Problems

This section of the Journal offers readers an opportunity to exchange interesting mathematical problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics, Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions can be sent e-mail to eisenbt@013.net. Solutions to previously stated problems can be seen at http://www.ssma.org/publications.

Solutions to the problems stated in this issue should be posted before February 15, 2014

- 5277: Proposed by Kenneth Korbin, New York, NY

Find x and y if a triangle with sides $(2013,2013, x)$ has the same area and the same perimeter as a triangle with sides $(2015,2015, y)$.

- 5278: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

The triangular numbers $6=(2)(3)$ and $10=(2)(5)$ are each twice a prime number. Find all triangular numbers that are twice a prime.

- 5279: Proposed by D.M. Bătinetu-Giurgiu, "Matei Basarab" National College, Bucharest, Romania and Neculai Stanciu, "Geroge Emil Palade" General School, Buzu, Romania

Let $f: \Re_{+} \longrightarrow \Re_{+}$be a convex function on \Re_{+}, where \Re_{+}stands for the positive real numbers. Prove that

$$
3\left(f^{2}(x)+f^{2}(y)_{+} f^{2}(z)\right)-9 f^{2}\left(\frac{x+y+z}{3}\right) \geq(f(x)-f(y))^{2}+(f(y)-f(z))^{2}+(f(z)-f(x))^{2}
$$

- 5280: Proposed by José Luis Díaz-Barrero, Barcelona Tech, Barcelona, Spain

Let $a \geq b \geq c$ be nonnegative real numbers. Prove that

$$
\frac{1}{3}\left(\frac{(a+b)(c+a)}{2+\sqrt{a+b}}+\frac{(c+a)(b+c)}{2+\sqrt{c+a}}+\frac{(b+c)(a+b)}{2+\sqrt{b+c}}\right) \leq \frac{(a+b)^{2}}{2+\sqrt{b+c}}
$$

- 5281: Proposed by Arkady Alt, San Jose, CA

For the sequence $\left\{a_{n}\right\}_{n \geq 1}$ defined recursively by $a_{n+1}=\frac{a_{n}}{1+a_{n}^{p}}$ for $n \in \mathcal{N}, a_{1}=a>0$, determine all positive real p for which the series $\sum_{n=1}^{\infty} a_{n}$ is convergent.

- 5282: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

Calculate

$$
\int_{0}^{1} x \ln (\sqrt{1+x}-\sqrt{1-x}) \ln (\sqrt{1+x}+\sqrt{1-x}) d x
$$

Solutions

- 5259: Proposed by Kenneth Korbin, New York, NY

Find a, b, and c such that with $a<b<c, \begin{cases}a b+b c+c a & =-2 \\ a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2} & =6 \\ a^{3} b^{3}+b^{3} c^{3}+c^{3} a^{3} & =-11 .\end{cases}$

Solution 1 by Arkady Alt, San Jose, CA

Let $s=a+b+c, p=a b+b c+c a$, and $q=a b c$. Then a, b, c are the roots of the equation $x^{3}-s x^{2}+p x-q=0$. Since,

$$
\begin{aligned}
6 & =a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}=p^{2}-2 s q=4-2 s q \text { and } \\
-11 & =a^{3} b^{3}+b^{3} c^{3}+c^{3} a^{3}=3 q^{2}+p^{3}-3 s p q=3 q^{2}-8+6 s q, \text { then } \\
s q & =-1 \text { and } q^{2}=1 \Longleftrightarrow q=1 \text { or } q=-1 .
\end{aligned}
$$

Thus we obtain $(s, p, q)=(-1,-2,1),(1,-2,-1)$ and, respectively, the two equations

$$
x^{3}+x^{2}-2 x-1=0 \quad \text { and } \quad x^{3}-x^{2}-2 x+1=0 .
$$

Since,

$$
\begin{aligned}
(-x)^{3}+(-x)^{2}-2(-x)-1=0 & \Longleftrightarrow x^{3}-x^{2}-2 x+1=0, \text { and } \\
x^{3}+x^{2}-2 x-1=0 & \Longleftrightarrow x=1.2470,-0.44504,-1.8019,
\end{aligned}
$$

we see that,

$$
(a, b, c)=(-1.8019,-0.44504,1.2470),(-1.2470,0.44504,1.8019)
$$

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

As in problem 5135 , let $x=a b, y=b c$ and $z=c a$, so that $x+y+z=-2, x^{2}+y^{2}+z^{2}=6$, and $x^{3}+y^{3}+z^{3}=-1$. We have

$$
\begin{aligned}
& a b c(a+b+c)=x y+y z+z x=\frac{(x+y+z)^{2}-x^{2}-y^{2}-z^{2}}{2}=\frac{(-2)^{3}-6}{2}=-1, \text { and } \\
& (a b c)^{3}=x y z=\frac{x^{3}+y^{3}+z^{3}-(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)}{3}=\frac{-11+2(6+1)}{3}=1 .
\end{aligned}
$$

