
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
April 15, 2010

• 5098: Proposed by Kenneth Korbin, New York, NY

Given integer-sided triangle ABC with 6 B = 60◦ and with a < b < c. The perimeter of
the triangle is 3N2 + 9N + 6, where N is a positive integer. Find the sides of a triangle
satisfying the above conditions.

• 5099: Proposed by Kenneth Korbin, New York, NY

An equilateral triangle is inscribed in a circle with diameter d. Find the perimeter of the
triangle if a chord with length d− 1 bisects two of its sides.

• 5100: Proposed by Mihály Bencze, Brasov, Romania

Prove that
n∑

k=1

√
k

k + 1

(
n

k

)
≤

√
n(2n+1 − n)2n−1

n + 1

• 5101: Proposed by K. S. Bhanu and M. N. Deshpande, Nagpur, India

An unbiased coin is tossed repeatedly until r heads are obtained. The outcomes of the
tosses are written sequentially. Let R denote the total number of runs (of heads and
tails) in the above experiment. Find the distribution of R.

Illustration: if we decide to toss a coin until we get 4 heads, then one of the possibilities
could be the sequence T T H H T H T H resulting in 6 runs.

• 5102: Proposed by Miquel Grau-Sánchez and José Luis Dı́az-Barrero, Barcelona, Spain

Let n be a positive integer and let a1, a2, · · · , an be any real numbers. Prove that

1
1 + a2

1 + . . . + a2
n

+
1

FnFn+1

(
n∑

k=1

akFk

1 + a2
1 + . . . + a2

k

)2

≤ 1,

where Fk represents the kth Fibonacci number defined by F1 = F2 = 1 and for
n ≥ 3, Fn = Fn−1 + Fn−2.

• 5103: Proposed by Roger Izard, Dallas, TX

A number of circles of equal radius surround and are tangent to another circle. Each of
the outer circles is tangent to two of the other outer circles. No two outer circles
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intersect in two points. The radius of the inner circle is a and the radius of each outer
circle is b. If

a4 + 4a3b− 10a2b2 − 28ab3 + b4 = 0,

determine the number of outer circles.

Solutions

• 5080: Proposed by Kenneth Korbin, New York, NY

If p is a prime number congruent to 1 (mod 4), then there are positive integers a, b, c,
such that

arcsin
(

a

p3

)
+ arcsin

(
b

p3

)
+ arcsin

(
c

p3

)
= 90◦.

Find a, b, and c if p = 37 and if p = 41, with a < b < c.

Solution 1 by Paul M. Harms, North Newton, KS

The equation in the problem is equivalent to

arcsin
(

a

p3

)
+ arcsin

(
b

p3

)
= 90◦ − arcsin

(
c

p3

)
.

Taking the cosine of both sides yields

(p6 − a2)1/2(p6 − b2)1/2

p6
− ab

p6
=

c

p3
.

(p6 − a2)1/2(p6 − b2)1/2 − ab = cp3.

Since p3 is a factor on the right side I made some assumptions on a and b so that the
left side also had p3 as a factor.
Assume a = p2a1 and b = pb1 where all numbers are positive integers. Then we have

c = (p2 − a1)1/2(p4 − b2
1)

1/2 − a1b1.

I then looked for perfect squares for (p2 − a2
1) and (p4 − b2

1).

When p = 37, (372 − a2
1) = (37− a1)(37 + a1) and a1 = 12 yields a product of the

squares 25 and 49.
When p = 37, (374 − b2

1) = (372 − b1)(372 + b1).

I checked for a number b1 where both (372 − b1) and(372 + b1) were perfect squares. The
numbers b1 which make (372 − b1) a square are

0, 37 + 36 = 73, 73 + (36 + 35) = 144, 144 + (35 + 34) = 213, · · · .

When b1 = 840, both factors involving b1 are perfect squares.

When p = 37 a result is a = (12)372 = 16428, b = 840(37) = 31080 and c = 27755.

Since the problem conditions state that a < b < c, I will switch notation. One answer is

a = 16428, b = 27755, and = 31080
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with approximate angles 18.925◦, 33.226◦ and 37.849◦.

When p = 41, (41− a1)(41 + a1) is a perfect square when a1 = 9 or 40. The product
(412 − b1)(412 + b1) is a perfect square when b1 = 720. One answer is

a = 9(412) = 15129, b = 720(41) = 29520 and c = 54280

with approximate angles 12.757◦, 25, 361◦, and 51.959◦.

