
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
February 15, 2014

• 5277: Proposed by Kenneth Korbin, New York, NY

Find x and y if a triangle with sides (2013, 2013, x) has the same area and the same
perimeter as a triangle with sides (2015, 2015, y).

• 5278: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

The triangular numbers 6 = (2)(3) and 10 = (2)(5) are each twice a prime number. Find
all triangular numbers that are twice a prime.

• 5279: Proposed by D.M. Bătinetu−Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “Geroge Emil Palade” General School, Buzu,
Romania

Let f : <+ −→ <+ be a convex function on <+, where <+ stands for the positive real
numbers. Prove that

3
(
f2(x) + f2(y)+f

2(z)
)
−9f2

(
x+ y + z

3

)
≥ (f(x)− f(y))2+(f(y)− f(z))2+(f(z)− f(x))2 .

• 5280: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let a ≥ b ≥ c be nonnegative real numbers. Prove that

1

3

(
(a+ b)(c+ a)

2 +
√
a+ b

+
(c+ a)(b+ c)

2 +
√
c+ a

+
(b+ c)(a+ b)

2 +
√
b+ c

)
≤ (a+ b)2

2 +
√
b+ c

.

• 5281: Proposed by Arkady Alt, San Jose, CA

For the sequence {an}n≥1 defined recursively by an+1 =
an

1 + apn
for n ∈ N , a1 = a > 0,

determine all positive real p for which the series
∞∑
n=1

an is convergent.

• 5282: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania
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Calculate ∫ 1

0
x ln

(√
1 + x−

√
1− x

)
ln
(√

1 + x+
√

1− x
)
dx.

Solutions

• 5259: Proposed by Kenneth Korbin, New York, NY

Find a, b, and c such that with a < b < c,


ab+ bc+ ca = −2

a2b2 + b2c2 + c2a2 = 6

a3b3 + b3c3 + c3a3 = −11.

Solution 1 by Arkady Alt, San Jose, CA

Let s = a+ b+ c, p = ab+ bc+ ca, and q = abc. Then a, b, c are the roots of the
equation x3 − sx2 + px− q = 0. Since,

6 = a2b2 + b2c2 + c2a2 = p2 − 2sq = 4− 2sq and

−11 = a3b3 + b3c3 + c3a3 = 3q2 + p3 − 3spq = 3q2 − 8 + 6sq, then

sq = −1 and q2 = 1 ⇐⇒ q = 1 or q = −1.

Thus we obtain (s, p, q) = (−1,−2, 1) , (1,−2,−1) and, respectively, the two equations

x3 + x2 − 2x− 1 = 0 and x 3 − x 2 − 2x + 1 = 0.

Since,

(−x)3 + (−x)2 − 2 (−x)− 1 = 0 ⇐⇒ x3 − x2 − 2x+ 1 = 0, and
x3 + x2 − 2x− 1 = 0 ⇐⇒ x = 1.2470, −0.44504, −1.8019,

we see that,

(a, b, c) = (−1.8019, −0.44504, 1.2470) , (−1.2470, 0.44504, 1.8019) .

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

As in problem 5135, let x = ab, y = bc and z = ca, so that
x+ y + z = −2, x2 + y2 + z2 = 6, and x3 + y3 + z3 = −1. We have

abc (a+ b+ c) = xy + yz + zx =
(x+ y + z)2 − x2 − y2 − z2

2
=

(−2)3 − 6

2
= −1, and

(abc)3 = xyz =
x3 + y3 + z3 − (x+ y + z)

(
x2 + y2 + z2 − xy − yz − zx

)
3

=
−11 + 2(6 + 1)

3
= 1.
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Hence, either


a+ b+ c = −1

ab+ bc+ ca = 2

abc = 1

or


a+ b+ c = 1

ab+ bc+ ca = 2

abc = −1.

In the former case a, b, and c are the roots of the polynomial t3 + t2 − 2t− 1, and in the
latter case, the roots of the polynomial t3 − t2 − 2t+ 1. By the trigonometric method to
find the roots of a cubic polynomial equation, we obtain respectively

a =
2
√

7

3
cos

cos−1
(

1
2
√
7

)
+ 2π

3

− 1

3
≈ −1.80194,

b =
2
√

7

3
cos

cos−1
(

1
2
√
7

)
+ 4π

3

− 1

3
≈ −0.445042, and

c =
2
√

7

3
cos

cos−1
(

1
2
√
7

)
3

− 1

3
≈ 1.24698

a ≈ −1.24698, b ≈ 0.445042, and c ≈ 1.80194.

