Problems

This section of the Journal offers readers an opportunity to exchange interesting mathematical problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics, Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions can be sent e-mail to eisenbt@013.net. Solutions to previously stated problems can be seen at http://www.ssma.org/publications.

Solutions to the problems stated in this issue should be posted before April 15, 2012

- 5194: Proposed by Kenneth Korbin, New York, NY

Find two pairs of positive integers (a, b) such that,

$$
\frac{14}{a}+\frac{a}{b}+\frac{b}{14}=41 .
$$

- 5195: Proposed by Kenneth Korbin, New York, NY

If N is a prime number or a power of primes congruent to $1(\bmod 6)$, then there are positive integers a and b such that $3 a^{2}+3 a b+b^{2}=N$ with $(a, b)=1$.

Find a and b if $N=2011$, and if $N=2011^{2}$, and if $N=2011^{3}$.

- 5196: Proposed by Neculai Stanciu, Buzău, Romania

Determine the last six digits of the product $(2010)\left(5^{2014}\right)$.

- 5197: Proposed by Pedro H. O. Pantoja, UFRN, Brazil

Let x, y, z be positive real numbers such that $x^{2}+y^{2}+z^{2}=4$. Prove that,

$$
\frac{1}{6-x^{2}}+\frac{1}{6-y^{2}}+\frac{1}{6-z^{2}} \leq \frac{1}{x y z}
$$

- 5198: Proposed by José Luis Díaz-Barrero, Barcelona, Spain

Let m, n be positive integers. Calculate,

$$
\sum_{k=1}^{2 n} \prod_{i=0}^{m}\left(\left\lfloor k+\frac{1}{2}\right\rfloor+a+i\right)^{-1}
$$

where a is a nonnegative number and $\lfloor x\rfloor$ represents the greatest integer less than or equal to x.

- 5199: Proposed by Ovidiu Furdui, Cluj, Romania

Let $k>0$ and $n \geq 0$ be real numbers. Calculate,

$$
\int_{0}^{1} x^{n} \ln \left(\sqrt{1+x^{k}}-\sqrt{1-x^{k}}\right) d x
$$

Solutions

- 5176: Proposed by Kenneth Korbin, New York, NY

Solve:

$$
\left\{\begin{array}{l}
x^{2}+x y+y^{2}=3^{2} \\
y^{2}+y z+z^{2}=4^{2} \\
z^{2}+x z+x^{2}=5^{2}
\end{array}\right.
$$

Solution 1 by Albert Stadler, Herrliberg, Switzerland

Let

$$
\left\{\begin{array}{l}
A=x^{2}+x y+y^{2}-9 \\
B=y^{2}+y z+z^{2}-16 \\
C=z^{2}+x z+x^{2}-25
\end{array}\right.
$$

By assumption $A=B=C=0$. So, $0=A+B-C=x y+y z-x z+2 y^{2}$ or equivalently $z(x-y)=y(x+2 y)$. Obviously $x \neq y$, since if $x=y$ then $0=B=x^{2}+x z+z^{2}-16$ and $0=C=z^{2}+x z+x^{2}-25$ which is a contradiction. So,

$$
\begin{equation*}
z=\frac{y(x+2 y)}{x-y} \tag{1}
\end{equation*}
$$

We insert this value of z into the equation $B=0$ and obtain

$$
\begin{aligned}
16 & =y^{2}+y \cdot \frac{y(x+2 y)}{x-y}+\left(\frac{y(x+2 y)}{x-y}\right)^{2} \\
& =y^{2} \cdot \frac{(x-y)^{2}+(x-y)(x+2 y)+(x+2 y)^{2}}{(x-y)^{2}} \\
& =y^{2} \cdot \frac{x^{2}-2 x y+y^{2}+x^{2}+x y-2 y^{2}+x^{2}+4 x y+4 y^{2}}{(x-y)^{2}} \\
& =y^{2} \cdot \frac{3 x^{2}+3 x y+3 y^{3}}{(x-y)^{2}}=\frac{27 y^{2}}{(x-y)^{2}}
\end{aligned}
$$