When a1 = 40 and b1 = 720, c was less than zero so this did not satisfy the problem.

Solution 2 by Tom Leong, Scotrun, PA

Fermat’s Two-Square Theorem implies that every prime congruent to 1 mod 4 can be
represented as the sum of two distinct squares. We give a solution to the following
modest generalization. Suppose the positive integer n is the sum of two distinct squares,
say, n = x2 + y2 with 0 < x < y. Then a solution to

arcsin
A

n
+ arcsin

B

n2
+ arcsin

C

n3
= 90◦

in positive integers A,B, C is

(A,B, C) =



(s, 2st, 2(xs + yt)(xt− ys)) if 1 <
y

x
<
√

3

(t, t2 − s2, 2(xs + yt)(ys− xt)) if
√

3 <
y

x
< 1 +

√
2

(s, s2 − t2, (xs + yt)2 − (ys− xt)2) if 1 +
√

2 <
y

x
< 2 +

√
3

(t, 2st, (ys− xt)2 − (xs + yt)2) if
y

x
> 2 +

√
3

where s = y2 − x2 and t = 2xy.
We can verify this as follows. Since arcsin(A/n) + arcsin(B/n2) and arcsin(C/n3) are
complementary,

tan
(

arcsin
A

n
+ arcsin

B

n2

)
= cot

(
arcsin

C

n3

)
.

Using the angle sum formula for tangent and tan(arcsin z) = z/
√

1− z2, this reduces to

A
√

n4 −B2 + B
√

n2 −A2

√
n2 −A2

√
n4 −B2 −AB

=
√

n6 − C2

C
.

Now verifying the solutions is straightforward using the following identities

n = x2 + y2, n2 = s2 + t2, n3 = (xs + yt)2 + (ys− xt)2

and the following inequalities

y

x
<
√

3 ⇔ ys < xt,
y

x
< 1 +

√
2 ⇔ s < t,

y

x
< 2 +

√
3 ⇔ ys− xt < xs + yt.

As for the original problem, for n = 37, since 37 = 12 + 62, we have
x = 1, y = 6, s = 35, t = 12 which gives

arcsin
12
37

+arcsin
840
372

+arcsin
27755
373

= arcsin
16428
373

+arcsin
31080
373

+arcsin
27755
373

= 90◦.
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For n = 41, since 41 = 42 + 52, we have x = 4, y = 5, s = 9, t = 40 which gives

arcsin
9
41

+arcsin
720
412

+arcsin
54280
413

= arcsin
15129
413

+arcsin
29520
413

+arcsin
54280
413

= 90◦.

Comment by editor: David Stone and John Hawkins of Statesboro, GA
developed equations:

b =

√
p3(p3 − c)

2

a =
−bc +

√
b2c2 + p6 (p6 − b2 − c2)

p3
.

Using Matlab they found four solutions for p = 37,

a = 16428 b = 27755 c = 31080
a = 3293 b = 32157 c = 36963
a = 7363 b = 27188 c = 38332
a = 352 b = 25123 c = 43808

and two solutions for p = 41,

a = 15129 b = 29520 c = 54280
a = 5005 b = 31529 c = 58835.

Also solved by Brian D. Beasley, Clinton, SC, and the proposer.

• 5081: Proposed by Kenneth Korbin, New York, NY

Find the dimensions of equilateral triangle ABC if it has an interior point P such that
PA = 5, PB = 12, and PC = 13.

Solution 1 by Kee-Wai Lau, Hong Kong, China

Let the length of the sides of the equilateral triangle be x. We show that

x =
√

169 + 60
√

3.

Applying the cosine formula to triangles APB, BPC, and CPA respectively, we obtain

cos 6 APB =
169− x2

120
, cos 6 BPC =

313− x2

312
, cos 6 CPA =

194− x2

130
.

Since

6 APB + 6 BPC + 6 CPA = 360◦ so

cos 6 CPA = cos(6 APB + 6 BPC) and

sin 6 APB sin 6 BPC = cos 6 APB cos 6 BPC − cos 6 CPA.

