
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
February 15, 2018

• 5469: Proposed by Kenneth Korbin, New York, NY

Let x and y be positive integers that satisfy the equation 3x2 = 7y2 + 17. Find a pair of
larger integers that satisfy this equation expressed in terms of x and y.

• 5470: Proposed by Moshe Stupel, “Shaanan” Academic College of Education and
Gordon Academic College of Education, and Avi Sigler, “Shaanan” Academic College of
Education, Haifa, Israel

Prove that there are an infinite number of Heronian triangles (triangles whose sides and
area are natural numbers), whose side lengths are three consecutive natural numbers.

• 5471: Proposed by Arkady Alt, San Jose, CA

For natural numbers p and n where n ≥ 3 prove that

n
1
np > (n+ p)

1
(n+1)(n+2)(n+3)···(n+p) .

• 5472: Proposed by Francisco Perdomo and Ángel Plaza, both at Universidad Las Palmas
de Gran Canaria, Spain

Let α, β, and γ be the three angles in a non-right triangle. Prove that

1 + sin2 α

cos2 α
+

1 + sin2 β

cos2 β
+

1 + sin2 γ

cos2 γ
≥ 1 + sinα sinβ

1− sinα sinβ
+

1 + sinβ sin γ

1− sinβ sin γ
+

1 + sin γ sinα

1− sin γ sinα.

• 5473: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let x1, · · · , xn be positive real numbers. Prove that for n ≥ 2, the following inequality
holds: (

n∑
k=1

sinxk

((n− 1)xk + xk+1)
1/2

)(
n∑
k=1

cosxk

((n− 1)xk + xk+1)
1/2

)
≤ 1

2

n∑
k=1

1

xk.

(Here the subscripts are taken modulo n)
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• 5474: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let a, b ∈ <, b 6= 0. Calculate

lim
n→∞


1− a

n2
b

n

b

n
1 +

a

n2
.


n

.

Solutions

• 5451: Proposed by Kenneth Korbin, New York, NY

Given triangle ABC with sides a = 8, b = 19 and c = 22. The triangle has an interior
point P where AP, BP , and CP each have positive integer length. Find AP and BP , if
CP = 4.

Solution 1 by David E. Manes, Oneonta, NY

We will show that BP = 6 and AP = 17.
Using the law of cosines in ∆ABC, one obtains

cos 6 C =
82 + 42 − 222

2 · 8 · 19
=
−59

304

so that 6 C = arccos

(
−59

304

)
. Let x = BP and y = AP . By the triangle inequality in

∆PCB, it follows that 5 ≤ x ≤ 11. If x = 5, then

cos 6 BCP =
82 + 42 − 52

2 · 8 · 4
=

55

64
.

Therefore, 6 BCP = arccos

(
55

64

)
and

6 PCA = 6 C − 6 BCP = arccos

(
−59

304

)
− arccos

(
55

64

)
. Using the identity

cos(α− β) = cosα · cosβ + sinα · sinβ, we get

cos 6 PCA =

(
−59

304

)(
55

64

)
+

(
77
√

15

304

)(
3
√

7 · 17

64

)
=
−3245 + 231

√
3 · 5 · 7 · 17

304 · 64
.

Thus,

y2 = 42 + 192 − 2 · 4 · 19 cos 6 PCA = 377− 19

(
−3245 + 231

√
15 · 119

304 · 8

)

=
916864 + 61655− 4389

√
1785

2432
.

Therefore,

y =

√
978519− 4389

√
1785

2432
≈ 18.058
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is not an integer. Hence, x 6= 5.
However, if x = 6, then

cos 6 BCP =
82 + 42 − 62

64
=

11

16

so that 6 BCP = arccos

(
11

16

)
and

6 PCA = 6 C − 6 BCP = arccos

(
−59

304

)
− arccos

(
11

16

)
. Thus,

cos 6 PCA = cos

[
arccos

(
−59

304

)
− arccos

(
11

16

)]
=

(
−59

304

)(
11

16

)
+

(
77
√

15

304

)(
3
√

15

16

)
=
−649 + 3465

4864

=
11

19
.