So,

$$
\begin{align*}
& 4(x-y)= \pm 3 \sqrt{3} y \quad \text { or equivalently } \\
& x=\left(1+\frac{3 \sqrt{3}}{4}\right) y \quad \text { or } x=\left(1-\frac{3 \sqrt{3}}{4}\right) y \tag{2}
\end{align*}
$$

$A=0$ then implies

$$
\left\{\left(1 \pm \frac{3 \sqrt{3}}{4}\right)^{2}+\left(1 \pm \frac{3 \sqrt{3}}{4}\right)+1\right\} y^{2}=9
$$

Taking into account (1) and (2) we conclude that

$$
\begin{aligned}
(x, y, z) \in & \left\{\left(\frac{9+4 \sqrt{3}}{\left.\sqrt{25+12 \sqrt{3}}, \frac{4 \sqrt{3}}{\sqrt{25+12 \sqrt{3}}}, \frac{4(4+\sqrt{3})}{\sqrt{25+12 \sqrt{3}}}\right),}\right.\right. \\
& \left(-\frac{9+4 \sqrt{3}}{\sqrt{25+12 \sqrt{3}}},-\frac{4 \sqrt{3}}{\sqrt{25+12 \sqrt{3}}},-\frac{4(4+\sqrt{3})}{\sqrt{25+12 \sqrt{3}}}\right), \\
& \left(\frac{-9+4 \sqrt{3}}{\sqrt{25-12 \sqrt{3}}}, \frac{4 \sqrt{3}}{\sqrt{25-12 \sqrt{3}}}, \frac{4(-4+\sqrt{3})}{\sqrt{25-12 \sqrt{3}}}\right), \\
& \left.\left(\frac{9-4 \sqrt{3}}{\sqrt{25-12 \sqrt{3}}}, \frac{-4 \sqrt{3}}{\sqrt{25-12 \sqrt{3}}}, \frac{4(4-\sqrt{3})}{\sqrt{25-12 \sqrt{3}}}\right)\right\}
\end{aligned}
$$

The system of equations in the statement of the problem has an interesting geometric interpretation. Let $A B C$ be a triangle all of whose angles are smaller than 120°. The Fermat point (or Torricelli point) of the triangle $A B C$ is a point P such that the total distance from the three vertices of the triangle to the point is the minimum possible (see http://en.wikipedia.org/wiki/Fermat point).

Let $A B=c, B C=a, C A=b, A P=x, B P=y, C P=z$. Then

$$
\begin{aligned}
\angle A P B=\angle A P C & =\angle B P C=120^{\circ} \text { and } \\
x^{2}+x y+y^{2} & =c^{2} \\
y^{2}+y z+z^{2} & =a^{2} \\
z^{2}+x z+x^{2} & =b^{2}
\end{aligned}
$$

by the law of cosines. So x, y and z are the distances from the three vertices of the triangle to the Fermat point of the triangle.

- Solution 2 by José Luis Díaz-Barrero, Barcelona, Spain

Subtracting the equations term by term, we obtain

$$
\begin{gathered}
\left(x^{2}-y^{2}\right)+z(x-y)=9, \\
\left(x^{2}-z^{2}\right)+y(x-z)=-7,
\end{gathered} \Leftrightarrow \quad \begin{gathered}
(x-y)(x+y+z)=9 \\
(x-z)(x+y+z)=-7
\end{gathered}
$$

Putting $u=x+y+z$, then we obtain $(x-y) u=9$ and $(x-z) u=-7$. Adding both equations yields $(3 x-(x+y+z)) u=2$ from which follows $x=\frac{u^{2}+2}{3 u}$. Likewise, we
obtain $y=\frac{u^{2}-25}{3 u}$, and $z=\frac{u^{2}+23}{3 u}$. Substituting the values of x, y, z into one of the equations of the given system, yields

$$
\left(\frac{u^{2}+2}{3 u}\right)^{2}+\left(\frac{u^{2}+2}{3 u}\right)\left(\frac{u^{2}-25}{3 u}\right)+\left(\frac{u^{2}-25}{3 u}\right)^{2}=3^{2}
$$