Solution 3 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX

To begin, label the equations as follows:


ab+ bc+ ca = −2 (1)

a2b2 + b2c2 + c2a2 = 6 (2)

a3b3 + b3c3 + c3a3 = −11. (3)

Then, by (1) and (2),

4 = (ab+ bc+ ca)2

= a2b2 + b2c2 + c2a2 + 2
(
ab2c+ bc2a+ ca2b

)
= 6 + 2abc (a+ b+ c) and hence,

abc (a+ b+ c) = −1. (4)

Next, use (1), (2), (3), and (4) to obtain

−12 = (ab+ bc+ ca)
(
a2b2 + b2c2 + c2a2

)
= a3b3 + b3c3 + c3a3 + ab3c2 + a3bc2 + a2b3c

+a2bc3 + a3b2c+ ab2c3

= −11 + abc [ab (a+ b) + bc (b+ c) + ca (c+ a)]

= −11 + abc [(ab+ bc+ ca) (a+ b+ c)− 3abc]
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= −11 + abc [−2 (a+ b+ c)]− 3 (abc)2

= −9− 3 (abc)2 or

(abc)2 = 1. (5)

It follows from (4) and (5) that either abc = 1 and a+ b+ c = −1 or abc = −1 and
a+ b+ c = 1. Since

(x− a) (x− b) (x− c) = x3 − (a+ b+ c)x2 + (ab+ bc+ ca)x− abc,

a, b, c must be the solutions of either

x3 + x2 − 2x− 1 = 0 (6)

or

x3 − x2 − 2x+ 1 = 0 (7)

We will utilize a method for solving (6) described on pg. 59 of [1]. The solutions of (7)
can then be found by making an appropriate adjustment in this method. Let

R = cos
2π

7
+ i sin

2π

7
. Then, as a 7th root of unity, R has several useful properties:

• 1. Since R7 = 1, we have

1 +R+R2 +R3 +R4 +R5 +R6 =
R7 − 1

R− 1
= 0.

• 2. For k = 1, . . . , 7,

a)
1

Rk
= R7−k

b) Rk = R7+k

c) Rk +
1

Rk
= 2Re

(
Rk
)
.

Pair the powers of R as follows:

x1 = R+R6 = R+
1

R
= 2 cos

2π

7
,

x2 = R2 +R5 = R2 +
1

R2
= 2 cos

4π

7
= −2 cos

3π

7
,

x3 = R3 +R4 = R3 +
1

R3
= 2 cos

6π

7
= −2 cos

π

7
.

Then, since
x1 + x2 + x3 = R+R2 +R3 +R4 +R5 +R6 = −1,

x1x2 + x2x3 + x3x1 =
(
R3 +R6 +R8 +R11

)
+
(
R5 +R6 +R8 +R9

)
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+
(
R4 +R9 +R5 +R10

)
=

(
R3 +R6 +R+R4

)
+
(
R5 +R6 +R+R2

)
+
(
R4 +R2 +R5 +R3

)
= 2

(
R+R2 +R3 +R4 +R5 +R6

)
= −2, and

x1x2x3 =
(
R+R6

) (
R5 +R6 +R+R2

)
= R6 +R7 +R2 +R3 +R11 +R12 +R7 +R8

= 2 +R+R2 +R3 +R4 +R5 +R6

= 1,

x1, x2, x3 must be the solutions of (6). The condition a < b < c then implies that one possible

solution of our system is a = −2 cos
π

7
, b = −2 cos

3π

7
, and c = 2 cos

2π

7
.

Similarly, if

y1 = −x1 = −2 cos
2π

7
,

y2 = −x2 = 2 cos
3π

7
, and

y3 = −x3 = 2 cos
π

7
, then,

y1 + y2 + y3 = − (x1 + x2 + x3) = 1,

y1y2 + y2y3 + y3y1 = x1x2 + x2x3 + x3x1 = −2, and

y1y2y3 = −x1x2x3 = −1.