Hence,(√
338x2 − x4 − 14161

120

)(√
626x2 − x4 − 625

312

)
=

(
169− x2

120

)(
313− x2

312

)
− 194− x2

130
or
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√
338x2 − x4 − 14161

√
626x2 − x4 − 625 = (169− x2)(313− x2)− 288(194− x2).

Squaring both sides and simplifying, we obtain

576x6 − 194668x4 + 10230336x2 = 0 or

576x2(x4 − 338x2 + 17761) = 0.

It follows that x =
√

169− 60
√

3,
√

160 + 60
√

3. Since 6 APB, 6 BPC, 6 CPA are not

all acute, the value of
√

169− 60
√

3 must be rejected.

This completes the solution.

Comments and Solutions 2 & 3 by Tom Leong, Scotrun, PA

Comments: This problem is not new and has appeared in, e.g., the 1998 Irish
Mathematical Olympiad and T. Andreescu & R. Gelca, Mathematical Olympiad
Challenges, Birkhäuser, 2000, p5. A nice elementary solution to this problem uses a
rotation argument (Solution 2 below). A quick solution to a more general problem can
be found using a somewhat obscure result of Euler on tripolar coordinates (Solution 3
below).
Solution 2
Rotate the figure about the point C by 60◦ so that B maps onto A. Let P ′ denote the
image of P under this rotation. Note that triangle PCP ′ is equilateral since PC = P ′C
and 6 PCP ′ = 60◦. So 6 P ′PC = 60◦. Furthermore, since PP ′ = 13, triangle APP ′ is a
5-12-13 right triangle. Consequently,

cos 6 APC = cos( 6 APP ′ + 60◦) =
5
13
· 1
2
− 12

13
·
√

3
2

=
5− 12

√
3

26
.

So by the Law of Cosines,

AC =

√
52 + 132 − 2 · 5 · 13 · 5− 12

√
3

26
=
√

169 + 60
√

3

Solution 3
A generalization follows from a result of Euler on tripolar coordinates (see, e.g., van
Lamoen, Floor and Weisstein, Eric W. “Tripolar Coordinates” From MathWorld–A
Wolfram Web Resource.
http://mathworld.wolfram.com/TripolarCoordinates.html.) Suppose triangle
ABC is equilateral with side length s, and P is a point in the plane of ABC. The triple
(x, y, z) = (PA,PB,PC) is the tripolar coordinates of P in reference to triangle ABC.
A result of Euler implies these tripolar coordinates satisfy

s4 − (x2 + y2 + z2)s2 + x4 + y4 + z4 − x2y2 − y2z2 − z2x2 = 0

which gives the positive solutions

s =

√
x2 + y2 + z2 ±

√
(x2 + y2 + z2)2 − 2(x− y)2 − 2(y − z)2 − 2(z − x)2

2
.
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The larger solution refers to the case where P is interior to the triangle, while the smaller
solution refers to the case where P is exterior to the triangle. In the case where (x, y, z)
is a Pythatgorean triple with x2 + y2 = z2, this simplifies to the surprisingly terse

s =
√

z2 ± xy
√

3.

In the original problem, with (x, y, z) = (5, 12, 13), we find

s =
√

169± 60
√

3

with the larger solution s =
√

169 + 60
√

3 being the desired answer.

A conjecture by David Stone and John Hawkins, Statesboro, GA

If a, b, c form a right triangle with a2 + b2 = c2, then

1. the side length of the unique equilateral triangle ABC having an interior point P

such that PA = a, PB = b, and PC = c is s
√

c2 + ab
√

3, and

2. the side length of the unique equilateral triangle with an exterior point P satisfying

PA = a, PB = b, and PC = c is s
√

c2 − ab
√

3.

Also solved by Scott H. Brown, Montgomery, AL; Valmir Bucaj (student,
Texas Lutheran University), Seguin, TX; Pat Costello, Richmon, KY; Paul
M. Harms, North Newton, KS; Antonio Ledesma López, Requena-Valencia,
Spain; David E. Manes, Oneonta, NY; Charles McCracken, Dayton, OH;
John Nord, Spokane, WA; Boris Rays, Brooklyn, NY; Armend Sh. Shabani,
Republic of Kosova; David Stone and John Hawkins, Statesboro, GA, and
the proposer.