Therefore,

y2 = 42 + 192 − 2 · 4 · 19

(
11

19

)
= 289

whence y = 17. Hence, x = BP = 6 and y = AP = 17. The solution is unique since
x = 7 does not yield an integer value for y while each of the values x = 8, 9, 10, 11 does
not yield a triangle for ∆BPA.

Solution 2 by Michael N. Fried, Ben-Gurion University of the Negev,
Beer-Sheva, Israel

Let BP = x and AP = y. Because of the triangle inequality, 8 < x+ 4, x < 8 + 4 or
5 ≤ x ≤ 11. Similarly, we have 16 ≤ y ≤ 22.
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These inequalities can be improved slightly using Stewart’s formula for the length of
cevians: if ABC is a triangle with sides AC = b and BC = a and if d is the length of a
cevian from A which divides AB into segments of lengths AB = m and AB = n, then:

d2 =
ma2 + nb2

m+ n
−mn

(this is just an easy consequence of the law of cosines). Since the maximum value of y

occurs when P lies on BC, by Stewart’s formula, y2max = 222+192

2 − 42 = 406.5 = 20.162,
so y ≤ 20. Similarly, the maximum value of x occurs when P lies on AC, so that P
divides AC into segments of lengths 4 and 15. Thus, again by Stewart’s formula
x2max = 15·82+4·222

19 − 4 · 15 = 92.42 ≈ 9.612, so that x ≤ 9. Hence:

5 ≤ x ≤ 9

16 ≤ y ≤ 20

Since P lies on a circle centered at C, and the lines BP all lie on one side of BC, each
length x of BP corresponds to a unique P and, therefore, to a unique value of y.
To find y for a given value of x, let 6 BCP = θ, 6 PCA = φ, and 6 BCA = γ. The cosine
of γ is fixed and given by the law of cosines:

cos γ =
192 + 82 − 222

2 · 8 · 19
= − 59

304

The sine of γ is just
√

1− cos2 γ, that is:

sin γ =

√
1− 592

3042
=

77

304

√
15

The cosine of θ for a given value of x is also given by the law of cosines:

cos θ =
82 + 42 − x2

2 · 8 · 4
=

80− x2

64

And again, sin θ is given by
√

1− cos2 θ. Hence, the cosine of φ is given:

cosφ = cos(γ − θ) = − 59

304
cos θ +

77

304

√
15 sin θ

Thus, for any x we can calculate y, once again by the law of cosines:

y2 = 42 + 192 − 2 · 4 · 19 · cosφ = 377− 152 cosφ

Calculating y for x = 5, 6, 7, 8, 9 we find one integral value for y: y = 17 corresponding to
x = 6.
So we have our answer:

AP = 17

BP = 6

Solution 3 by Brian D. Beasley, Presbyterian College, Clinton, SC

We model the given triangle in the Cartesian plane by first placing A at (19, 0) and C at
(0, 0). Then B must lie on the circles with equations
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x2 + y2 = 64 and (x− 19)2 + y2 = 484,

so we place B in the second quadrant at (d, e), where d = −59/38 and e = 77
√

15/38.
Next, we seek an interior point P = (x, y) such that x2 + y2 = 16, (x− 19)2 + y2 = m2,
and (x− d)2 + (y − e)2 = n2 for positive integers m = AP and n = BP . Since P is
interior to triangle ABC and lies on the circle with equation x2 + y2 = 4, we have
m ∈ {16, 17, 18, 19, 20} and n ∈ {5, 6, 7, 8, 9}. Solving the system{

x2 + y2 = 16
(x− 19)2 + y2 = m2

yields x = (377−m2)/38 and y =
√
−m4 + 754m2 − 119025/38. Substituting these

values for x and y into (x− d)2 + (y − e)2 = n2 for m ∈ {16, 17, 18, 19, 20}, we find that
only m = 17 produces a positive integer value for n, namely n = 6. Hence
P = (44/19, 16

√
15/19) with AP = 17 and BP = 6.

Comment by Albert Stadler, Herrliberg, Switzerland: There is no other interior
point even if we get rid of the condition that CP = 4. However, letting u = AP, v = BP
and w = CP and if we permit P to lie on a side of the triangle, then (u, v, w) = (16, 6, 7)
is the only additional point.

