italy

We prove that

$$
\frac{1}{1+a+2 b}+\frac{1}{1+b+2 c}+\frac{1}{1+c+2 a} \geq \frac{3}{a+b+c+1}
$$

and

$$
\frac{a^{3}(b+c)^{2}}{1+a+2 b}+\frac{b^{3}(c+a)^{2}}{1+b+2 c}+\frac{c^{3}(a+b)^{2}}{1+c+2 a} \geq \frac{4 a b c(a b+b c+c a)}{a+b+c+1}
$$

By Cauchy-Schwarz

$$
\frac{1}{1+a+2 b}+\frac{1}{1+b+2 c}+\frac{1}{1+c+2 a} \geq \frac{(1+1+1)^{2}}{3+3(a+b+c)}
$$

thus we prove

$$
\frac{(1+1+1)^{2}}{3+3(a+b+c)} \geq \frac{3}{a+b+c+1}
$$

which is actually an equality. As for the second inequality we have

$$
\sum_{\text {cyc }} \frac{a^{3}(b+c)^{2}}{1+a+2 b} \geq \sum_{\text {сус }} \frac{a^{3} 4 b c}{1+a+2 b} \geq \frac{4 a b c(a b+b c+c a)}{a+b+c+1}
$$

or

$$
\sum_{\text {cyc }} \frac{a^{2}}{1+a+2 b} \geq \frac{a b+b c+c a}{a+b+c+1}
$$

Cauchy-Schwarz again yields

$$
\sum_{\text {cyc }} \frac{a^{2}}{1+a+2 b} \geq \frac{(a+b+c)^{2}}{3+3(a+b+c)} \geq \frac{a b+b c+c a}{a+b+c+1}
$$

or

$$
S^{3}+S^{2} \geq 3 P+3 P S, \quad S=a+b+c, \quad P=a b+b c+c a
$$

Now $S^{2} \geq 3 P$ since it is equivalent to

$$
a^{2}+b^{2}+c^{2} \geq a b+b c+c a
$$

which is a well known inequality.

Solution 3 by Adrian Naco, Polytechnic University,Tirana, Albania.

Editor's comment: The following is a generalization of the stated problem.

Based on Cauchy-Schwarz inequality, for $a_{i}, b_{i} \in R^{*+}$ we have that

$$
\begin{align*}
\left(\sum_{i=1}^{n} a_{i}\right)^{2}=\left[\sum_{i=1}^{n}\left(\frac{a_{i}}{\sqrt{b_{i}}}\right)\left(\sqrt{b_{i}}\right)\right]^{2} & \leq\left[\sum_{i=1}^{n}\left(\frac{a_{i}}{\sqrt{b_{i}}}\right)^{2}\right]\left[\sum_{i=1}^{n}\left(\sqrt{b_{i}}\right)^{2}\right] \\
& =\left(\sum_{i=1}^{n} \frac{a_{i}^{2}}{b_{i}}\right)\left(\sum_{i=1}^{n} b_{i}\right) \\
& \Rightarrow \sum_{i=1}^{n} \frac{a_{i}^{2}}{b_{i}} \geq \frac{\left(\sum_{i=1}^{n} a_{i}\right)^{2}}{\sum_{i=1}^{n} b_{i}} \tag{1}
\end{align*}
$$

where the equality holds for $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}=\frac{a_{n}}{b_{n}}$.
Let us split the original inequality in two separate inequalities (2) and (3) as follows

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{1}{1+x_{i}+2 x_{i+1}} \geq \frac{n^{2}}{n+3 \sum_{i=1}^{n} x_{i}} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{x_{i}^{3}\left(x_{i+1}+x_{i+2}\right)^{2}}{\left.1+x_{i}+2 x_{i+1}\right)} \geq \frac{4\left[\sum_{i=1}^{n}\left(x_{i} x_{i+1} x_{i+2}\right) x_{i}{ }^{2}+2 \sum_{1 \leq i<j \leq n}\left(x_{i} x_{j} x_{i+1} x_{j+1} x_{i+2} x_{j+2}\right)^{\frac{1}{2}} x_{i} x_{j}\right]}{n+3 \sum_{i=1}^{n} x_{i}} \tag{3}
\end{equation*}
$$