• 5082: Proposed by David C. Wilson, Winston-Salem, NC

Generalize and prove:

1
1 · 2

+
1

2 · 3
+ · · ·+ 1

n(n + 1)
= 1− 1

n + 1
1

1 · 2 · 3
+

1
2 · 3 · 4

+ · · ·+ 1
n(n + 1)(n + 2)

=
1
4
− 1

2(n + 1)(n + 2)
1

1 · 2 · 3 · 4
+

1
2 · 3 · 4 · 5

+ · · ·+ 1
n(n + 1)(n + 2)(n + 3)

=
1
18
− 1

3(n + 1)(n + 2)(n + 3)
1

1 · 2 · 3 · 4 · 5
+ · · ·+ 1

n(n + 1)(n + 2)(n + 3)(n + 4)
=

1
96
− 1

4(n + 1)(n + 2)(n + 3)(n + 4)

Solution 1 by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy

We will give two different proofs, each relies on the telescoping property.

First proof:

Our quantity may be written as
n∑

k=1

1
k(k + 1) · · · (k + m)

where m is a positive integer.

Next we observe
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1
k(k + 1) · · · (k + m− 1)

− 1
(k + 1) · · · (k + m)

=
m

k(k + 1) · · · (k + m)

yielding, also by telescoping,

n∑
k=1

1
k(k + 1) · · · (k + m)

=
1
m

n∑
k=1

(
1

k(k + 1) · · · (k + m− 1)
− 1

(k + 1) · · · (k + m)

)

=
1
m

(
1
m!

− 1
(n + 1) · · · (n + m)

)

Second proof:

If ak =
1

k(k + 1) · · · (k + m)
, then

ak+1

ak
=

k · (k + 1) · · · (k + m)
(k + 1)(k + 2) · · · (k + m)

=
k

k + 1 + m

and then mak = kak − (k + 1)ak+1 and therefore

m
n∑

k=1

ak = m
n−1∑
k=0

ak+1 = m
n−1∑
k=0

(kak − (k + 1)ak+1)

=
1
m!

− 1
(n + 1)(n + 2) · · · (n + m)

and the result is immediate.

Solution 2 by G. C. Greubel, Newport News, VA

It can be seen that all the series in question are of the form

Sm
n =

n∑
k=1

(k − 1)!
(k + m)!

.

Making a slight change we have

Sm
n =

1
m!

n∑
k=1

(k − 1)!m!
(k + m)!

=
1
m!

n∑
k=1

B(k, m + 1),

where B(x, y) is the Beta function. By using an integral form of the Beta function,
namely,

B(x, y) =
∫ 1

0
tx−1(1− t)y−1dt,

the series becomes

Sm
n =

1
m!

n∑
k=1

∫ 1

0
tm(1− t)k−1dt

=
1
m!

∫ 1

0
tm(1− t)−1 · (1− t)(1− (1− t)n)

t
dt

=
1
m!

∫ 1

0
tm−1(1− (1− t)n)dt
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=
1
m!

(∫ 1

0
tm−1dt−B(n + 1,m)

)

=
1
m!

(
1
m
−B(n + 1,m)

)

=
1
m

[
1
m!

− n!
(n + m)!

]
.

The general result is given by

n∑
k=1

(k − 1)!
(k + m)!

=
1
m

[
1
m!

− n!
(n + m)!

]
.

As examples let m = 1 to obtain

n∑
k=1

1
k(k + 1)

= 1− 1
n + 1

and when m = 2 the series becomes

n∑
k=1

1
n(n + 1)(n + 2)

=
1
4
− 1

2(n + 1)(n + 2)
.

The other series follow with higher values of m.

Comments by Tom Leong, Scotrun, PA

This series is well-known and has appeared in the literature in several places. Some
references include

1. Problem 241, College Mathematics Journal (Nov 1984, p448–450)

2. Problem 819, College Mathematics Journal (Jan 2007, p65–66)

3. K. Knopp, Theory and Application of Infinite Series, 2nd ed., Blackie & Son, 1951,
p233

4. D.O. Shklarsky, N.N. Chentzov, and I.M. Yaglom, The USSR Olympiad Problem
Book, W.H. Freeman and Company, 1962, p30

In the first reference above, four different perspectives on this series are given.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie
(jointly), San Angelo, TX; Paul M. Harms, North Newton, KS; N. J.
Kuenzi, Oshkosh, WI; Kee-Wai Lau, Hong Kong, China; Antonio Ledesma
López, Requena-Valencia, Spain; Tom Leong, Scotrun, PA; David E. Manes,
Oneonta, NY; Boris Rays, Brooklyn, NY; Raúl A. Simón, Santiago, Chile;
Armend Sh. Shabani, Republic of Kosova; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposer.