Also solved by Hatef I. Arshagi, Guilford Technical Community College,
Jamestown, NC; Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland
Beach, FL; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong,
China; Charles McCracken, Dayton, OH; Vijaya Prasad Nalluri,
Rajahmundry, India; Valentin Shopov, Munich, Germany; Albert Stadler,
Herrliberg, Switzerland; David Stone and John Hawkins, Georgia Southern
University, Statesboro, GA; Students at Taylor University, Upland, IN,ne
Team 1: {Hannah Peters, Ben Robison, Stevanni McCray}
Team 2: {Hannah King, Deborah Settles, Jackson Bronkema}
Team 3: {Gwyneth Terrett, Samantha Korn, Elissa Grace Moore}, and the
proposer.

• 5452: Proposed by Roger Izard, Dallas, TX

Let point O be the orthocenter of a given triangle ABC. In triangle ABC let the
altitude from B intersect line segment AC at E, and the altitude from C intersect line
segment AB at D. If AC and AB are unequal, derive a formula which gives the square
of BC in terms of AC,AB,EO, and OD.

Solution 1 by Bruno Salgueiro Fanego, Viveiro, Spain

Let a = BC, b = CA, c = AB, d = OD, e = EO, f = EA, and g = AD. Applying the
Pythagorean Theorem to 4ABE, 4BCE, 4OEA and 4OAD, and using the fact that
4ABE ∼ 4CAD, because they are both right triangles with common angle at vertex
A, we obtain:

c2 = AB2 = BE2 + EA2 = BC2 − CE2 + EA2 = a2 − (b− f)2 + f2 = a2 − b2 + 2bf,

e2 + f2 = EO2 + EA2 = OA2 = OD2 +AD2 = d2 + g2, and
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b

g
=

CA

AD
=
AB

EA
=
c

f
.

From these two last lines, we obtain

e2 + f2 = d2 +
b2f2

c2

c2e2 + c2f2 = c2d2 + b2f2,

and since b 6= c by hypothesis, we see that f2 =
c2
(
e2 − d2

)
b2 − c2

, and from the equality

c2 = a2 − b2 + 2bf gives us a2 in terms b, c, e and d. Namely,

a2 =
(
b2 + c2 − 2bf

)
= b2 + c2 − 2bc

√
e2 − d2

b2 − c2
.

Solution 2 by Kee-Wai Lau,Hong Kong, China

By the cosine formula, we have

EO

OA
= sin 6 OAE = cos 6 ACB =

AC2 +BC2 −AB2

2(AC)(BC)
, and similarly

OD

OA
= sin 6 OAD = cos 6 ABC =

AB2 +BC2 −AC2

2(AB)(BC)
. Hence,

EO

OD
=
AB(AC2 +BC2 −AB2)

AC(AB2 +BC2 −AC2)
. (1)

Since AC 6= AB, so
EO

OD
6= AB

AC
or (AB)(OD)− (AC)(EO) 6= 0. Solving (1) for BC2 we

obtain

BC2 =
(AB +AC)(AB −AC) ((AB)(OD) + (AC)(EO))

(AB)(OD)− (AC)(EO)
.

Also solved by Ed Gray, Highland Beach, FL; David E. Manes, Oneonta,
NY; Vijaya Prasad Nalluri, Rajahmundry, India; Albert Stadler, Herrliberg,
Switzerland, and the proposer.

• 5453: Proposed by D.M. Bătinetu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu,“George Emil Palade” School, Buzău, Romania

If a, b, c ∈ (0, 1) or a, b, c ∈ (1,∞) and m,n are positive real numbers, then prove that

loga b+ logb c

m+ n loga c
+

logb c+ logc a

m+ n logb a
+

logc a+ loga b

m+ n logc b
≥ 6

m+ n

Solution 1 by Moti Levy, Rehovot, Israel
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Let x := loga b, y := logb c, z := logc a. Then xyz = loga b logb c logc a = 1, and the
condition a, b, c ∈ (0, 1) or a, b, c ∈ (1,∞) implies that x, y, z > 0.