or equivalently,

$$
3 u^{4}-150 u^{2}+579=0
$$

Solving the preceding equation, we have the solutions:

$$
\pm \sqrt{25-12 \sqrt{3}}, \quad \pm \sqrt{25+12 \sqrt{3}}
$$

Substituting these values in the expressions of x, y, z yields four triplets of solutions for the system. Namely,

$$
\begin{aligned}
\left(x_{1}, y_{1}, z_{1}\right)= & \left(\frac{27-12 \sqrt{3}}{3 \sqrt{25-12 \sqrt{3}}}, \frac{-4 \sqrt{3}}{\sqrt{25-12 \sqrt{3}}}, \frac{48-12 \sqrt{3}}{3 \sqrt{25-12 \sqrt{3}}}\right) \\
= & (1.009086173,-3.374440097,4.418495493) \\
\left(x_{2}, y_{2}, z_{2}\right)= & \left(-\frac{27-12 \sqrt{3}}{3 \sqrt{25-12 \sqrt{3}}}, \frac{4 \sqrt{3}}{\sqrt{25-12 \sqrt{3}}},-\frac{48-12 \sqrt{3}}{3 \sqrt{25-12 \sqrt{3}}}\right) \\
= & (-1.009086173,3.374440097,-4.418495493) \\
& =(2.354003099,1.023907822,3.388521646) \\
\left(x_{3}, y_{3}, z_{3}\right)= & \left(\frac{27+12 \sqrt{3}}{3 \sqrt{25+12 \sqrt{3}}}, \frac{4 \sqrt{3}}{\sqrt{25+12 \sqrt{3}}}, \frac{48+12 \sqrt{3}}{3 \sqrt{25-12 \sqrt{3}}}\right) \\
\left(x_{4}, y_{4}, z_{4}\right)= & \left(-\frac{27+12 \sqrt{3}}{3 \sqrt{25+12 \sqrt{3}}},-\frac{4 \sqrt{3}}{\sqrt{25+12 \sqrt{3}}},-\frac{48+12 \sqrt{3}}{3 \sqrt{25-12 \sqrt{3}}}\right) \\
= & (-2.354003099,-1.023907822,-3.388521646)
\end{aligned}
$$

Also solved by Arkady Alt, San Jose, CA; Bruno Salgueiro Fanego, Viveiro, Spain; Paul M. Harms, North Newton, KS; Enkel Hysnelaj, University of Technology, Sydney, Australia jointly with Elton Bojaxhiu, Kriftel, Germany; Kee-Wai Lau, Hong Kong, China; Paolo Perfetti, Department of Mathematics, University "Tor Vergata," Rome, Italy; Boris Rays, Brooklyn, NY; Titu Zvonaru, Comănesti, Romania jointly with Neculai Stanciu, Buzău, Romania, and the proposer.

- 5177: Proposed by Kenneth Korbin, New York, NY

A regular nonagon $A B C D E F G H I$ has side 1.
Find the area of $\triangle A C F$.

Solution 1 by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie, San Angelo, TX

We begin with the following known facts:

1. Each angle in a regular nonagon is 140°.
2. $\cos 140^{\circ}=\cos \left(180^{\circ}-40^{\circ}\right)=-\cos 40^{\circ}$.
3. $\cos 100^{\circ}=-\cos 80^{\circ}$.
4. $1+\cos 2 \theta=2 \cos ^{2} \theta$.
5. $\mathcal{A}=\frac{1}{2} a b \sin C$ in $\triangle A B C$.