Applying the above Cauchy-Schwarz inequality for each of the inequalities (2) and (3) we have that

$$
\begin{gather*}
\sum_{i=1}^{n} \frac{1^{2}}{1+x_{i}+2 x_{i+1}} \geq \frac{\left(\sum_{i=1}^{n} 1\right)^{2}}{\sum_{i=1}^{n}\left(1+x_{i}+2 x_{i+1}\right)}=\frac{(\underbrace{1+1++1}_{\text {ntimes }})^{2}}{\sum_{i=1}^{n} 1+\sum_{i=1}^{n} x_{i}+2 \sum_{i=1}^{n} x_{i+1}} \\
=\frac{n^{2}}{n+3 \sum_{i=1}^{n} x_{i}} \tag{4}
\end{gather*}
$$

where the equality holds for $x_{1}=x_{2}=\ldots=x_{n}$. Thus we prove (2). Analogously we have that

$$
\begin{aligned}
\sum_{i=1}^{n} \frac{x_{i}{ }^{3}\left(x_{i+1}+x_{i+2}\right)^{2}}{\left.1+x_{i}+2 x_{i+1}\right)}= & \sum_{i=1}^{n} \frac{\left[x_{i}{ }^{\frac{3}{2}}\left(x_{i+1}+x_{i+2}\right)\right]^{2}}{\left.1+x_{i}+2 x_{i+1}\right)} \\
\geq & \frac{[\sum_{i=1}^{n} x_{i}{ }^{\frac{3}{2}} \overbrace{\left(x_{i+1}+x_{i+2}\right)}^{x_{i+1}+x_{i+2} \geq 2 \sqrt{x_{i+1} x_{i+2}}}]^{n}\left(1+x_{i}+2 x_{i+1}\right)}{\sum_{i=1}^{2}} \\
\geq & \frac{4\left[\sum_{i=1}^{n} x_{i}\left(x_{i} x_{i+1} x_{i+2}\right)^{\frac{1}{2}}\right]^{2}}{\sum_{i=1}^{n} 1+\sum_{i=1}^{n} x_{i}+2 \sum_{i=1}^{n} x_{i+1}} \\
= & \frac{4\left[\sum_{i=1}^{n} x_{i}^{2}\left(x_{i} x_{i+1} x_{i+2}\right)+2 \sum_{1 \leq i<j \leq n}^{n} x_{i} x_{j}\left(x_{i} x_{j} x_{i+1} x_{j+1} x_{i+2} x_{j+2}\right)^{\frac{1}{2}}\right]}{n+3 \sum_{i=1}^{n} x_{i}}
\end{aligned}
$$

$$
=\frac{4\left[S+3 \sum_{1 \leq i<j \leq n}^{n} x_{i} x_{j}\left(x_{i} x_{j} x_{i+1} x_{j+1} x_{i+2} x_{j+2}\right)^{\frac{1}{2}}\right]}{n+3 \sum_{i=1}^{n} x_{i}}
$$

where

$$
S=\sum_{i=1}^{n} x_{i}{ }^{2}\left(x_{i} x_{i+1} x_{i+2}\right)-\sum_{1 \leq i<j \leq n}^{n} x_{i} x_{j}\left(x_{i} x_{j} x_{i+1} x_{j+1} x_{i+2} x_{j+2}\right)^{\frac{1}{2}}
$$