The original inequality may be rephrased as:

x+ y

m+ z−1n
+

y + z

m+ x−1n
+

z + x

m+ y−1n
≥ 6

m+ n
, xyz = 1, x, y, z > 0, (1)

or as
3∑

cyc

(
m+z−1n

x+y

)−1 ≤
m+ n

2
.

Since the harmonic mean is less than or equal to the geometric mean,

3∑
cyc

(
m+z−1n

x+y

)−1 ≤
3

√
m+ z−1n

x+ y

m+ x−1n

y + z

m+ y−1n

z + x
.

Hence it is enough to prove (2):

m+ z−1n

x+ y

m+ x−1n

y + z

m+ y−1n

z + x
≤ (m+ n)3

8
,

1

xyz

(n+mz) (n+mx) (n+my)

(x+ y) (x+ z) (y + z)
≤ (m+ n)3

8
,

(n+mz) (n+mx) (n+my)

(x+ y) (x+ z) (y + z)
≤ (m+ n)3

8
. (2)

Further simplification of (2) results in

n3 +mn2x+mn2y +mn2z +m2nxy +m2nxz +m2nyz +m3xyz

(x+ y) (x+ z) (y + z)
≤ (m+ n)3

8

n3 +mn2 (x+ y + z) +m2n (xy + yz + xz) +m3

(x+ y) (x+ z) (y + z)
≤ (m+ n)3

8
(3)

Equating the left and right sides of (3) shows that the inequality (3) is equivalent to (4)
and (5):

x+ y + z

(x+ y) (x+ z) (y + z)
≤ 3

8
, (4)

xy + yz + xz

(x+ y) (x+ z) (y + z)
≤ 3

8
. (5)

We now use the p, q, r notation:

p := x+ y + z,

q := xy + yz + zx,

r := xyz.

In this notation, (4) and (5) become

p

pq − r
≤ 3

8
, (6)

q

pq − r
≤ 3

8
. (7)
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In our case r = 1, which implies (by AM-GM inequality) that p ≥ 3 and q ≥ 3. Now
proving (4) and (5) is straightforward:

p

pq − 1
≤ 3

8
,

3pq − 3− 8p ≥ 0,

3pq − 3− 8p ≥ p− 3 ≥ 0.

q

pq − 1
≤ 3

8
,

3pq − 3− 8q ≥ 0,

3pq − 3− 8q ≥ q − 3 ≥ 0.

Solution 2 by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain

Note that since loga b =
ln b

ln a
and a, b, c ∈ (0, 1) or a, b, c ∈ (0, 1), all the logarithms in the

proposed inequality are positive, so the right-hand side is positive.

We will apply the following parametrized Nesbitt’s inequality (see reference 1, theorem
7).

Let x, y, z, tx+ ky + lz, ty + kz + lx, tz + kx+ ly be positive real numbers and let

−k − l < t <
k + l

2
.

Then
x

tx+ ky + lz
+

y

ty + kz + lx
+

z

tz + kx+ ly
≥ 3t+ k + l. (1)

We will consider two inequalities, from which the stated problem will follow.

loga b

m+ n loga c
+

logb c

m+ n logb a
+

logc a

m+ n logc b
≥ 3

m+ n
(2)

logb c

m+ n loga c
+

logc a

m+ n logb a
+

loga b

m+ n logc b
≥ 3

m+ n
. (3)

Notice that the right-hand side of (2) is

RHS =
ln b

m ln a+ n ln c
+

ln c

m ln b+ n ln a
+

ln a

m ln c+ n ln b
≥ 3

m+ n

by the parametrized Nesbitt’s inequality with t = 0, k = m and l = n, and x = ln b,
y = ln c, and z = ln a. It also should be noticed that in the last expression we may
assume that all the ln’s are positive.

Now, the right-hand side of (3) is

RHS =
ln a ln c

m ln a ln b+ n ln b ln c
+

ln a ln b

m ln b ln c+ n ln a ln c
+

ln b ln c

m ln a ln c+ n ln a ln b
≥ 3

m+ n

by the parametrized Nesbitt’s inequality with t = 0, k = m and l = n, and x = ln a ln c,
y = ln a ln b, and z = ln b ln c.
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References:

(1) Shanhe Wu and Ovidiu Furdui, A note on a conjectured Nesbitt type inequality,
Taiwanese Journal of Mathematics, 15 (2) (2011), 449-456.