Hence, either $\left\{\begin{array}{ll}a+b+c & =-1 \\ a b+b c+c a & =2 \\ a b c & =1\end{array}\right.$ or $\begin{cases}a+b+c & =1 \\ a b+b c+c a & =2 \\ a b c & =-1 .\end{cases}$
In the former case a, b, and c are the roots of the polynomial $t^{3}+t^{2}-2 t-1$, and in the latter case, the roots of the polynomial $t^{3}-t^{2}-2 t+1$. By the trigonometric method to find the roots of a cubic polynomial equation, we obtain respectively

$$
\begin{aligned}
& a=\frac{2 \sqrt{7}}{3} \cos \left(\frac{\cos ^{-1}\left(\frac{1}{2 \sqrt{7}}\right)+2 \pi}{3}\right)-\frac{1}{3} \approx-1.80194, \\
& b=\frac{2 \sqrt{7}}{3} \cos \left(\frac{\cos ^{-1}\left(\frac{1}{2 \sqrt{7}}\right)+4 \pi}{3}\right)-\frac{1}{3} \approx-0.445042, \text { and } \\
& c=\frac{2 \sqrt{7}}{3} \cos \left(\frac{\cos ^{-1}\left(\frac{1}{2 \sqrt{7}}\right)}{3}\right)-\frac{1}{3} \approx 1.24698
\end{aligned}
$$

$a \approx-1.24698, b \approx 0.445042$, and $c \approx 1.80194$.

Solution 3 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State University, San Angelo, TX

To begin, label the equations as follows: $\begin{cases}a b+b c+c a & =-2 \\ a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2} & =6 \\ a^{3} b^{3}+b^{3} c^{3}+c^{3} a^{3} & =-11 .\end{cases}$
Then, by (1) and (2),

$$
\begin{align*}
4 & =(a b+b c+c a)^{2} \\
& =a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}+2\left(a b^{2} c+b c^{2} a+c a^{2} b\right) \\
& =6+2 a b c(a+b+c) \text { and hence } \\
a b c(a+b+c) & =-1 \tag{4}
\end{align*}
$$

Next, use (1), (2), (3), and (4) to obtain

$$
\begin{aligned}
-12= & (a b+b c+c a)\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right) \\
= & a^{3} b^{3}+b^{3} c^{3}+c^{3} a^{3}+a b^{3} c^{2}+a^{3} b c^{2}+a^{2} b^{3} c \\
& +a^{2} b c^{3}+a^{3} b^{2} c+a b^{2} c^{3} \\
= & -11+a b c[a b(a+b)+b c(b+c)+c a(c+a)] \\
= & -11+a b c[(a b+b c+c a)(a+b+c)-3 a b c]
\end{aligned}
$$

$$
\begin{align*}
& =-11+a b c[-2(a+b+c)]-3(a b c)^{2} \\
& =-9-3(a b c)^{2} \text { or } \\
(a b c)^{2} & =1 . \tag{5}
\end{align*}
$$

It follows from (4) and (5) that either $a b c=1$ and $a+b+c=-1$ or $a b c=-1$ and $a+b+c=1$. Since

$$
(x-a)(x-b)(x-c)=x^{3}-(a+b+c) x^{2}+(a b+b c+c a) x-a b c
$$

a, b, c must be the solutions of either

$$
\begin{equation*}
x^{3}+x^{2}-2 x-1=0 \tag{6}
\end{equation*}
$$

or

$$
\begin{equation*}
x^{3}-x^{2}-2 x+1=0 \tag{7}
\end{equation*}
$$

We will utilize a method for solving (6) described on pg. 59 of [1]. The solutions of (7) can then be found by making an appropriate adjustment in this method. Let $R=\cos \frac{2 \pi}{7}+i \sin \frac{2 \pi}{7}$. Then, as a $7^{t h}$ root of unity, R has several useful properties:

- 1. Since $R^{7}=1$, we have

$$
1+R+R^{2}+R^{3}+R^{4}+R^{5}+R^{6}=\frac{R^{7}-1}{R-1}=0
$$

- 2. For $k=1, \ldots, 7$,
a) $\frac{1}{R^{k}}=R^{7-k}$
b) $R^{k}=R^{7+k}$
c) $R^{k}+\frac{1}{R^{k}}=2 \operatorname{Re}\left(R^{k}\right)$.