Hence, $\triangle A B C \cong \triangle H I A \cong \triangle H G F$ by SAS. Using Fact 1 , since $\angle B=\angle I=\angle G=140^{\circ}$, it follows that $\angle B A C=\angle I A H=\angle I H A=\angle G H F=\angle G F H=20^{\circ}$. Thus,
$\angle A H F=100^{\circ}$. Since $\triangle A H F$ is an isosceles triangle, $\angle H A F=\angle H F A=40^{\circ}$.
Therefore, $\angle C A F=60^{\circ}$. In $\triangle A B C$, using the Law of Cosines and Facts 2 and 4,

$$
\begin{aligned}
A C^{2} & =1+1-2 \cos 140^{\circ} \\
& =2\left(1-\cos 140^{\circ}\right) \\
& =2\left(1+\cos 40^{\circ}\right) \\
& =4 \cos ^{2} 20^{\circ} \text { Then } \\
A C & =2 \cos 20^{\circ}
\end{aligned}
$$

Similarly, since $A C=H A=H F=2 \cos 20^{\circ}$, using the Law of Cosines and Facts 3 and 4 in $\triangle H A F$,

$$
\begin{aligned}
A F^{2} & =\left(2 \cos 20^{\circ}\right)^{2}+\left(2 \cos 20^{\circ}\right)^{2}-2\left(2 \cos 20^{\circ}\right)^{2} \cos 100^{\circ} \\
& =8 \cos ^{2} 20^{\circ}\left(1-\cos 100^{\circ}\right) \\
& =8 \cos ^{2} 20^{\circ}\left(1+\cos 80^{\circ}\right) \\
& =16 \cos ^{2} 20^{\circ} \cos ^{2} 40^{\circ} \text { Thus } \\
A F & =4 \cos 20^{\circ} \cos 40^{\circ}
\end{aligned}
$$

In $\triangle A C F$, using Fact 5,

$$
\begin{aligned}
A & =\frac{1}{2}(A C)(A F) \sin 60^{\circ} \\
& =\frac{1}{2}\left(2 \cos 20^{\circ}\right)\left(4 \cos 20^{\circ} \cos 40^{\circ}\right)\left(\frac{\sqrt{3}}{2}\right) \\
& =2 \sqrt{3} \cos ^{2} 20^{\circ} \cos 40^{\circ} \\
& \approx 2.343237
\end{aligned}
$$

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

Denote the circumcenter and the circumradius of the nonagon by O and r, respectively.

The nonagon can be oriented within the Cartesian plane so that its vertices are

$$
\begin{array}{ccc}
A\left(r \cos 0^{\circ}, r \sin 0^{\circ}\right) & B\left(r \cos 40^{\circ}, r \sin 40^{\circ}\right) & C\left(r \cos 80^{\circ}, r \sin 80^{\circ}\right) \\
D\left(r \cos 120^{\circ}, r \sin 120^{\circ}\right) & E\left(r \cos 160^{\circ}, r \sin 160^{\circ}\right) & F\left(r \cos 200^{\circ}, r \sin 200^{\circ}\right) \\
G\left(r \cos 240^{\circ}, r \sin 240^{\circ}\right) & H\left(r \cos 280^{\circ}, r \sin 2800^{\circ}\right) & I\left(r \cos 320^{\circ}, r \sin 320^{\circ}\right) .
\end{array}
$$

Then,

$$
\begin{aligned}
1^{2}=\overline{A B}^{2} & =\left(r \cos 40^{\circ}-r \cos 0^{\circ}\right)^{2}+\left(r \sin 40^{\circ}-r \sin 0^{\circ}\right)^{2} \\
& =r^{2}\left(\cos ^{2} 40^{\circ}-2 \cos 40^{\circ}+1+\sin ^{2} 40^{\circ}\right)^{2} \\
& =2 r^{2}\left(1-\cos 40^{\circ}\right) \Rightarrow r^{2}=\frac{1}{2\left(1-\cos 40^{\circ}\right)}
\end{aligned}
$$