Therefore, y1, y2, y3 are the solutions of (7). Again, since a < b < c, the remaining possible

solution of our system is a = −2 cos
2π

7
, b = 2 cos

3π

7
, and c = 2 cos

π

7
.

To show that neither solution is extraneous, we note first that since

y1y2 + y2y3 + y3y1 = x1x2 + x2x3 + x3x1 = −2,

we have
ab+ bc+ ca = −2

in both cases. Further, the conditions

x1 + x2 + x3 = −1, x1x2x3 = 1
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and
y1 + y2 + y3 = 1, y1y2y3 = −1

imply that

(abc)2 = 1 and abc (a+ b+ c) = −1

in both cases. It follows that both solutions also satisfy

a2b2 + b2c2 + c2a2 = (ab+ bc+ ca)2 − 2abc (a+ b+ c)

= 4 + 2

= 6

and

a3b3 + b3c3 + c3a3 = (ab+ bc+ ca)
(
a2b2 + b2c2 + c2a2

)
−abc (ab+ bc+ ca) (a+ b+ c) + 3 (abc)2

= (−2) (6)− (−1) (−2) + 3

= −11.

Hence, our solutions for (6) and (7) both satisfy the original system as well.

Reference:

[1] Benjamin Bold, Famous Problems of Geometry and How to Solve Them, Dover
Publications, Inc., 1969.

Also solved by Brian D. Beasley, Presbyterian College, Clinton, SC; Ed Gray,
Highland Beach, Fl; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong
Kong, China; David E. Manes, SUNY College at Oneonta, Oneonta, NY; Paolo
Perfetti, Department of Mathematics, “Tor Vergata” University, Rome, Italy;
David Stone and John Hawkins, Georgia Southern University, Statesboro, GA,
and the proposer.

• 5260: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

Find all primes p and q such that apq−1 ≡ a (mod pq), for all a relatively prime to pq.

Solution 1 by Ken Korbin, New York, NY

Let p = 2 and q be any odd prime.

φ(pq) = φ(2q) = q − 1

(a, pq) = 1, therefore
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aφ(pq) ≡ 1 (mod pq)

aq−1 ≡ 1 (mod pq)[
aq−1

]
·
[
aq−1

]
≡ 1 · 1 (mod pq)

a2q−2 ≡ 1 (mod pq)

a · a2q−2 ≡ a · 1 (mod pq)

a2q−1 ≡ a (mod pq) , therefore

apq−1 ≡ a (mod pq) , if p = 2 and q is any odd prime.

Solution 2 by Kee-Wai Lau,Hong Kong, China

We show that primes p and q satisfy apq−1 ≡ a (mod pq) for all a relatively prime to pq, if and
only if at least one of them is 2.

We need only that

I. For any prime q, a2q−1 ≡ a (mod 2q), for all a relatively prime to 2q.

II. If p ≤ q are odd primes, then apq−1 6≡ a (mod pq) if a > 1 is a primitive root modulo q.

If (a, 2q) = 1, then aq−1 + 1 is even and by Fermat’s little theorem, we have
aq−1 − 1 ≡ 0 (mod 2q). Hence

a2q−1 − a = a(aq−1 + 1)(aq−1 − 1) ≡ 0 (mod 2q).

This proves I. We now prove II.

Suppose, on the contrary, that a > 1 is a primitive root modulo q such that

apq−1 ≡ a (mod pq). (1)

By Fermat’s little theorem we have

apq−1 = ap−1(aq−1)p

= ap−1(1 + kq)p

= ap−1
p∑
j=0

(
p

j

)
(kq)j for some positive integer k.

(3)

It is well known that p divides

(
p

j

)
for j = 1, 2, · · · , p− 1. Hence

apq−1 ≡ ap−1(1 + kpqp) (mod pq). (2)
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From (1) and (2), we see that

ap−1 ≡ a (mod q). (3)

Since a is a primitive root modulo q, so ar 6≡ a (mod q) for r = 2, 3, · · · , q − 1.

Since p > 2, so by (3) we have p− 1 ≥ q, which contradicts the fact tht p ≤ q. This proves II
and completes the solution.