The problem proposed is a special case of the above generalized problem for

$$
x_{1}=a \quad x_{2}=b \quad x_{3}=c .
$$

Thus, we have that

$$
\begin{aligned}
S & =a b c a^{2}+b c a b^{2}+c a b c^{2}-\left[(a b b c c a)^{\frac{1}{2}} a b+(a c b a c b)^{\frac{1}{2}} a c+(b c c a a b)^{\frac{1}{2}} b c\right] \\
& =a b c\left(a^{2}+b^{2}+c^{2}-a b-a c-b c\right)=a b c \frac{1}{2}\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right] \geq 0
\end{aligned}
$$

with the equality holding for $a=b=c$. The inequality proposed gets the simplified form

$$
\begin{aligned}
\sum_{c y c} \frac{a^{3}(b+c)^{2}+1}{1+a+2 b)} & \geq \frac{4\left\{S+3\left[(a b b c c a)^{\frac{1}{2}} a b+(a c b a c b)^{\frac{1}{2}} a c+(b c c a a b)^{\frac{1}{2}} b c\right]\right\}+3^{2}}{3+3(a+b+c)} \\
& =\frac{4[S+3 a b c(a b+a c+b c)]+3^{2}}{3+3(a+b+c)} \geq \frac{4[0+3 a b c(a b+a c+b c)]+3^{2}}{3+3(a+b+c)} \\
& =\frac{4 a b c(a b+a c+b c)+3}{1+a+b+c}
\end{aligned}
$$

Also solved by Arkady Alt, San Jose, CA; Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State University, San Angelo TX; Andrea Fanchini, Cantú, Italy; Kee-Wai Lau, Hong Kong, China; Albert Stadler, Herrliberg, Switzerland; Titu Zvonaru, Comănesti, Romania and Neculai Stanciu Buzău, Romania (jointly); and the proposer.

5215: Proposed by Neculai Stanciu, Buzău, Romania

Evaluate the integral

$$
\int_{-1}^{1} \frac{2 x^{1004}+x^{3014}+x^{2008} \sin x^{2007}}{1+x^{2010}} d x .
$$

Solution by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain

$$
\begin{aligned}
\int_{-1}^{1} \frac{2 x^{1004}+x^{3014}+x^{2008} \sin x^{2007}}{1+x^{2010}} d x & =\int_{-1}^{1} \frac{2 x^{1004}+x^{3014}}{1+x^{2010}} d x+\int_{-1}^{1} \frac{x^{2008} \sin x^{2007}}{1+x^{2010}} d x \\
& =\int_{-1}^{1} \frac{2 x^{1004}+x^{3014}}{1+x^{2010}} d x
\end{aligned}
$$

Note that $\int_{-1}^{1} \frac{x^{2008} \sin x^{2007}}{1+x^{2010}} d x=0$, since the integrand function is odd and the interval of integration is centered at the origin.

The remaining integral may be solved using the change of variable $x^{1005}=t$.

$$
\begin{aligned}
\int_{-1}^{1} \frac{2 x^{1004}+x^{3014}}{1+x^{2010}} d x & =\frac{1}{1005} \int_{-1}^{1} \frac{2+t^{2}}{1+t^{2}} d t \\
& =\frac{1}{1005}\left(2+\int_{-1}^{1} \frac{1}{1+t^{2}} d t\right) \\
& =\frac{1}{1005}(2+\arctan (1)-\arctan (-1)) \\
& =\frac{1}{1005}\left(2+\frac{\pi}{2}\right)=\frac{4+\pi}{2010}
\end{aligned}
$$

Also solved by Daniel Lopez Aguayo, Institute of Mathematics, UNAM, Morelia, Mexico; Arkady Alt, San Jose, CA; Dionne Bailey, Elsie Campbell and Charles Diminnie, Angelo Sate University, San Angelo, TX; Michael C. Faleski, University Center, MI; Paul M. Harms, North Newton, KS; Fotini Kotroni and Anastasios Kotronis, Athens, Greece; Kee-Wai Lau, Hong Kong, China; David E. Manes, SUNY College at Oneonta, Oneonta, NY; Adrian Naco, Department of Mathematics, Polytechnic University of Tirana, Albania; Paolo Perfetti, Department of Mathematics, "Tor Vergata" University, Rome, Italy; Boris Rays, Brooklyn, NY; Armend Sh. Shabani, (student, University of Prishtina), Republic of Kosova; Albert Stadler, Herrliberg, Switzerland; Howard Sporn, Great Neck, NY, and the proposer.