Pair the powers of R as follows:

$$
\begin{aligned}
& x_{1}=R+R^{6}=R+\frac{1}{R}=2 \cos \frac{2 \pi}{7} \\
& x_{2}=R^{2}+R^{5}=R^{2}+\frac{1}{R^{2}}=2 \cos \frac{4 \pi}{7}=-2 \cos \frac{3 \pi}{7} \\
& x_{3}=R^{3}+R^{4}=R^{3}+\frac{1}{R^{3}}=2 \cos \frac{6 \pi}{7}=-2 \cos \frac{\pi}{7}
\end{aligned}
$$

Then, since

$$
\begin{gathered}
x_{1}+x_{2}+x_{3}=R+R^{2}+R^{3}+R^{4}+R^{5}+R^{6}=-1 \\
x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}=\left(R^{3}+R^{6}+R^{8}+R^{11}\right)+\left(R^{5}+R^{6}+R^{8}+R^{9}\right)
\end{gathered}
$$

$$
\begin{aligned}
& +\left(R^{4}+R^{9}+R^{5}+R^{10}\right) \\
= & \left(R^{3}+R^{6}+R+R^{4}\right)+\left(R^{5}+R^{6}+R+R^{2}\right) \\
& +\left(R^{4}+R^{2}+R^{5}+R^{3}\right) \\
= & 2\left(R+R^{2}+R^{3}+R^{4}+R^{5}+R^{6}\right) \\
= & -2, \text { and } \\
x_{1} x_{2} x_{3}= & \left(R+R^{6}\right)\left(R^{5}+R^{6}+R+R^{2}\right) \\
= & R^{6}+R^{7}+R^{2}+R^{3}+R^{11}+R^{12}+R^{7}+R^{8} \\
= & 2+R+R^{2}+R^{3}+R^{4}+R^{5}+R^{6} \\
= & 1,
\end{aligned}
$$

x_{1}, x_{2}, x_{3} must be the solutions of (6). The condition $a<b<c$ then implies that one possible solution of our system is $a=-2 \cos \frac{\pi}{7}, b=-2 \cos \frac{3 \pi}{7}$, and $c=2 \cos \frac{2 \pi}{7}$.
Similarly, if

$$
\begin{aligned}
y_{1} & =-x_{1}=-2 \cos \frac{2 \pi}{7}, \\
y_{2} & =-x_{2}=2 \cos \frac{3 \pi}{7}, \text { and } \\
y_{3} & =-x_{3}=2 \cos \frac{\pi}{7}, \text { then, } \\
y_{1}+y_{2}+y_{3} & =-\left(x_{1}+x_{2}+x_{3}\right)=1, \\
y_{1} y_{2}+y_{2} y_{3}+y_{3} y_{1} & =x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}=-2, \text { and } \\
y_{1} y_{2} y_{3} & =-x_{1} x_{2} x_{3}=-1 .
\end{aligned}
$$

Therefore, y_{1}, y_{2}, y_{3} are the solutions of (7). Again, since $a<b<c$, the remaining possible solution of our system is $a=-2 \cos \frac{2 \pi}{7}, b=2 \cos \frac{3 \pi}{7}$, and $c=2 \cos \frac{\pi}{7}$.
To show that neither solution is extraneous, we note first that since

$$
y_{1} y_{2}+y_{2} y_{3}+y_{3} y_{1}=x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}=-2,
$$

we have

$$
a b+b c+c a=-2
$$

in both cases. Further, the conditions

$$
x_{1}+x_{2}+x_{3}=-1, \quad x_{1} x_{2} x_{3}=1
$$

and

$$
y_{1}+y_{2}+y_{3}=1, \quad y_{1} y_{2} y_{3}=-1
$$

imply that

$$
(a b c)^{2}=1 \quad \text { and } \quad a b c(a+b+c)=-1
$$

in both cases. It follows that both solutions also satisfy

$$
\begin{aligned}
a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2} & =(a b+b c+c a)^{2}-2 a b c(a+b+c) \\
& =4+2 \\
& =6
\end{aligned}
$$

and

$$
\begin{aligned}
a^{3} b^{3}+b^{3} c^{3}+c^{3} a^{3}= & (a b+b c+c a)\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right) \\
& -a b c(a b+b c+c a)(a+b+c)+3(a b c)^{2} \\
= & (-2)(6)-(-1)(-2)+3 \\
= & -11
\end{aligned}
$$

Hence, our solutions for (6) and (7) both satisfy the original system as well.
Reference:
[1] Benjamin Bold, Famous Problems of Geometry and How to Solve Them, Dover Publications, Inc., 1969.

