Problems Ted Eisenberg, Section Editor
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This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

Solutions to the problems stated in this issue should be posted before
April 15, 2012

e 5194: Proposed by Kenneth Korbin, New York, NY

Find two pairs of positive integers (a, b) such that,

14 a b
— 4+ -+ — =141.
a +b+14

e 5195: Proposed by Kenneth Korbin, New York, NY

If N is a prime number or a power of primes congruent to 1 (mod 6), then there are
positive integers a and b such that 3a? + 3ab + b*> = N with (a,b) = 1.

Find a and b if N = 2011, and if N = 20112, and if N = 20113.

e 5196: Proposed by Neculai Stanciu, Buzau, Romania

Determine the last six digits of the product (2010) (5201).

e 5197: Proposed by Pedro H. O. Pantoja, UFRN, Brazil

Let x,y, z be positive real numbers such that z? 4+ y? + 22 = 4. Prove that,

1 1 1 1

< —.
6—$2+6—y2+6—22 ~ 1Yz

e 5198: Proposed by José Luis Diaz-Barrero, Barcelona, Spain

Let m,n be positive integers. Calculate,

2n m

ZH(Lk+;j+a+z‘>_l,

k=1i=0
where a is a nonnegative number and |x| represents the greatest integer less than or
equal to x.

e 5199: Proposed by Ovidiu Furdui, Cluj, Romania
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Let k£ > 0 and n > 0 be real numbers. Calculate,

/le”ln(\/lJr:ck\/lxk)dx.

Solutions

e 5176: Proposed by Kenneth Korbin, New York, NY
Solve:

Y2+ yz + 22 =42

{:v2+xy—|—y2—32
22+ xz + 2% =52

Solution 1 by Albert Stadler, Herrliberg, Switzerland
Let

B=vy*+yz+22-16

{A:x2+my—|—y2—9
C=z224+224+22-25

By assumption A= B=C =0. So,0=A+ B —C = 2y +yz — xz + 2y? or equivalently
z(x —y) = y(x + 2y). Obviously = # vy, since if x =y then 0 = B = 22 + 2 + 2> — 16
and 0 = C' = 22 + 2z + x® — 25 which is a contradiction. So,

_y(z+2y)
=, (1)

We insert this value of z into the equation B = 0 and obtain

6 — f+y,mx+%ﬁ+<y®+2m>2
T -y T -y
_ o @yl @yt 2) + (@ 4 2)°
(z —y)?
9 22 = 2xy + y? + 2% + xy — 2y% + 2% + day + 49?
- (z —y)?
o 3x2+3xy+3y3_ 2712
I R R R o

So,

Az —y) =+3V3y  or equivalently,

xz(l—i—gzx/g)y orac:(l—?)zl/g)y. (2)



A = 0 then implies

{<1i3f> +<1i3>1/§>+1}y2:9.

Taking into account (1) and (2) we conclude that

y2) € {( 9443 13 4(4+\/§))
. \/25+12\/§’ \/25+12\/§’\/25+12\/§ ’

9443 43 _4(4+\/§))
JB412v3 (s 412v3 (s +12v8)

( —9+43 W3 4413 )
\/25 —12v3 \/25 —12v3 \/25 —12v3)

( 9-4v3 _4V3 44 —3) )}
\/25 —12v3 \/25 —12v3 \/25 —-12V3

The system of equations in the statement of the problem has an interesting geometric
interpretation. Let ABC be a triangle all of whose angles are smaller than 120°. The
Fermat point (or Torricelli point) of the triangle ABC' is a point P such that the total
distance from the three vertices of the triangle to the point is the minimum possible (see
http://en.wikipedia.org/wiki/Fermat point).