5216: Proposed by José Luis Díaz-Barrero, Barcelona, Spain

Let $f: \Re \rightarrow \Re^{+}$be a function such that for all $a, b \in \Re$

$$
f(a b)=f(a)^{b} f(b)^{a^{2}}
$$

and $f(3)=64$. Find all real solutions to the equation

$$
f(x)+f(x+1)-3 x-2=0
$$

Solution by Armend Sh. Shabani, (Graduate Student) University of Prishtina, Republic of Kosova.

Since $f(a \cdot b)=f(b \cdot a)$ we have

$$
\begin{aligned}
& f(a)^{b} \cdot f(b)^{a^{2}}=f(b)^{a} \cdot f(a)^{b^{2}} \Leftrightarrow f(a)^{b} \cdot f(b)^{a}\left[f(b)^{a^{2}-a}-f(a)^{b^{2}-b}\right]=0 \\
& \Leftrightarrow f(b)^{a^{2}-a}-f(a)^{b^{2}-b}=0 \Leftrightarrow f(b)^{a^{2}-a}=f(a)^{b^{2}-b} .
\end{aligned}
$$

Taking $b=x ; a=3$, one obtains:

$$
\begin{aligned}
f(x)^{3^{2}-3} & =f(3)^{x^{2}-x} \\
f(x)^{6} & =(64)^{x^{2}-x} \\
f(x)^{6} & =\left(4^{3}\right)^{x^{2}-x} \Rightarrow f(x)=2^{x^{2}-x}=2^{x(x-1)}
\end{aligned}
$$

Substituting into $f(x)+f(x+1)-3 x-2=0$ we obtain:

$$
\begin{equation*}
2^{x^{2}-x}+2^{x^{2}+x}-(3 x+2)=0 \tag{1}
\end{equation*}
$$

Clearly $x=0 ; x=1$ are solutions of equation (1).
We show that there are no other solutions.
Let $g(x)=2^{x^{2}-x}+2^{x^{2}+x}$. One easily finds that

$$
\begin{gathered}
g^{\prime}(x)=\ln 2 \cdot\left((2 x+1) \cdot 2^{x^{2}+x}+(2 x-1) \cdot 2^{x^{2}-x}\right) \text { and } \\
g^{\prime \prime}(x)=\ln 2 \cdot\left(2^{x^{2}+x+1}+2^{x^{2}-x+1}\right)+(\ln 2)^{2} \cdot\left((2 x+1)^{2} \cdot 2^{x^{2}+x}+(2 x-1)^{2} \cdot 2^{x^{2}-x}\right) .
\end{gathered}
$$

So $g^{\prime \prime}(x)>0$, and this means that g is a convex function, So the line $h(x)=3 x+2$ can meet function g in at most 2 points. Therefore equation (1) has no other solutions. (Note that this can also be seen by drawing the graphs of functions g and h.)

Also solved by Dionne Bailey, Elsie Campbell, and Charles Dominnie, Angelo State University, San Angelo, TX; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong, China; David E. Manes, SUNY College at Oneonta, Oneonta, NY; Adrian Naco, Department of Mathematics, Polytechnic University of Tirana, Albania; Boris Rays, Brooklyn, NY; Albert Stadler, Herrliberg, Switzerland; David Stone and John Hawkins, Georgia Southern University Statesboro, GA (jointly), and the proposer.

5217: Proposed by Ovidiu Furdui, Cluj-Napoca, Romania

Find the value of:

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \int_{0}^{1} \sqrt[n]{\left(x^{n}+y^{n}\right)^{k}} d x d y
$$

where k is a positive real number.

Solution 1 by Anastasios Kotronis, Athens, Greece

It is easily shown that $\sqrt[n]{\left(x^{n}+y^{n}\right)^{k}} \rightarrow\left\{\begin{array}{ll}x^{k}, & y \leq x \\ y^{k}, & x<y\end{array}\right.$ and since $0 \leq \sqrt[n]{\left(x^{n}+y^{n}\right)^{k}} \leq 2^{k}$, by the dominated convergence theorem we have