Solution 3 by Soumitra Mandal, Chandar Nagore, India

∑
cyc

loga b+ logb c

m+ n loga c
=
∑
cyc

log b+ log a·log c
log b

m log a+ n log c

=
∑
cyc

log b

m log a+ n log c
+
∑
cyc

log a·log c
log b

m log a+ n log c

=
∑
cyc

(log b)2

n log a · log b+ n log c · log b
+
∑
cyc

(
1

log b

)2
m

log b·log c + n
log b·log a

BERGSTROM︷︸︸︷
≥ (log a+ log b+ log c)2

(m+ n)(log a · log b+ log b · log c+ log c · log a)
+

+

(
1

log a + 1
log b + 1

log c

)2
(m+ n)

(
1

log a·log b + 1
log b·log c + 1

log c·log a

) ≥ 3

m+ n
+

3

m+ n
=

6

m+ n

Editor’s Comments: Anna V. Tomova of Varna, Bulgaria approached the solution as
follows: She showed that the left hand side of the inequality can be put into the canonical form

of X + Y +
1

XY
. She then showed that this canonical form has a global minimum at (1, 1),

forcing it to have a minimal value of 3, and working with this she produced the final result.

Bruno Salgueiro Fanego of Viveiro, Spain noted that the stated problem is a specific case
of a more general result. Namely: If x, y, z ∈ (0,∞) and xyz = 1, then

x+ y

m+
n

z

+
y + z

m+
n

x

+
z + x

m+
n

y

≥ 6

m+ n
.

He proved the more general result, and applied it to the specific case.

Also solved by Arkady Alt, San Jose, CA; Bruno Salgueiro Fanego of Viveiro,
Spain; Ed Gray of Highland Beach, FL; Kee-Wai Lau, Hong Kong, China; Shravan
Sridhar, Udupi, India; Albert Stadler, Herrliberg, Switzerland; Anna V. Tomova
of Varna, Bulgaria, and the proposer.

5454: Proposed by Arkady Alt, San Jose, CA

Prove that for integers k and l, and for any α, β ∈
(
0, π2

)
, the following inequality holds:

k2 tanα+ l2 tanβ ≥ 2kl

sin(α+ β)
−
(
k2 + l2

)
cot(α+ β).
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Solution 1 by Ed Gray, Highland Beach, FL

We rewrite the inequality by transposing

1) k2
(

sin a

cos a
+

cos(a+ b)

sin(a+ b)

)
+ t2

(
sin b

cos b
+

cos(a+ b)

sin (a+ b)

)
≥ 2kt

sin(a+ b)

Multiplying by sin(a+ b)

2) k2
(

sin a(sin(a+ b))

cos a
+ cos(a+ b)

)
+ t2

(
sin b sin(a+ b)

cos b
+ cos(a+ b)

)
≥ 2kt

3) k2
(

sin a sin(a+ b) + cos a cos(a+ b)

cos a

)
+ t2

(
sin b sin(a+ b) + cos b cos(a+ b)

cos b

)
≥ 2kt

4) k2
(

cos b

cos a

)
+ t2

(cos a

cos b

)
≥ 2kt

5)
k2 cos2 b+ t2 cos2 a

cos a cos b
≥ 2kt

6) k2 cos2 b+ t2 cos2 a ≥ 2kt cos a cos b, and transposing,

7) (k cos b− t cos a)2 ≥ 0..

So we retrace our steps to obtain the original inequality.

Solution 2 by Hatef I. Arshagi, Guilford Technical Community College, Jamestown,
NC

First we consider the case when α + β =
π

2
, then sin(α + β) = 1, cot(α + β) = 0, and

tanβ = cotα. From these we have

k2 tanα+t2 tanβ− 2kl

sin(α+ β)
+
(
k2 + l2

)
cot(α+β) = k2 tanα+l2 cotα−2lk =

(
k
√

tanα− l
√

cotα
)2
≥ 0,

which completes the proof when α+ β =
π

2
.