Also solved by Brian D. Beasley, Presbyterian College, Clinton, SC; Ed Gray, Highland Beach, Fl; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong, China; David E. Manes, SUNY College at Oneonta, Oneonta, NY; Paolo Perfetti, Department of Mathematics, "Tor Vergata" University, Rome, Italy; David Stone and John Hawkins, Georgia Southern University, Statesboro, GA, and the proposer.

- 5260: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

Find all primes p and q such that $a^{p q-1} \equiv a(\bmod p q)$, for all a relatively prime to $p q$.

Solution 1 by Ken Korbin, New York, NY
Let $p=2$ and q be any odd prime.

$$
\begin{aligned}
\phi(p q) & =\phi(2 q)=q-1 \\
(a, p q) & =1, \text { therefore }
\end{aligned}
$$

$$
\begin{aligned}
a^{\phi(p q)} & \equiv 1(\bmod p q) \\
a^{q-1} & \equiv 1(\bmod p q) \\
{\left[a^{q-1}\right] \cdot\left[a^{q-1}\right] } & \equiv 1 \cdot 1(\bmod p q) \\
a^{2 q-2} & \equiv 1(\bmod p q) \\
a \cdot a^{2 q-2} & \equiv a \cdot 1(\bmod p q) \\
a^{2 q-1} & \equiv a(\bmod p q), \text { therefore } \\
a^{p q-1} & \equiv a(\bmod p q), \text { if } p=2 \text { and } q \text { is any odd prime. }
\end{aligned}
$$

Solution 2 by Kee-Wai Lau,Hong Kong, China

We show that primes p and q satisfy $a^{p q-1} \equiv a(\bmod p q)$ for all a relatively prime to $p q$, if and only if at least one of them is 2 .

We need only that
I. For any prime $q, \mathrm{a}^{2 q-1} \equiv a(\bmod 2 q)$, for all a relatively prime to $2 q$.
II. If $p \leq q$ are odd primes, then $a^{p q-1} \not \equiv a(\bmod p q)$ if $a>1$ is a primitive root modulo q.

If $(a, 2 q)=1$, then $a^{q-1}+1$ is even and by Fermat's little theorem, we have $a^{q-1}-1 \equiv 0(\bmod 2 q)$. Hence

$$
a^{2 q-1}-a=a\left(a^{q-1}+1\right)\left(a^{q-1}-1\right) \equiv 0(\bmod 2 q) .
$$

This proves I. We now prove II.
Suppose, on the contrary, that $a>1$ is a primitive root modulo q such that

$$
\begin{equation*}
a^{p q-1} \equiv a(\bmod p q) . \tag{1}
\end{equation*}
$$

By Fermat's little theorem we have

$$
\begin{aligned}
a^{p q-1} & =a^{p-1}\left(a^{q-1}\right)^{p} \\
& =a^{p-1}(1+k q)^{p} \\
& =a^{p-1} \sum_{j=0}^{p}\binom{p}{j}(k q)^{j} \text { for some positive integer } k .
\end{aligned}
$$

It is well known that p divides $\binom{p}{j}$ for $j=1,2, \cdots, p-1$. Hence

$$
\begin{equation*}
a^{p q-1} \equiv a^{p-1}\left(1+k^{p} q^{p}\right)(\bmod p q) . \tag{2}
\end{equation*}
$$

From (1) and (2), we see that

$$
\begin{equation*}
a^{p-1} \equiv a(\bmod q) . \tag{3}
\end{equation*}
$$

Since a is a primitive root modulo q, so $a^{r} \not \equiv a(\bmod q)$ for $r=2,3, \cdots, q-1$.
Since $p>2$, so by (3) we have $p-1 \geq q$, which contradicts the fact tht $p \leq q$. This proves II and completes the solution.

Also solved by Brian D. Beasley, Presbyterian College, Clinton, SC; Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State University, San Angelo, TX; David E. Manes, SUNY College at Oneonta, Oneonta, NY, and the proposer.

- 5261: Proposed by Michael Brozinsky, Central Islip, NY

Show without calculus or trigonometric functions that the shortest focal chord of an ellipse is the latus rectum.