$$
\begin{aligned}
\lim _{n \rightarrow+\infty} \int_{0}^{1} \int_{0}^{1} \sqrt[n]{\left(x^{n}+y^{n}\right)^{k}} d y d x & =\int_{0}^{1} \int_{0}^{1} \lim _{n \rightarrow+\infty} \sqrt[n]{\left(x^{n}+y^{n}\right)^{k}} d y d x \\
& =\int_{0}^{1} \int_{0}^{x} x^{k} d y d x+\int_{0}^{1} \int_{x}^{1} y^{k} d y d x \\
& =\int_{0}^{1} x^{k+1} d x+\int_{0}^{1} \frac{1-x^{k+1}}{k+1} d x \\
& =\frac{2}{k+2}
\end{aligned}
$$

Solution 2 by Howard Sporn, Great Neck, NY

We use the fact that for n going to ∞, when $x<y$, the y^{n} term dominates over x^{n}, and when $x>y$, the x^{n} term dominates over y^{n}.

We break up the inner integral into two integrals, like so:

$$
\int_{0}^{1} \sqrt[n]{\left(x^{n}+y^{n}\right)^{k}} d x=\int_{0}^{y} \sqrt[n]{\left(x^{n}+y^{n}\right)^{k}} d x+\int_{y}^{1} \sqrt[n]{\left(x^{n}+y^{n}\right)^{k}} d x
$$

Note that for the first integral $x \leq y$, and for the second integral $x \geq y$. By factoring,

$$
\int_{0}^{1} \sqrt[n]{\left(x^{n}+y^{n}\right)^{k}} d x=\int_{0}^{y} \sqrt[n]{\left[y^{n}\left(\left(\frac{x}{y}\right)^{n}+1\right)\right]^{k}} d x+\int_{y}^{1} \sqrt[n]{\left[x^{n}\left(1+\left(\frac{y}{x}\right)^{n}\right)\right]^{k}} d x
$$

For the first integral, in which x, we first consider the case $x<y$. In that case, $\left(\frac{x}{y}\right)^{n} \rightarrow 0$ for $\mathrm{n} \rightarrow \infty$. Then the integrand becomes $\sqrt[n]{\left[y^{n}(0+1)\right]^{k}}=y^{k}$.

If, on the other hand, $x=y$, then the integrand
becomes $\sqrt[n]{\left(\left[y^{n}\left(\left(\frac{y}{y}\right)^{n}+1\right)\right]^{k}\right.}=\sqrt[n]{\left[y^{n}(1+1)\right]^{k}}=y^{k} \sqrt[n]{2^{k}}$, which approaches y^{k} (once again) as $n \rightarrow \infty$.

Similarly, the integrand in the second integral approaches x^{k}.
The quantity we are seeking is now

$$
\int_{0}^{1}\left(\int_{0}^{y} y^{k} d x+\int_{y}^{1} x^{k} d x\right) d y
$$

which is straight-forward to compute.
The solution is

$$
\begin{gathered}
\int_{0}^{1}\left(\left.\left(y^{k} x\right)\right|_{x=0} ^{y}+\left.\frac{x^{k+1}}{k+1}\right|_{x=y} ^{1}\right) d y \\
=\int_{0}^{1}\left(y^{k+1}+\frac{1}{k+1}-\frac{y^{k+1}}{k+1}\right) d y \\
=\left.\left(\frac{y^{k+2}}{k+2}+\frac{y}{k+1}-\frac{y^{k+2}}{(k+1)(k+2)}\right)\right|_{0} ^{1} \\
=\frac{1}{k+2}+\frac{1}{k+1}-\frac{1}{(k+1)(k+2)} \\
=\frac{(k+1)+(k+2)-1}{(k+1)(k+2)} \\
=\frac{2 k+2}{(k+1)(k+2)} \\
=\frac{2}{k+2}
\end{gathered}
$$

Also solved by Arkady Alt, San Jose, CA; Kee-Wai Lau, Hong Kong, China; Adrian Naco, Department of Mathematics, Polytechnic University of Tirana, Albania; Paolo Perfetti, Department of Mathematics, "Tor Vergata" University, Rome, Italy; Albert Stadler, Herrliberg, Switzerland, and the proposer.
\qquad