The area of $\triangle A C F$ is

$$
\begin{aligned}
{[\triangle A C F] } & =\frac{1}{2}\left|\operatorname{det}\left(\begin{array}{ccc}
1 & 1 & 1 \\
r & r \cos 80^{\circ} & r \cos 200^{\circ} \\
0 & r \sin 80^{\circ} & r \sin 200^{\circ}
\end{array}\right)\right| \\
& =\frac{1}{2}\left|r^{2} \cos 80^{\circ} \sin 200^{\circ}+r^{2} \sin 80^{\circ}-r^{2} \cos 200^{\circ} \sin 80^{\circ}-r^{2} \sin 200^{\circ}\right| \\
& =\frac{1}{2}\left|r^{2}\left(\cos 80^{\circ} \sin 200^{\circ}-\sin 80^{\circ} \cos 200^{\circ}\right)+r^{2} \sin 80^{\circ}-r^{2} \sin 200^{\circ}\right| \\
& \left.=\frac{r^{2}}{2} \right\rvert\,\left(\sin \left(200^{\circ}-80^{\circ}\right)+\sin 80^{\circ}-\sin 200^{\circ} \mid\right. \\
& =\frac{1}{4\left(1-\cos 40^{\circ}\right)}\left|\sin 120^{\circ}+\sin 80^{\circ}-\sin 200^{\circ}\right| \\
& \approx 2.343237 .
\end{aligned}
$$

Solution 3 by Kee-Wai Lau, Hong Kong, China

It is easy to check that $\angle B A C=20^{\circ}, \angle I A F=\angle F A C=60^{\circ}$ and $A C=2 \cos 20^{\circ}$.
Suppose that the perpendicular from I to $A F$ meets $A F$ at J, the perpendicular from H to $A F$ meets $A F$ at K, and the perpendicular from I to $H K$ meets $H K$ at L. Then $\angle H I L=20^{\circ}$ and

$$
A F=2(A J+J K)=2(A J+I L)=2\left(\cos 60^{\circ}+\cos 20^{\circ}\right)=1+2 \cos 20^{\circ} .
$$

Hence the area of $\triangle A C F$ equals

$$
\frac{(A C)(A F) \sin \angle F A C}{2}
$$

$$
\begin{aligned}
& =\frac{\cos 20^{\circ}\left(1+2 \cos 20^{\circ}\right) \sqrt{3}}{2} \\
& =\frac{\left(1+\cos 20^{\circ}+\cos 40^{\circ}\right) \sqrt{3}}{2} \\
& =\frac{\sqrt{3}\left(1+\sqrt{3} \cos 10^{\circ}\right)}{2} \\
& \approx 2.343237 .
\end{aligned}
$$

Solution 4 by proposer

$$
\text { Area of } \begin{aligned}
\triangle A C F & =\frac{\sin 40^{\circ} \cdot \sin 60^{\circ} \cdot \sin 80^{\circ}}{2 \sin ^{2} 20^{\circ}} \\
& =\frac{\sqrt{3}}{16}\left[3 \tan ^{2} 70^{\circ}-1\right] \\
& \approx 2.343237 .
\end{aligned}
$$

Comment by editor: Sines and cosines of angles of $10^{\circ}, 20^{\circ}, 40^{\circ}$ and their complements often appear in the above solutions. David Stone and John Hawkins of
Statesboro, GA noted in their solution that: "It may be possible to express the result $\left(\sqrt{3} \cos 40^{\circ}\left(1+\cos 40^{\circ}\right)\right)$ in terms of radicals, even though $\cos 40^{\circ}$ itself cannot be expressed in terms of surds; it (along with $\sin 10^{\circ}$ and $-\sin 70^{\circ}$) is a zero of the famous casus irreducibilis cubic $8 x^{3}-6 x+1=0$."

Also solved by Scott H. Brown, Montgomery, AL; Brian D. Beasley, Clinton, SC; Kenneth Day and Michael Thew (jointly, students at Saint George's School), Spokane, WA; Paul M. Harms, North Newton, KS; Enkel Hysnelaj, University of Technology, Sydney, Australia jointly with Elton Bojaxhiu, Kriftel, Germany; David E. Manes, Oneonta, NY; Charles McCracken, Dayton, OH; John Nord, Spokane, WA; Boris Rays, Brooklyn, NY, and Albert Stadler, Herrliberg, Switzerland.