Now suppose that α+ β 6= π

2
. By using the identity cot(α+ β) =

1− tanα tanβ

tanα+ tanβ
, we have

k2 tanα+ l2 tanβ + (k2 + l2) cot(α+ β)− 2kl

sin(α+ β)

= k2 tanα+ l2 tanβ + (k2 + l2)
1− tanα tanβ

tanα+ tanβ
− 2kl

sin(α+ β)

=
k2 tan2 α+ k2 tanα tanβ + l2 tanβ tanα+ l2 tan2 β + (k2 + l2)−

(
k2 + l2

)
tanα tanβ

tanα+ tanβ
− 2kl

sin(α+ β)

=
k2 tan2 α+ l2 tan2 β + (k2 + l2)

tanα+ tanβ
− 2kl

sin(α+ β)

=
k2(1 + tan2 α) + l2(1 + tan2 β)

sinα

cosα
+

sinβ

cosβ

− 2kl

sin(α+ β)
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=
k2 sec2 α+ l2 sec2 β

sin(α+ β)

cosα cosβ

− 2kl

sin(α+ β)

=

k2
cosβ

cosα
+ l2

cosα

cosβ

sin(α+ β)
− 2kl

sin(α+ β)

=

(√
k

cosβ

cosα
− l
√
k

cosα

cosβ

)2

sin(α+ β)
≥ 0.

Editor’s Note: Most of the solvers mentioned that the inequality holds for all real values of k and
l. David Stone and John Hawkins of Georgia Southern University when a bit further.
They stated: “the conditions that α and β be first quadrant angles is an easy way to make
sin(α+β) 6= 0 and tanα, tanβ, cot(α+β) be defined and guarantee that cosα cosβ sin(α+β) >
0.” But the proof shows that the inequality would be true for any values of α and β which satisfy
these conditions.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State
University, San Angelo, TX; Bruno Salgueiro Fanego, Viveiro, Spain; Kee-Wai
Lau, Hong Kong, China; Moti Levy, Rehovot, Israel; Boris Rays, Brooklyn, NY;
Daniel Sitaru, “Theodor Costescu” National Economic College, Severin Mehedinti;
Albert Stadler, Herrliberg, Switzerland; David Stone and John Hawkins, Georgia
Southern University, Statesboro, GA; Anna V. Tomova, Varna, Bulgaria, and the
proposer.

5455: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Find all real solutions to the following system of equations:

1

a
+

1

b
+

1

c
=

1

abc

a+ b+ c = abc+
8

27

(
a+ b+ c)3

Solution 1 by Anthony J. Bevelacqua, University of North Dakota, Grand Forks,
ND

Suppose a, b, c are real numbers satisfying our system. Consider the polynomial

g(x) = (x− a)(x− b)(x− c)
= x3 − (a+ b+ c)x2 + (ab+ ac+ bc)x− abc.

The first equation of our original system implies ab+ ac+ bc = 1. So

g(x) = x3 − λx2 + x− µ

where λ = a + b + c and µ = abc. Note that the second equation of our original system
can be written as λ = µ + 8

27λ
3. We make the usual substitution to get a depressed cubic:
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g(x+ λ/3) = x3 + px+ q where

p = 1− 1

3
λ2 and q =

−2

27
λ3 +

1

3
λ− µ.

Using λ = µ+ 8
27λ

3 we have

q =
2

9
λ3 − 2

3
λ

which we factor to get

q =
−2

3
λ

(
1− 1

3
λ2
)

=
−2

3
λp.

The discriminant of g(x+ λ/3) is

D = −4p3 − 27q2

= −4p3 − 12λ2p2

= −4p2(p+ 3λ2)

= −4p2
(

1 +
8

3
λ2
)

Note that D ≥ 0 if and only if p = 0. Recall that a real cubic polynomial has three real
roots if and only if its discriminant is ≥ 0. Thus g(x + λ/3) has three real roots if and only if
p = 0 if and only if λ = ±

√
3. Note that when λ = ±

√
3 we have g(x + λ/3) = x3, and hence

g(x) = (x− λ/3)3. Therefore the only solutions to the original system are

a = b = c =

√
3

3
and a = b = c =

−
√

3

3
.