Solution 1 by Paul M. Harms, North Newton, KS

Any ellipse can be placed on a coordinate system so that the equation of the ellipse is $\frac{(x+c)^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ where $a>b$. One focal point is at $(0,0)$. I will consider the focal chords through $(0,0)$.

Focal chords with slope m are on the line $y=m x$. The x values of the points of intersection of the ellipse and the line $y=m x$ come from the equation $\frac{(x+c)^{2}}{a^{2}}+\frac{m^{2} x^{2}}{b^{2}}=1$ which yields the quadratic equation $\left(a^{2} m^{2}+b^{2}\right) x^{2}+2 b^{2} c x-b^{4}=0$, where $b^{4}=b^{2}\left(a^{2}-c^{2}\right)$.

If $H=\sqrt{b^{4} c^{2}+\left(a^{2} m^{2}+b^{2}\right) b^{4}}$, the x solutions are $\frac{-b^{2} c+H}{a^{2} m^{2}+b^{2}}$ and $\frac{-b^{2} c-H}{a^{2} m^{2}+b^{2}}$.
Let the intersection points of the focal chord and the ellipse be $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$. To determine the shortest focal chord, I will look for the minimum of the square of the distance L between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$.

Here $L=\left(y_{2}-y_{1}\right)^{2}+\left(x_{2}-x_{1}\right)^{2}$. Since the points are on $y=m x$ we have $y_{2}-y_{1}=m\left(x_{2}-x_{1}\right)$ and $L=\left(x_{2}-x_{1}\right)^{2}\left(m^{2}+1\right)$. The points x_{1} and x_{2} are the two solutions of the quadratic equation given above.

We have

$$
\begin{aligned}
\left(x_{2}-x_{1}\right)^{2} & =\left(\frac{2 H}{a^{2} m^{2}+b^{2}}\right)^{2} \text { and } L=\left(x_{2}-x_{1}\right)^{2}\left(m^{2}+1\right) \\
& =\frac{4 b^{4}\left(c^{2}+a^{2} m^{2}+b^{2}\right)}{\left(a^{2} m^{2}+b^{2}\right)^{2}}\left(m^{2}+1\right) \\
& >\frac{4 b^{4}\left(a^{2} m^{2}+b^{2}\right)\left(m^{2}+1\right)}{\left(a^{2} m^{2}+b^{2}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\frac{4 b^{4}}{a^{2}}\left(m^{2}+1\right)}{m^{2}+\left(\frac{b}{a}\right)^{2}} \\
& >\frac{4 b^{4}}{a^{2}}(1) .
\end{aligned}
$$

The last inequality occurs since $0<\frac{b}{a}<1$.
Thus any focal chord with slope m has the square of its length greater than $\frac{4 b^{4}}{a^{2}}$, which is the square of the length of the vertical chord and the latus rectum. The conclusion of the problem follows.

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

Let F be one of the foci, d the directrix closest to F, e the eccentricity, and M, N, L points on the ellipse such that $M N$ is a focal chord (that is, $F \in M N$) and L is one of the endpoints of the latus rectum $(L F \| d)$ and $M^{\prime}, N^{\prime}, L^{\prime}, F^{\prime}$ the respective projections of M, N, L, on d.
We want to prove that the length of the focal chord $M N$ is greater or equal to the length of the latus rectum that is, that $M N \geq 2 L F$.
Since the distance of any point on the ellipse to F is equal to e times its distance to d, we have that $M N=M F+F N=e M M^{\prime}+e N N^{\prime}=e\left(M M^{\prime}+N N^{\prime}\right)$ and $L F=e L L^{\prime}$, so we want to prove that $M M^{\prime}+N N^{\prime} \geq 2 L L^{\prime}$.
By Thales' theorem $\frac{M M^{\prime}}{F F^{\prime}}=\frac{F F^{\prime}}{N N^{\prime}}$ that is $M M^{\prime} \cdot N N^{\prime}=\left(F F^{\prime}\right)^{2}$. So by the arithmetic mean-geometric mean inequality

$$
M M^{\prime}+N N^{\prime} \geq 2 \sqrt{M M^{\prime} \cdot N N^{\prime}}=2 F F^{\prime}
$$

with equality if, and only if, $M M^{\prime}=N N^{\prime}$, that is if, and only if, $M N$ coincides with the latus rectum, as we wanted to prove.

Also solved by Ed Gray, Highland Beach, FL, and the proposer.