Let AB=¢,BC=a,CA=b,AP =2,BP =y,CP = z. Then
/APB = /APC = /BPC =120° and

?+ay+yt = &
y2+yz+22 = a2,
2 taz+2° = b2

by the law of cosines. So x,y and z are the distances from the three vertices of the
triangle to the Fermat point of the triangle.
e Solution 2 by José Luis Diaz-Barrero, Barcelona, Spain

Subtracting the equations term by term, we obtain

(22 —y?) + 2(z —y) =9, (z—y)(z+y+z)=09,

(22 =2 +y(x —2) = T, (x—2)(z+y+2)=-T.
Putting u = x + y + 2z, then we obtain (z —y)u =9 and (z — 2)u = —7. Adding both

u? + 2
U

equations yields (3z — (z + y + z))u = 2 from which follows z =

. Likewise, we
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u? — 25 w423

obtain y = ,and z =

. Substituting the values of z,y, z into one of the

u U
equations of the given system, yields
2 2 2 2 2 2
u” 4+ 2 n u” 42 u® — 25 n u® — 25 _ 32
3u 3u 3u 3u N

3ut — 150u® + 579 = 0.

or equivalently,

Solving the preceding equation, we have the solutions:

+1/25 —12v/3, +£1/25+12V/3.

Substituting these values in the expressions of x,y, z yields four triplets of solutions for
the system. Namely,

(x1,y1, Zl) =

( 27 —12V/3 —4v/3 48 — 12v/3 )
3\/25 —12v3 \/25 —12v3 3\/25 - 123

(1.009086173, —3.374440097, 4.418495493)

27 — 12V/3 43 48 — 124/3 )

(2,2, 22) = (3\/25_12\/ \/25—12\f 3\/257

= (—1.009086173,3.374440097, —4.418495493)

27 + 123 13 48+ 123 )

($37y37 23) = ( > )
3\/25 +12v3 \/25 +12v3 3\/25 - 12V3
(2.354003099, 1.023907822, 3.388521646)

27 +12/3 43 48+ 1243 )

@ pn2) = (3\/25+12f Vo 12v3 3251243

= (—2.354003099, —1.023907822, —3.388521646)

Also solved by Arkady Alt, San Jose, CA; Bruno Salgueiro Fanego, Viveiro,
Spain; Paul M. Harms, North Newton, KS; Enkel Hysnelaj, University of
Technology, Sydney, Australia jointly with Elton Bojaxhiu, Kriftel,
Germany; Kee-Wai Lau, Hong Kong, China; Paolo Perfetti, Department of
Mathematics, University “Tor Vergata,” Rome, Italy; Boris Rays, Brooklyn,
NY; Titu Zvonaru, Comanesti, Romania jointly with Neculai Stanciu,
Buzau, Romania, and the proposer.



e 5177: Proposed by Kenneth Korbin, New York, NY
A regular nonagon ABCDEFGHI has side 1.
Find the area of AACF.

Solution 1 by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie,
San Angelo, TX

We begin with the following known facts:
1. Each angle in a regular nonagon is 140°.
2. cos 140° = cos(180° — 40°) = — cos 40°.
3. cos 100° = — cos 80°.
4. 14 cos20 = 2cos? 6.
5. A= %absinC in AABC.

Hence, AABC = AHITA = AHGF by SAS. Using Fact 1, since /B = /I = /G = 140°,
it follows that /BAC = /IAH = /IHA=/GHF = /GFH = 20°. Thus,

LAHF =100°. Since AAHF is an isosceles triangle, /HAF = /HF A = 40°.
Therefore, /CAF = 60°. In AABC, using the Law of Cosines and Facts 2 and 4,

AC? = 141 —2cos140°
2(1 — cos 140°)
2(1 + cos 40°)
4cos?20° Then,
AC = 2co0s20°.

Similarly, since AC = HA = HF = 2cos 20°, using the Law of Cosines and Facts 3 and
4in AHAF,

AF? = (2¢0820°)? + (208 20°)% — 2(2 cos 20°)? cos 100°
= 8cos?20°(1 — cos 100°)
= 8cos?20°(1 + cos 80°)
= 16cos® 20° cos® 40° Thus,
AF = 4cos?20°cos40°.

In AACF, using Fact 5,

1
A = 5(AC)(AF) sin 60°
1 3
= 5(2 c0s20°)(4 cos 20° cos 40°) ({)
= 2v/3cos?20° cos 40°
~ 2.343237.

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

Denote the circumcenter and the circumradius of the nonagon by O and r, respectively.