Solution 2 by Moti Levy, Rehovot, Israel

1

a
+

1

b
+

1

c
=

1

abc
implies ab+ bc+ ca = 1.

Substitution of abc =
1

1

a
+

1

b
+

1

c

in the second equation gives

a+ b+ c− 1
1

a
+

1

b
+

1

c

− 8

27
(a+ b+ c)3 = 0,

(a+ b) (a+ c) (b+ c)

ab+ ac+ bc
− 8

27
(a+ b+ c)3 = 0,

(a+ b) (a+ c) (b+ c)− 8

27
(a+ b+ c)3 = 0. (1)

Let x = a+ b, y = b+ c and z = c+ a then (1) becomes

xyz −
(
x+ y + z

3

)3

= 0,

or 3
√
xyz =

x+ y + z

3
. The geometric mean is equal to the arithmetic mean if and only if

x = y = z which implies that a = b = c.

Therefore the system of equation has only two solutions:

a = b = c =
1√
3
, a = b = c = − 1√

3
.
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Solution 3 by Kee-Wai Lau, Hong Kong, China

Let p = a+ b+ c, q = ab+ bc+ ca, and r = abc. The first given equation becomes

q = 1 (1)

and the second equations becomes

r = p− 8p3

27
. (2)

It can be checked readily that

p2q2 − 4p3r + 18pqr − 4q3 − 27r2 = (a− b)2(b− c)2(c− a)2. (3)

Using (1) and (2) we reduce the left side of (3) to
−4(p2 − 3)2(8p2 + 3)

27
, which is non-positive.

Since the right side of (3) is nonnegative, so both sides of (3) equal to zero. It follows that

p2 = 3 and by (2), r =
p

9
. Moreover, either a = b or b = c or c = a. By symmetry we only

consider the case a = b. Hence either 2a+c =
√

3, a2 +2ac = 1, or 2a+c = −
√

3, a2 +2ac = 1,

giving respectively a = c =
1√
3

and a = c =
−1√

3
. Thus the solutions to the original system are

precisely (a, b, c) =

(
1√
3
,

1√
3
,

1√
3

)
,

(
−1√

3
,
−1√

3
,
−1√

3

)
.

Also solved by Arkady Alt, San Jose, CA; Bruno Salgueiro Fanego, Viveiro, Spain;
Ed Gray, Highland Beach, FL; Le Van, Ho Chi Minh City, Vietnam; Albert Stadler,
Herrliberg, Switzerland; Anna V. Tomova, Varna, Bulgaria, and the proposer.

5456: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

Let k be a positive integer. Calculate

lim
x→∞

e−x
∞∑
n=k

(−1)n
(
n

k

)(
ex − 1− x− x2

2!
− · · · − xn

n!

)
.

Solution 1 Ulrich Abel, Technische Hochschule Mittelhessen, Friedberg, Germany

By the Taylor formula we have

ex = 1 + x+ x2/2! + · · ·+ xn/n! +

∫ x

0

(x− t)n

n!
etdt.

It follows that

e−x
∞∑
n=k

(−1)n
(
n

k

)(
ex − 1− x− x2/2!− · · · − xn/n!

)
=

∞∑
n=k

(−1)n
(
n

k

)∫ x

0

(x− t)n

n!
et−xdt

=
1

k!

∞∑
n=k

(−1)n
∫ x

0

tn

(n− k)!
e−tdt

=
1

k!

∞∑
n=0

(−1)n+k
∫ x

0

tn+k

n!
e−tdt

=
(−1)k

k!

∫ x

0
tke−2tdt.

13



The limit as x→ +∞ is given by

(−1)k

k!

∫ ∞
0

tke−2tdt =
(−1)k

2k+1
.

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

lim
x→

e−x
∞∑
n=k

(−1)n
(
n

k

)(
ex − 1− x− x2

2!
− · · · − xn

n!

)

= lim
x→∞

e−x
∞∑
n=k

(−1)n
n(n− 1)(n− 2) · · · (n− k + 1)

k!

∞∑
p=n+1

xp

p!

= lim
x→∞

e−x
1

k!