- 5262: Proposed by Pedro H.O. Pantoja, IMPA, Rio de Janeiro, Brazil

Prove that the equation $\varphi\left(10 x^{2}\right)+\varphi\left(30 x^{3}\right)+\varphi\left(34 x^{4}\right)=y^{2}+y^{3}+y^{4}$ has infinitely many solutions for $x, y \in N$ where $\varphi(x)$ is the Euler- φ function.

Solution by Tom Moore, Bridgewater State University, Bridgewater, MA
Let $x=2^{k}$. Then,

$$
\varphi\left(10 x^{2}\right)=\varphi\left(5 \cdot 2^{2 k+1}\right)=\varphi(5) \varphi\left(2^{2 k+1}\right)=4 \cdot 2^{2 k}=2^{2 k+2}=\left(2^{k+1}\right)^{2}
$$

$$
\begin{aligned}
& \varphi\left(30 x^{3}\right)=\varphi\left(2 \cdot 5 \cdot 6 \cdot 2^{3 k}\right)=\varphi(5) \varphi(3) \varphi\left(2^{3 k}\right)=8 \cdot 2^{3 k}=2^{2 k+3}=\left(2^{k+1}\right)^{3} \\
& \varphi\left(34 x^{4}\right)=\varphi\left(2 \cdot 17 \cdot 2^{4 k}\right)=\varphi(17) \varphi\left(2^{4 k}\right)=16 \cdot 2^{4} k=2^{4 k+4}=\left(2^{k+1}\right)^{4}
\end{aligned}
$$

So, we have infinitely many solutions $(x, y)=\left(2^{k}, 2^{k+1}\right), k \geq 0$.
Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State University, San Angelo, TX; Ed Gray, Highland Beach, FL; Jahangeer Kholdi and Farideh Firoozbakht, University of Isfahan, Khansar, Iran; Ken Korbin, New York, NY; Kee-Wai Lau, Hong Kong, China; David E. Manes, SUNY College at Oneonta, Oneonta, NY, and the proposer.

- 5263: Proposed by José Luis Díaz-Barrero, Polytechnical University of Catalonia, Barcelona, Spain

Let a, b, c be positive numbers lying in the interval $(0,1]$. Prove that

$$
a \cdot \sqrt{\frac{b c}{1+c+a b}}+b \cdot \sqrt{\frac{c a}{1+a+b c}}+c \cdot \sqrt{\frac{a b}{1+b+c a}} \leq \sqrt{3}
$$

Solution 1 by Ed Gray, Highland Beach, FL

Consider the function $f(x, y, z)=x \sqrt{\frac{y}{1+z+x y}}$. Each term in the problem is a representation of f by assigning a, b, c appropriately. Maximizing any term in the problem is equivalent to maximizing f.
Write f as $\sqrt{\frac{\left(x^{2}\right) y z}{1+z+x y}}$. Define $u=x y$ and f becomes $\sqrt{\frac{x u z}{1+z+u}}$. Note that u is in $(0,1]$.
Since x appears alone in the numerator and we wish to maximize the function, we assign to x its largest value possible: that is, $x=1$. The problem now becomes to maximize $\frac{u z}{1+z+u}$, for then its square root will attain its maximum.
Define $z+u=2 t$, where t is in $(0,1]$. It is well know that the maximum of the product $z u$ is t^{2}. Since if

$$
\begin{aligned}
r= & z u=u(2 t-u)=2 t u-u^{2} \\
\frac{d r}{d u}= & 2 t-2 u=0 \Longrightarrow u=t, \text { and } z=t \\
& \frac{u z}{1+z+u} \text { becomes } \frac{t^{2}}{1+2 t}
\end{aligned}
$$

Since the derivative of this last term is greater than zero, it attains its maximum for $t=1$ and is $\frac{1}{3}$.
Therefore the maximum of the left hand side of the statement of the problem is

$$
3 \sqrt{\frac{1}{3}}=3 \sqrt{\frac{3}{9}}=\frac{3}{3} \sqrt{3} \leq \sqrt{3} . \quad \text { Q.E.D. }
$$

Solution 2 by Adrian Naco, Polytechnic University,Tirana, Albania.