Also solved by Brian D. Beasley, Presbyterian College, Clinton, SC; Dionne
Bailey, Elsie Campbell, and Charles Diminnie, Angelo State University, San
Angelo, TX; David E. Manes, SUNY College at Oneonta, Oneonta, NY, and the
proposer.

• 5261: Proposed by Michael Brozinsky, Central Islip, NY

Show without calculus or trigonometric functions that the shortest focal chord of an ellipse is
the latus rectum.

Solution 1 by Paul M. Harms, North Newton, KS

Any ellipse can be placed on a coordinate system so that the equation of the ellipse is

(x+ c)2

a2
+
y2

b2
= 1 where a > b. One focal point is at (0, 0). I will consider the focal chords

through (0, 0).

Focal chords with slope m are on the line y = mx. The x values of the points of intersection

of the ellipse and the line y = mx come from the equation
(x+ c)2

a2
+
m2x2

b2
= 1 which yields

the quadratic equation
(
a2m2 + b2

)
x2 + 2b2cx− b4 = 0, where b4 = b2

(
a2 − c2

)
.

If H =
√
b4c2 + (a2m2 + b2)b4, the x solutions are

−b2c+H

a2m2 + b2
and

−b2c−H
a2m2 + b2

.

Let the intersection points of the focal chord and the ellipse be (x1, y1) and (x2, y2). To
determine the shortest focal chord, I will look for the minimum of the square of the distance L
between (x1, y1) and (x2, y2).

Here L = (y2 − y1)2 + (x2 − x1)2. Since the points are on y = mx we have
y2 − y1 = m(x2 − x1) and L = (x2 − x1)2(m2 + 1). The points x1 and x2 are the two solutions
of the quadratic equation given above.

We have

(x2 − x1)2 =

(
2H

a2m2 + b2

)2

and L = (x2 − x1)
2(m2 + 1)

=
4b4(c2 + a2m2 + b2)

(a2m2 + b2)2
(m2 + 1)

>
4b4(a2m2 + b2)(m2 + 1)

(a2m2 + b2)2
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=

4b4

a2
(
m2 + 1

)
m2 +

(
b

a

)2

>
4b4

a2
(1).

The last inequality occurs since 0 <
b

a
< 1.

Thus any focal chord with slope m has the square of its length greater than
4b4

a2
, which is the

square of the length of the vertical chord and the latus rectum. The conclusion of the problem
follows.

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

Let F be one of the foci, d the directrix closest to F , e the eccentricity, and M,N,L points on
the ellipse such that MN is a focal chord (that is, F ∈MN) and L is one of the endpoints of
the latus rectum (LF ||d) and M ′, N ′, L′, F ′ the respective projections of M,N,L, on d.

We want to prove that the length of the focal chord MN is greater or equal to the length of
the latus rectum that is, that MN ≥ 2LF .

Since the distance of any point on the ellipse to F is equal to e times its distance to d, we
have that MN = MF + FN = eMM ′ + eNN ′ = e(MM ′ +NN ′) and LF = eLL′, so we want
to prove that MM ′ +NN ′ ≥ 2LL′.

By Thales’ theorem
MM ′

FF ′
=
FF ′

NN ′
that is MM ′ ·NN ′ = (FF ′)2. So by the arithmetic

mean-geometric mean inequality

MM ′ +NN ′ ≥ 2
√
MM ′ ·NN ′ = 2FF ′

with equality if, and only if, MM ′ = NN ′, that is if, and only if, MN coincides with the latus
rectum, as we wanted to prove.

Also solved by Ed Gray, Highland Beach, FL, and the proposer.

• 5262: Proposed by Pedro H.O. Pantoja, IMPA, Rio de Janeiro, Brazil

Prove that the equation ϕ(10x2) + ϕ(30x3) + ϕ(34x4) = y2 + y3 + y4 has infinitely many
solutions for x, y ∈ N where ϕ(x) is the Euler-ϕ function.

Solution by Tom Moore, Bridgewater State University, Bridgewater, MA

Let x = 2k. Then,

ϕ(10x2) = ϕ
(

5 · 22k+1
)

= ϕ(5)ϕ
(

22k+1
)

= 4 · 22k = 22k+2 =
(

2k+1
)2
.
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ϕ(30x3) = ϕ
(

2 · 5 · 6 · 23k
)

= ϕ(5)ϕ(3)ϕ
(

23k
)

= 8 · 23k = 22k+3 =
(

2k+1
)3
.