∞∑
n=k

(−1)n
(
dk

dtk
tn
)∣∣∣∣

t=1

∞∑
p=n+1

xp

p!
=

1

k!
lim
x→∞

e−x
dk

dtk

 ∞∑
n=k

(−1)ntn
∞∑

p=n+1

xp

p!

∣∣∣∣∣
t=1

=
1

k!
lim
x→∞

e−x
dk

dtk

 ∞∑
n=1

xn

n!

n−1∑
p=0

(−1)ptp

∣∣∣∣∣
t=1

=
1

k!
lim
x→∞

e−x
dk

dtk

(
1

1 + t

( ∞∑
n=1

xn

n!
−
∞∑
n=1

(−xt)n

n!

))∣∣∣∣∣
t=1

=
1

k!
lim
x→∞

dk

dtk

(
1

1 + t
e−x

(
ex − 1−

(
e−x − 1

))) ∣∣∣∣∣
t=1

=
1

k!
lim
x→∞

dk

dtk

(
1

1 + t

(
1− e−x(1+t)

)) ∣∣∣∣∣
t=1

=
1

k!

dk

dtk

(
1

1 + t
lim
x→∞

(
1− e−x(1+t)

)) ∣∣∣∣∣
t=1

=
1

k!

(
dk

dtk
1

1 + t

) ∣∣∣∣∣
t=1

=
(−1)k

(1 + t)k+1

∣∣∣∣∣
t=1

=
(−1)k

2k+1
.

Solution 3 by Albert Stadler, Herrliberg, Switzerland

Repeated integration by parts yields∫ x

0
e−t

tn

n!
dt = −e−xx

n

n!
+

∫ x

0
d−t

tn−1

(n− 1)!
dt = −e−x

(
xn

n!
+

xn−1

(n− 1)!
+ · · ·+ x

)
+

∫ x

0
e−tdt

= −e−x
(
xn

n!
+

xn−1

(n− 1)!
+ · · ·+ x+ 1

)
+ 1.

So,

e−x −
(
xn

n!
+

xn−1

(n− 1)!
+ · · ·+ x+ 1

)
= ex

∫ x

0
e−t

tn

n!
dt

and

e−x
∞∑
n=k

(−1)n
(
n

k

)(
ex −

(
xn

n!
+

xn−1

(n− 1)!
+ · · ·+ x+ 1

))
=

1

k!

∞∑
n=k

(−1)n

(n− k)!

(∫ x

0
e−ttndt

)
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=
(−1)k

k!

∞∑
n=0

(−1)n

n!

(∫ x

0
e−ttn+kdt

)

=
(−1)k

k!

∫ x

0
e−2ttkdt→ (−1)k

k!

∫ ∞
0

e−2ttkdt =
(−1)k!

k!2k+1
=

(−1)k

2k+1
, as x →∞.

Solution 4 by Kee-Wai Lau, Hong Kong, China

We show that the given limit equals (−1)k2−(k+1).

For real x let f(x) = e−xxk =

∞∑
m=k

(−1)m−k
xm

m− k)!
so that

fn(0) =


0, 0 ≤ n ≤ k − 1

(−1)n−kn(n− 1) · · · (n− k + 1), n ≥ k
.

where fn(x) is the n th derivative of f(x).

According to problem 3.89(a) on pp124, 227 of the book [Ovidiu Furdui; Limits, Series, and
Fractional Part Integrals, Springer 2013] we have

∞∑
n=0

fn(0)

(
ex − 1− x− x2

2!
− · · · − xn

n!

)
=

∫ x

0
ex−tf(t)dt.

Hence,

e−x
∞∑
n=k

(−1)n
(
n

k

)(
ex − 1− x− x2

2!
− · · · − xn

n!

)
=

(−1)k

k!

∫ x

0
e−2ttkdt

=
(−1)k

2k+1k!

∫ 2x

0
e−ttkdt.

Now our result for the limit follows from the well-known fact that

∫ ∞
0

e−ttkdt = k!.

Also solved by Moti Levy, Rehovot, Israel; Anna V. Tomova, Varna, Bulgaria, and
the proposer.

Editor’s Comment: In Anna’s solution to 5456 she acknowledged contributing conversations
with Peter Breuer and Joachim Domsta of Bulgaria.
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