The nonagon can be oriented within the Cartesian plane so that its vertices are

A (rcos0°, rsin0°) B (r cos40°, r sin 40°) C (7 cos80°,rsin 80°)
D (rcos120°,rsin120°)  E (rcos 160°,7sin 160°)  F (r cos 200°, r sin 200°)

G (7 c0s240°,rsin 240°)  H (r cos 280°, 7 sin 2800°) I (r cos 320°, r sin 320°) .

Then,

12=4B" = (r cos40° — r cos 0°)? 4 (rsin 40° — rsin 0°)?

2
= r? (cos2 40° — 2cos 40° + 1 + sin? 40°)

1

= 2r%(1 — cos40° P
(1 —cos40°) = r (1 = cos 40°)

The area of AACEF is

1 1 1
1
[AACF| = 3 det | » 1cos80° rcos200°
0 rsin80° rsin200°
1 2 [ o 2 : o 2 o .z o 2 . o
= 3 7 cos 80 sin 200° + r“ sin 80° — r“ cos 200° sin 80 — r“ sin 200
1 2 o _: o . o o 2 : o 2 - o
= 5 (cos 80° sin 200° — sin 80° cos 200°) + 7“sin 80° — 7~ sin 200

2

% |(sin(200° — 80°) + sin 80° — sin 200°|

1
= T cosd07) |sin 120° + sin 80° — sin 200°|

2.343237.

Q

Solution 3 by Kee-Wai Lau, Hong Kong, China

It is easy to check that /BAC = 20°, /IAF = /FAC = 60° and AC = 2 cos 20°.
Suppose that the perpendicular from I to AF meets AF at J, the perpendicular from H
to AF meets AF at K, and the perpendicular from I to HK meets HK at L. Then
[HIL = 20° and

AF =2(AJ 4+ JK) =2(AJ + 1L) = 2(cos60° + cos20°) = 1 + 2 cos 20°.
Hence the area of AACF equals

(AC)(AF)sin LFAC
2




c0s 20°(1 + 2 cos 20°)v/3
2

(1 + cos 20° + cos 40°)v/3
2

\/5(1 + /3 cos 10°)
2

2.343237.

Q

Solution 4 by proposer

sin 40° - sin 60° - sin 80°

Area of NACF = —
2sin” 20°

- \1/63 [3 tan2 70° — 1}

2.343237.

Q

Comment by editor: Sines and cosines of angles of 10°,20°,40° and their complements
often appear in the above solutions. David Stone and John Hawkins of
Statesboro, GA noted in their solution that: “It may be possible to express the result
(v/3cos40° (1 + cos40°)) in terms of radicals, even though cos40° itself cannot be
expressed in terms of surds; it (along with sin 10° and —sin 70°) is a zero of the famous
casus irreducibilis cubic 823 — 6z + 1 = 0.”

Also solved by Scott H. Brown, Montgomery, AL; Brian D. Beasley, Clinton,
SC; Kenneth Day and Michael Thew (jointly, students at Saint George’s
School), Spokane, WA; Paul M. Harms, North Newton, KS; Enkel Hysnelaj,
University of Technology, Sydney, Australia jointly with Elton Bojaxhiu,
Kriftel, Germany; David E. Manes, Oneonta, NY; Charles McCracken,
Dayton, OH; John Nord, Spokane, WA; Boris Rays, Brooklyn, NY, and
Albert Stadler, Herrliberg, Switzerland.