ϕ(34x4) = ϕ
(

2 · 17 · 24k
)

= ϕ(17)ϕ
(

24k
)

= 16 · 24k = 24k+4 =
(

2k+1
)4
.

So, we have infinitely many solutions(x, y) =
(
2k, 2k+1

)
, k ≥ 0.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX; Ed Gray, Highland Beach, FL; Jahangeer
Kholdi and Farideh Firoozbakht, University of Isfahan, Khansar, Iran; Ken
Korbin, New York, NY; Kee-Wai Lau, Hong Kong, China; David E. Manes,
SUNY College at Oneonta, Oneonta, NY, and the proposer.

• 5263: Proposed by José Luis Dı́az-Barrero, Polytechnical University of Catalonia, Barcelona,
Spain

Let a, b, c be positive numbers lying in the interval (0, 1]. Prove that

a ·
√

bc

1 + c+ ab
+ b ·

√
ca

1 + a+ bc
+ c ·

√
ab

1 + b+ ca
≤
√

3.

Solution 1 by Ed Gray, Highland Beach, FL

Consider the function f(x, y, z) = x

√
y

1 + z + xy
. Each term in the problem is a

representation of f by assigning a, b, c appropriately. Maximizing any term in the problem is
equivalent to maximizing f .

Write f as

√ (
x2
)
yz

1 + z + xy
. Define u = xy and f becomes

√
xuz

1 + z + u
. Note that u is in (0, 1].

Since x appears alone in the numerator and we wish to maximize the function, we assign to x

its largest value possible: that is, x = 1. The problem now becomes to maximize
uz

1 + z + u
,

for then its square root will attain its maximum.

Define z + u = 2t, where t is in (0, 1]. It is well know that the maximum of the product zu is
t2. Since if

r = zu = u(2t− u) = 2tu− u2.

dr

du
= 2t− 2u = 0 =⇒ u = t, and z = t .

uz

1 + z + u
becomes

t2

1 + 2t
.

Since the derivative of this last term is greater than zero, it attains its maximum for t = 1 and

is
1

3
.

Therefore the maximum of the left hand side of the statement of the problem is

3

√
1

3
= 3

√
3

9
=

3

3

√
3 ≤
√

3. Q.E.D.
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Solution 2 by Adrian Naco, Polytechnic University,Tirana, Albania.

Considering the left side of the last inequality and applying the wellknown

AM-GM inequality we have that

a ·
√

bc

1 + c+ ab
+ b ·

√
ca

1 + a+ bc
+ c ·

√
ab

1 + b+ ca
=

=
√
abc

[ √
a√

1 + c+ ab
+

√
b√

1 + a+ bc
+

√
c√

1 + b+ ca

]
≤

≤
√
abc

[ √
a√

3 6
√
abc

+

√
b√

3 6
√
abc

+

√
c√

3 6
√
abc

]

=
3
√
abc√
3

[√
a+
√
b+
√
c

]
≤

3
√

1√
3

[√
1 +
√

1 +
√

1

]
=
√

3

since

1 + c+ ab ≥ 3
3
√

1 · c · ab = 3
3
√
abc ⇒ 1√

1 + c+ ab
≤ 1
√

3
√

3
√
abc

1 + a+ bc ≥ 3
3
√

1 · a · bc = 3
3
√
abc ⇒ 1√

1 + a+ bc
≤ 1
√

3
√

3
√
abc

1 + b+ ca ≥ 3
3
√

1 · b · ca = 3
3
√
abc ⇒ 1√

1 + b+ ca
≤ 1
√

3
√

3
√
abc

The equality holds for a = b = c = 1

Solution 3 by Angel Plaza, Universidad de Las Palmas de Gran Canaria, Spain

By applying the Cauchy-Schwarz inequality we obtain∑
cyclic

a ·
√

bc

1 + c+ ab

2

≤

∑
cyclic

a2

∑
cyclic

bc

1 + c+ ab


≤ 3

∑
cyclic

bc

ac+ bc+ ab

 = 3.

Solution 4 by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy

The concavity of
√
x yields∑
cyc

a

√
bc

1 + c+ ab
= (a+ b+ c)

∑
cyc

a

a+ b+ c

√
bc

1 + c+ ab
≤

11



≤ (a+ b+ c)

√∑
cyc

a

a+ b+ c

bc

1 + c+ ab
≤
√

3.