• 5083: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let α > 0 be a real number and let f : [−α, α] → < be a continuous function two times
derivable in (−α, α) such that f(0) = 0 and f ′′ is bounded in (−α, α). Prove that the
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sequence {xn}n≥1 defined by

xn =


n∑

k=1

f

(
k

n2

)
, n >

1
α

;

0, n ≤ 1
α

is convergent and determine its limit.

Solution 1 by Michael N. Fried, Kibbutz Revivim, Israel

Clearly, for n large enough, we will have n >
1
α

. Therefore, we only need to show that
n∑

k=1

f

(
k

n2

)
converges and to find its limit as n →∞.

Since f(0) = 0 and f ′(x) exist in [0, k/n2] ⊂ [0, 1/n] ⊂ [−α, α], there is some

ξk ∈ [0, k/n2] such that f

(
k

n2

)
= f ′ (ξk)

k

n2
by the mean value theorem.

Let f ′(Mn) =maxkf
′(ξk) and f ′(mn) =minkf

′(ξk).

Then, since
n∑

k=1

f

(
k

n2

)
=

n∑
k=0

f ′(ξk)
k

n2
, we have:

f ′(mn)
n∑

k=1

k

n2
≤

n∑
k=1

f

(
k

n2

)
≤ f ′(Mn)

n∑
k=1

k

n2
, or

f ′(mn)
(

1
2

+
1
2n

)
≤

n∑
k=1

f

(
k

n2

)
≤ f ′(Mn)

(
1
2

+
1
2n

)
.

But f ′ is bounded in [−α, α] and, thus, in every subinterval of [−α, α]. Therefore, f ′ is
continuous in every subinterval of [−α, α]. Hence,

lim
n→∞

f ′(mn) = lim
n→∞

f ′(Mn) = f ′(0), so that

lim
n→∞

n∑
k=1

f

(
k

n2

)
=

f ′(0)
2

Heuristically, we can approach the problem in a slightly different way. Keeping in mind
that f(0) = 0, write:

n∑
k=1

f

(
k

n2

)
= n2

n∑
k=0

(
k

n
× 1

n

)
1
n2

≈ n2
∫ 1

n

0
f (ξ) dξ.

The approximation become exact as n →∞ (this is the heuristic part!)
Since f ′ is bounded in (0, α) (being bounded in (−α, α)), and since f(0) = 0 we can
write, for some s ∈ (0, 1/n):

n2
∫ 1

n

0
f(ξ)dξ = n2

∫ 1
n

0

(
f ′(0)ξ +

f ′′(s)
2

ξ2
)

dξ
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= n2
(

f ′(0)
2

1
n2

+
f ′′(s)

6
1
n3

)

=
f ′(0)

2
+

f ′′(s)
6

1
n

=
f ′(0)

2
as n →∞.

Solution 2 by Ovidiu Furdui, Cluj, Romania

The limit equals
f ′(0)

2
.

We have, since f(0) = 0, that for all n >
1
α

one has

xn =
n∑

k=1

f

(
k

n2

)
=

n∑
k=1

(
f

(
k

n2

)
− f(0)

)

=
n∑

k=1

k

n2
f ′ (θk,n)

=
n∑

k=1

k

n2

(
f ′(θk,n)− f ′(0)

)
+

n∑
k=1

k

n2
f ′(0)

=
n∑

k=1

k

n2
θk,nf ′′(βk,n) +

f ′(0)(n + 1)
2n

. (1)

We used, in the preceding calculations, the Mean Value Theorem twice where

0 < βk,n < θk,n <
k

n2
. Now,∣∣∣∣ n∑

k=1

k

n2
θk,nf ′′(βk,n)

∣∣∣∣≤ M
n∑

k=1

k

n2
θk,n ≤ M

n∑
k=1

k2

n4
= M

(n + 1)(2n + 1)
6n3

,

where M = sup
x∈(−α,α)

|f ′′(x)|. Thus,

lim
n→∞

n∑
k=1

k

n2
θk,nf ′′(βk,n) = 0. (2)

Combining (1) and (2) we get that the desired limit holds and the problem is solved.