5178: Proposed by Neculai Stanciu, Buzau, Romania

Prove: If z,y and z are positive real numbers such that zyz > 7 + 5v/2, then

24P+ -2 +y+2)>3

Solution 1 by Albert Stadler, Herrliberg, Switzerland

By the AM-GM inequality, % > Yryz > \3/ 7+5V2 =14 2. Let
f(x) =2% — 2z — 1. f(x) is a convex function that is monotonically increasing for = > 1.
By Jensen’s inequality,

Pyt +2 2@+ y+2)-3= f(x)+f(y)+f(z) > 3f (mﬂgﬂ) >3f (1 + \/5) =0.
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Solution 2 by David E. Manes, Oneonta, NY

Note that for positive real numbers if x > 1 + /2, then (z — 1)? > 2 with equality if and
only if z = 1 + /2. Therefore, if x,y,z > 1 4+ v/2, then zyz > 7+ 5v/2 and

(x —1)2+ (y — 1)2 + (2 — 1)2 > 6. Expanding this inequality yields

2?24+ + 2% - 2(x +y + 2) > 3 with equality if and only if x =y = 2 = 1 + /2.

Solution 3 by Paolo Perfetti, Department of Mathematics, University “Tor
Vergata,” Rome, Italy

(x+y+2)?

We know tht 22 + y? + 22 > thus the inequality is implied by

S2-6S—-9>0, S=z+y+z

yielding S > 3(1 + v/2). Moreover by the AGM we have S > 3(xyz)"/? > 3(7 + 5v/2)/3,
thus we need to check that 3(7 + 5v/2)1/3 > 3(1 +v/2) or 7+ 5v2 > (1 4 /2)® which is
actually an equality, and we are done.

Also solvled by Arkady Alt, San Jose California; Bruno Salgueiro Fanego,
Viveiro, Spain; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong
Kong, China; Boris Rays, Brooklyn, NY, and the proposer.

e 5179: Proposed by José Luis Diaz-Barrero, Barcelona, Spain

Find all positive real solutions (x1,z2,...,x,) of the system

1+ xo + 11 = /x5 + 76,
o + a3+ 11 = /x3 + 76,
Tn-1+ Vo, + 11 = /x, + 76,

Tp + /11 + 11 = /21 + T6.

Solution by Dionne Bailey, Elsie Campbell, and Charles Diminnie, San
Angelo, TX

If f(t)=+/t+76—+/t+11 on (0,00), then

—_

1 1
’t:( - ) d hence,
£ =3 Vit 16 Jirir) o tnenenee

) 1 11
el = 2(\/t+11 \/t+76)
1
t+1

52
:

<

[\V)
\)

< 1

for t > 0. It follows that f (¢) is a contraction mapping on (0, 0c) and therefore, f (¢) has
a unique fixed point ¢t* € (0,00). Further, it is well-known that for any ¢ € (0, 00), the



sequence defined recursively by ¢; =t and ¢4 = f (tx) for £ > 1 must converge to t*.
By trial and error, we find that t* = 5.

In this problem,

rr = f (1'2),
T2 = f (1,‘3),
Tn—1 — f (xn)a
xn = f(x1).
If we let t; = x1 and define ¢ = f () for k > 1, then (21, 2y, ..., x3,22) is a cycle in
the sequence {t;}. However, as described above, t; — 5 as k — oco. These conditions
force x1 = 9 = -+ = x, = 5 and therefore, this must be the unique solution for this

System.

Also solved by Arkady Alt, San Jose, CA; Scott H. Brown, Montgomery,
AL; Bruno Salgueiro Fanego, Viveiro, Spain; Paul M. Harms, North
Newton, KS; Kee-Wai Lau, Hong Kong, China; Paolo Perfetti, Department
of Mathematics, “Tor Vergata” University, Rome, Italy; Albert Stadler,
Herrliberg, Switzerland; Neculai Stanciu, Buzau Romania, jointly with Titu
Zvonaru, Comanesti, Romania, and the proposer.

5180: Paolo Perfetti, Department of Mathematics, “Tor Vergata” University, Rome,
Ttaly

Let a,b and c be positive real numbers such that a + b + ¢ = 1. Prove that

1+a 1+b 1+¢ 4 4 4
+ + > + + :
be ac ab Va2 +b2—ab VB2+E2—bc a2+ —ac

Solution 1 by Kee-Wai Lau, Hong Kong, China

Multiplying both sides of the desired inequality by abc, we see that it is equivalent to

1 1 1
1+a2—|—b2+02>4abc< + + ) 1
Va2 +b2—ab VB2+E2—bc Va2 +c2—ac (1)

Since
a>4+ 0> —ab=(a—b)?+ab>ab, b +c*—bc>be, a’+c* —ac> ac,
the right hand side of (1) is less than or equal to
4 (Vabe + Vbea + Vead)
< 2((a+b)c+ (b+c)a+ (c+a)b)
= 4(ab+ bc+ ca)

= 2((a+b+c)27a27b2702)



= 2—2(a2+b2+c2).