Considering the left side of the last inequality and applying the wellknown AM-GM inequality we have that

$$
\begin{aligned}
& a \cdot \sqrt{\frac{b c}{1+c+a b}}+b \cdot \sqrt{\frac{c a}{1+a+b c}}+c \cdot \sqrt{\frac{a b}{1+b+c a}}= \\
& =\sqrt{a b c}\left[\frac{\sqrt{a}}{\sqrt{1+c+a b}}+\frac{\sqrt{b}}{\sqrt{1+a+b c}}+\frac{\sqrt{c}}{\sqrt{1+b+c a}}\right] \leq \\
& \leq \sqrt{a b c}\left[\frac{\sqrt{a}}{\sqrt{3} \sqrt[6]{a b c}}+\frac{\sqrt{b}}{\sqrt{3} \sqrt[6]{a b c}}+\frac{\sqrt{c}}{\sqrt{3} \sqrt[6]{a b c}}\right] \\
& =\frac{\sqrt[3]{a b c}}{\sqrt{3}}[\sqrt{a}+\sqrt{b}+\sqrt{c}] \leq \frac{\sqrt[3]{1}}{\sqrt{3}}[\sqrt{1}+\sqrt{1}+\sqrt{1}]=\sqrt{3}
\end{aligned}
$$

since

$$
\begin{array}{lll}
1+c+a b \geq 3 \sqrt[3]{1 \cdot c \cdot a b}=3 \sqrt[3]{a b c} & \Rightarrow & \frac{1}{\sqrt{1+c+a b}} \leq \frac{1}{\sqrt{3} \sqrt{\sqrt[3]{a b c}}} \\
1+a+b c \geq 3 \sqrt[3]{1 \cdot a \cdot b c}=3 \sqrt[3]{a b c} & \Rightarrow & \frac{1}{\sqrt{1+a+b c}} \leq \frac{1}{\sqrt{3} \sqrt{\sqrt[3]{a b c}}} \\
1+b+c a \geq 3 \sqrt[3]{1 \cdot b \cdot c a}=3 \sqrt[3]{a b c} & \Rightarrow & \frac{1}{\sqrt{1+b+c a}} \leq \frac{1}{\sqrt{3} \sqrt{\sqrt[3]{a b c}}}
\end{array}
$$

The equality holds for $a=b=c=1$
Solution 3 by Angel Plaza, Universidad de Las Palmas de Gran Canaria, Spain By applying the Cauchy-Schwarz inequality we obtain

$$
\begin{aligned}
\left(\sum_{\text {cyclic }} a \cdot \sqrt{\frac{b c}{1+c+a b}}\right)^{2} & \leq\left(\sum_{\text {cyclic }} a^{2}\right)\left(\sum_{\text {cyclic }} \frac{b c}{1+c+a b}\right) \\
& \leq 3\left(\sum_{\text {cyclic }} \frac{b c}{a c+b c+a b}\right)=3
\end{aligned}
$$

Solution 4 by Paolo Perfetti, Department of Mathematics, Tor Vergata University, Rome, Italy

The concavity of \sqrt{x} yields

$$
\sum_{\mathrm{cyc}} a \sqrt{\frac{b c}{1+c+a b}}=(a+b+c) \sum_{\mathrm{cyc}} \frac{a}{a+b+c} \sqrt{\frac{b c}{1+c+a b}} \leq
$$

$$
\leq(a+b+c) \sqrt{\sum_{\text {cyc }} \frac{a}{a+b+c} \frac{b c}{1+c+a b}} \leq \sqrt{3} .
$$

Squaring we get

$$
(a b c)(a+b+c) \sum_{\mathrm{cyc}} \frac{1}{1+c+a b} \leq 3
$$

Now define $x=1 / a \geq 1, y=1 / b \geq 1, z=1 / c \geq 1$. We have

$$
\frac{x y+y z+z x}{x y z} \sum_{\text {cyс }} \frac{1}{z+x y+x y z} \leq 3,
$$

and moreover

$$
\frac{x y+y z+z x}{x y z} \sum_{\mathrm{cyc}} \frac{1}{z+x y+x y z} \leq \frac{x y+y z+z x}{x y z} \sum_{\mathrm{cyc}} \frac{1}{3} \leq 3 \Longleftrightarrow 3 x y z \geq x y+y z+z x
$$

which follows by $x, y, z \geq 1$.
Solution 5 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State University, San Angelo, TX

Since $a, b, c>0$, the Arithmetic - Geometric Mean Inequality implies that

$$
1+c+a b \geq 3 \sqrt[3]{a b c}
$$

Then, because $0<a, b, c \leq 1$, we have

$$
\begin{aligned}
a \cdot \sqrt{\frac{b c}{1+c+a b}} & =\sqrt{a} \cdot \sqrt{\frac{a b c}{1+c+a b}} \\
& \leq \sqrt{a} \cdot \sqrt{\frac{a b c}{3 \sqrt[3]{a b c}}} \\
& =\frac{\sqrt{a} \cdot \sqrt{(a b c)^{\frac{2}{3}}}}{\sqrt{3}} \\
& =\frac{\sqrt{a} \sqrt[3]{a b c}}{\sqrt{3}} \\
& \leq \frac{1}{\sqrt{3}},
\end{aligned}
$$

with equality if and only if $a=b=c=1$.
Similarly,

$$
b \cdot \sqrt{\frac{c a}{1+a+b c}} \leq \frac{1}{\sqrt{3}} \quad \text { and } \quad c \cdot \sqrt{\frac{a b}{1+b+c a}} \leq \frac{1}{\sqrt{3}}
$$

with equality in each case if and only if $a=b=c=1$.