Also solved by Dionne Bailey, Elsie Campbell and Charles Diminnie (jointly),
San Angelo, TX; Tom Leong, Scotrun, PA; Paolo Perfetti, Department of
Mathematics, Tor Vergata Universtiy, Rome, Italy, and the proposer.

• 5084: Charles McCracken, Dayton, OH
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A natural number is called a “repdigit” if all of its digits are alike.
Prove that regardless of positive integral base b, no natural number with two or more
digits when raised to a positive integral power will produce a repdigit.

Comments by David E. Manes, Oneonta, NY; Michael N. Fried, Kibbutz
Revivim, Israel, the proposer, and the editor.

Manes: The website <http://www.research.att.com/ njas/sequences/A158235> appears
to have many counterexamples to problem 5084.
Editor: Following are some examples and comments from the above site.

11, 20, 39, 40, 49, 78, 133, 247, 494, 543, 1086, 1218,

1651, 1729, 2172, 2289, 2715, 3097, 3258, 3458, 3801,

171, 4344, 4503, 4578, 4887, 5187, 5430, 6194, 6231.

(And indeed, each number listed above can be written as repdigit in some base. For
example:)

112 = 11111 in base 3
202 = 1111 in base 7
392 = 333 in base 22
402 = 4444 in base 7
492 = 777 in base 18
782 = (12)(12)(12) in base 22

12182 = (21)(21)(21)(21) in base 41

McCracken: When I wrote the problem I intended that the number and it’s power be
written in the same base.

Editor: Charles McCracken sent in a proof that was convincing to me that the
statement, as he had intended it to be, was indeed correct. No natural number with two
or more digits (written in base b), when raised to a positive integral power, will produce
a repdigit (in base b). I showed the problem, its solution, and Manes’ comment, to my
colleague Michael Fried, and he finally convinced me that although the intended
statement might be true, the proof was in error.

Fried: The Sloan Integer Sequence site (mentioned above) also cites a paper which
among other things, refers to Catalan’s conjecture, now proven, stating that the only
solution to xk − yn = 1 is 32 − 23 − 9− 8 = 1. This is the fact one needs to show that
Charles’ claim is true for base 2 repdigits. For in base 2 only numbers of the form
11111 . . . 1 are repdigits. These numbers are equal to 2n − 1. So if one of these numbers
were equal to xk, we would have 2n − 1 = xk or 2n − xk = 1. But by the proven Catalan
conjecture, the latter can never be satisfied.

Editor: So, dear readers, let’s rephrase the problem: Prove or disprove that regardless of
positive integral base b, no natural number with two or more digits when raised to a
positive integral power will produce a repdigit in base b.
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• 5085: Proposed by Valmir Krasniqi, (student, Mathematics Department,) University of
Prishtinë, Kosova

Suppose that ak, (1 ≤ k ≤ n) are positive real numbers. Let ej,k = (n− 1) if j = k and
ej,k = (n− 2) otherwise. Let dj,k = 0 if j = k and dj,k = 1 otherwise.

Prove that
n∏

j=1

n∑
k=1

ej,ka
2
k ≥

n∏
j=1

( n∑
k=1

dj,kak

)2

.

Solution by proposer

On expanding each side and reducing, the inequality becomes

n∏
k=1

[
(n− 2)S + a2

k

]
≥

n∏
k=1

(T − ak) , where

S =
n∑

k=1

a2
k and T =

n∑
k=1

ak.

Since (T − a1)2 ≤ (n− 1)(S − a2
1), etc., it suffices to prove that

n∏
k=1

[
(n− 2)S + a2

k

]
≥ (n− 1)n

n∏
k=1

(S − ak) . (1)

If we now let xk = S − a2
k where k = 1, 2, 3, . . . , n so that S =

x1 + x2 + . . . + xn

n− 1
and

a2
k = S − xk, then (1) becomes

n∏
k=1

(
S

′ − xk

)
≥ (n− 1)n · x1 · x2 · . . . · xn, where S

′
=

n∑
k=1

xk .

The result now follows by applying the AM-GM inequality to each of the factors
(S

′ − xk) on the left hand side. There is equality if, and only if, all the ak’s are equal.

Also solved by Tom Leong, Scotrun, PA
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