Now

1\?2 1\? N2 2(a+b+ec) 1 _1
2 2 2
@ e (a 3>+< 3)+<C 3)+ 3 3-8

so that 14 a? +b% +¢* > 2 —2(a® + b + ¢2).

This proves (1) and completes the solution.

Solution 2 by Albert Stadler, Herrliberg, Switzerland.
By the AM-GM inequality,

l+a 14b 1+4c¢ a+a?+b+b>+c+ 2
+ +
be ca ab abe

14 a®+b% + 2
abe

(a+b+c)+a?+ b+
abc

(2a2 + 2be) + (2b% + 2ca) + (2¢? + 2ab)
abc

4a\/%+b\/@+c\/%

abc

Y

4 4
= + )

4
Voo Vea | Vab

The conclusion follows since

1 1
> .
Vi Rty —ay

(Note that this inequality is equivalent to z2 + 32 — 2y > xy which is obviously true.)

Also solved by Arkady Alt, San Jose, CA; Dionne T. Bailey, Elsie M.
Campbell, and Charles Diminnie (jointly), San Angelo, TX; Bruno Salgueiro
Fanego, Viveiro, Spain; David E. Manes, Oneonta, NY; Titu Zvonaru,
Comanesti, Romania jointly with Neculai Stanciu, Buzau, Romania, and the
proposer.

5181: Proposed by Ovidiu Furdui, Cluj, Romania

Calculate:



Solution 1 by Anastasios Kotronis, Athens, Greece The summands being all
positive we can sum by triangles :

= iy g}fn 0He

ZZ - Z (n+m Z

s (nm)! k,6,n€ A k-Ho=n

13X (n—1)n n—l—l 1
- 12! 1S
n=2
1+°°(n —‘_Zld:c”+3
6n—0 6n0 r=1
14 Jiox"H 1d (z3e®)
T 6de \~— n! Jle=1 6 dz le=1
n=0
_ 2e
3

Solution 2 by Arkady Alt, San Jose, CA

1
Let Kk =m+n. Then m = k — n and domain of summation { 1< Z@ can be represented

2<k
as ¢ 1 <n <k—1. Hence,

m=k—n
0o oo oo k—1 00 00 1k—1
NI SR DML IO D
Since
= K2(k—1) (k—1)k(2k—1)
nz::ln(k—n) = 5 - -
= %(3k2—3k—2k2+3k—1)
_ k(F-1)
= 5 ,
then
n§=:1m§=:1 n+m)! 1;2
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- 6,;) k!
1/ 3 &k
= = — 4+ —
s )
11 1& 1
= — 4 =
2;)/-@! 6;::10@—1)'

Il

E

8
=l
7N\
N =
S| =
~

|
W N
ol
Nk
&= =

Solution 3 by the proposer

2e
The series equals 3 First we note that for m > 0 and n > 1 one has that

L n— _ _w
/0$ (1—a)"de = B(m+1,n) = (n+m)
Thus,
> S 53 n 1 ! m n—

— ! s n — n—11 - z"™ T

- [Eatme-) (Serm)
L = n n X

= /0 <1—|-nz::2(n_1)'(1—x) 1>‘:ce dx

= /1 <1 + i u _x)n_l + i C _x)n—1> xetdx
0 n=2 (n 2)' n=2 (n_l)'



and the problem is solved.
Also solved by Kee-Wai Lau, Hong Kong, China; Paolo Perfetti, Department

of Mathematics, “Tor Vergata” University, Rome, Italy, and Albert Stadler,
Herrliberg, Switzerland.
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