Therefore,

$$
\begin{gathered}
a \cdot \sqrt{\frac{b c}{1+c+a b}}+b \cdot \sqrt{\frac{c a}{1+a+b c}}+c \cdot \sqrt{\frac{a b}{1+b+c a}} \\
\leq 1 \sqrt{3}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}} \\
=\sqrt{3},
\end{gathered}
$$

with equality if and only if $a=b=c=1$.
Also solved by Arkady Alt, San Jose, CA; Bruno Salgueiro Fanego, Viveiro, Spain; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong, China; David E. Manes, SUNY College at Oneonta, Oneonta, NY, and the proposer.

- 5264: Proposed by Enkel Hysnelaj, University of Technology, Sydney, Australia

Let x, y, z, α be positive real numbers. Show that if

$$
\sum_{\text {cyclic }} \frac{(n+1) x^{3}+n x}{x^{2}+1}=\alpha
$$

then

$$
\sum_{\text {cyclic }} \frac{1}{x}>\frac{3 n}{\alpha}+\frac{(2 n-1) \alpha}{3 n}+\frac{3 n \alpha}{9 n^{2}+\alpha^{2}}
$$

where n is a positive integer. Cyclic means the cyclic permutation of x, y, z (and not x, y, z and α).

Solution by proposer

Doing easy manipulations we have

$$
\alpha=\sum_{c y c l} \frac{(n+1) x^{3}+n x}{x^{2}+1}=\sum_{c y c l} \frac{1}{x}+\sum_{c y c l} \frac{-1+(n-1) x^{2}+(n+1) x^{4}}{x\left(x^{2}+1\right)} .
$$

Let $f(x)=\frac{-1+(n-1) x^{2}+(n+1) x^{4}}{x\left(x^{2}+1\right)}$. One easily observes that

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1+(n+2) x^{2}+(2 n+4) x^{4}+(n+1) x^{6}}{x^{2}\left(1+x^{2}\right)^{2}} \\
& f^{\prime \prime}(x)=-\frac{2\left(1+3 x^{2}+2 x^{6}\right)}{x^{3}\left(1+x^{2}\right)^{3} .}
\end{aligned}
$$

It is obvious that $f^{\prime}(x)>0$ and $f^{\prime \prime}(x)<0$ for any x that is a positive real number, which implies that the function $f(x)$ is an increasing and concave function in the positive real domain. Applying Jensen's inequality we have

$$
\sum_{\text {cycl }} \frac{-1+(n-1) x^{2}+(n+1) x^{4}}{x\left(x^{2}+1\right)}=\sum_{\text {cycl }} f(x) \leq 3 f\left(\frac{\sum_{\text {cycl }} x}{3}\right)
$$

Doing easy manipulations, one easily observes that

$$
\alpha=\sum_{c y c l} \frac{(n+1) x^{3}+n x}{x^{2}+1}=\sum_{c y c l} n x+\sum_{\text {cycl }} \frac{x^{3}}{x^{2}+1}>n \sum_{\text {cycl }} x \Longrightarrow \sum_{\text {cycl }} x<\frac{\alpha}{2 n} .
$$

Finally, using the above results we have

$$
\begin{aligned}
\sum_{c y c l} \frac{1}{x} & =\alpha-\sum_{c y c l} \frac{-1+(n-1) x^{2}+(n+1) x^{4}}{x\left(x^{2}+1\right)} \\
& \geq \alpha-3 f\left(\frac{\sum_{c y c l} x}{3}\right) \\
& >\alpha-3 f\left(\frac{\frac{\alpha}{n}}{3}\right) \\
& =\alpha-3 f\left(\frac{\alpha}{3 n}\right) \\
& =\frac{3 n}{\alpha}+\frac{(2 n-1) \alpha}{3 n}+\frac{3 n \alpha}{9 n^{2}+\alpha^{2}}
\end{aligned}
$$

and this completes the proof.