Squaring we get

(abc)(a+ b+ c)
∑
cyc

1

1 + c+ ab
≤ 3.

Now define x = 1/a ≥ 1, y = 1/b ≥ 1, z = 1/c ≥ 1. We have

xy + yz + zx

xyz

∑
cyc

1

z + xy + xyz
≤ 3,

and moreover

xy + yz + zx

xyz

∑
cyc

1

z + xy + xyz
≤ xy + yz + zx

xyz

∑
cyc

1

3
≤ 3 ⇐⇒ 3xyz ≥ xy + yz + zx,

which follows by x, y, z ≥ 1.

Solution 5 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State
University, San Angelo, TX

Since a, b, c > 0, the Arithmetic - Geometric Mean Inequality implies that

1 + c+ ab ≥ 3
3
√
abc.

Then, because 0 < a, b, c ≤ 1, we have

a ·
√

bc

1 + c+ ab
=
√
a ·
√

abc

1 + c+ ab

≤
√
a ·

√
abc

3 3
√
abc

=

√
a ·
√

(abc)
2
3

√
3

=

√
a 3
√
abc√
3

≤ 1√
3
,

with equality if and only if a = b = c = 1.

Similarly,

b ·
√

ca

1 + a+ bc
≤ 1√

3
and c ·

√
ab

1 + b+ ca
≤ 1√

3
,

with equality in each case if and only if a = b = c = 1.
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Therefore,

a ·
√

bc

1 + c+ ab
+ b ·

√
ca

1 + a+ bc
+ c ·

√
ab

1 + b+ ca

≤ 1
√

3 +
1√
3

+
1√
3

=
√

3,

with equality if and only if a = b = c = 1.

Also solved by Arkady Alt, San Jose, CA; Bruno Salgueiro Fanego, Viveiro,
Spain; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong, China;
David E. Manes, SUNY College at Oneonta, Oneonta, NY, and the proposer.

• 5264: Proposed by Enkel Hysnelaj, University of Technology, Sydney, Australia

Let x, y, z, α be positive real numbers. Show that if∑
cyclic

(n+ 1)x3 + nx

x2 + 1
= α

then ∑
cyclic

1

x
>

3n

α
+

(2n− 1)α

3n
+

3nα

9n2 + α2

where n is a positive integer. Cyclic means the cyclic permutation of x, y, z (and not x, y, z
and α).

Solution by proposer

Doing easy manipulations we have

α =
∑
cycl

(n+ 1)x3 + nx

x2 + 1
=
∑
cycl

1

x
+
∑
cycl

−1 + (n− 1)x2 + (n+ 1)x4

x(x2 + 1)
.

Let f(x) =
−1 + (n− 1)x2 + (n+ 1)x4

x(x2 + 1)
. One easily observes that

f ′(x) =
1 + (n+ 2)x2 + (2n+ 4)x4 + (n+ 1)x6

x2(1 + x2)2

f ′′(x) = −2(1 + 3x2 + 2x6)

x3(1 + x2)3.

It is obvious that f ′(x) > 0 and f ′′(x) < 0 for any x that is a positive real number, which
implies that the function f(x) is an increasing and concave function in the positive real
domain. Applying Jensen’s inequality we have

∑
cycl

−1 + (n− 1)x2 + (n+ 1)x4

x(x2 + 1)
=
∑
cycl

f(x) ≤ 3f


∑
cycl

x

3

 .
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Doing easy manipulations, one easily observes that

α =
∑
cycl

(n+ 1)x3 + nx

x2 + 1
=
∑
cycl

nx+
∑
cycl

x3

x2 + 1
> n

∑
cycl

x =⇒
∑
cycl

x <
α

2n
.

Finally, using the above results we have∑
cycl

1

x
= α−

∑
cycl

−1 + (n− 1)x2 + (n+ 1)x4

x(x2 + 1)

≥ α− 3f


∑
cycl

x

3



> α− 3f

 α

n
3


= α− 3f

( α
3n

)

=
3n

α
+

(2n− 1)α

3n
+

3nα

9n2 + α2

and this completes the proof.
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