- 5178: Proposed by Neculai Stanciu, Buz̆̆u, Romania

Prove: If x, y and z are positive real numbers such that $x y z \geq 7+5 \sqrt{2}$, then

$$
x^{2}+y^{2}+z^{2}-2(x+y+z) \geq 3 .
$$

Solution 1 by Albert Stadler, Herrliberg, Switzerland

By the AM-GM inequality, $\frac{x+y+z}{3} \geq \sqrt[3]{x y z} \geq \sqrt[3]{7+5 \sqrt{2}}=1+\sqrt{2}$. Let
$f(x)=x^{2}-2 x-1 . f(x)$ is a convex function that is monotonically increasing for $x \geq 1$. By Jensen's inequality,
$x^{3}+y^{3}+z^{3}-2(x+y+z)-3=f(x)+f(y)+f(z) \geq 3 f\left(\frac{x+y+z}{3}\right) \geq 3 f(1+\sqrt{2})=0$.

Solution 2 by David E. Manes, Oneonta, NY

Note that for positive real numbers if $x \geq 1+\sqrt{2}$, then $(x-1)^{2} \geq 2$ with equality if and only if $x=1+\sqrt{2}$. Therefore, if $x, y, z \geq 1+\sqrt{2}$, then $x y z \geq 7+5 \sqrt{2}$ and $(x-1)^{2}+(y-1)^{2}+(z-1)^{2} \geq 6$. Expanding this inequality yields $x^{2}+y^{2}+x^{2}-2(x+y+z) \geq 3$ with equality if and only if $x=y=z=1+\sqrt{2}$.

Solution 3 by Paolo Perfetti, Department of Mathematics, University "Tor Vergata," Rome, Italy
We know tht $x^{2}+y^{2}+z^{2} \geq \frac{(x+y+z)^{2}}{3}$ thus the inequality is implied by

$$
S^{2}-6 S-9 \geq 0, \quad S=x+y+z
$$

yielding $S \geq 3(1+\sqrt{2})$. Moreover by the AGM we have $S \geq 3(x y z)^{1 / 3} \geq 3(7+5 \sqrt{2})^{1 / 3}$, thus we need to check that $3(7+5 \sqrt{2})^{1 / 3} \geq 3(1+\sqrt{2})$ or $7+5 \sqrt{2} \geq(1+\sqrt{2})^{3}$ which is actually an equality, and we are done.

Also solvled by Arkady Alt, San Jose California; Bruno Salgueiro Fanego, Viveiro, Spain; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong, China; Boris Rays, Brooklyn, NY, and the proposer.

- 5179: Proposed by José Luis Díaz-Barrero, Barcelona, Spain

Find all positive real solutions $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of the system

$$
\left\{\begin{aligned}
x_{1}+\sqrt{x_{2}+11} & =\sqrt{x_{2}+76}, \\
x_{2}+\sqrt{x_{3}+11} & =\sqrt{x_{3}+76}, \\
\cdots \cdots \cdots & \\
x_{n-1}+\sqrt{x_{n}+11} & =\sqrt{x_{n}+76}, \\
x_{n}+\sqrt{x_{1}+11} & =\sqrt{x_{1}+76 .}
\end{aligned}\right.
$$

Solution by Dionne Bailey, Elsie Campbell, and Charles Diminnie, San Angelo, TX

If $f(t)=\sqrt{t+76}-\sqrt{t+11}$ on $(0, \infty)$, then

$$
\begin{aligned}
f^{\prime}(t)=\frac{1}{2}(& \left.\frac{1}{\sqrt{t+76}}-\frac{1}{\sqrt{t+11}}\right), \text { and hence, } \\
\left|f^{\prime}(t)\right| & =\frac{1}{2}\left(\frac{1}{\sqrt{t+11}}-\frac{1}{\sqrt{t+76}}\right) \\
& <\frac{1}{2} \frac{1}{\sqrt{t+11}} \\
& <\frac{\sqrt{11}}{22} \\
& <1
\end{aligned}
$$

for $t>0$. It follows that $f(t)$ is a contraction mapping on $(0, \infty)$ and therefore, $f(t)$ has a unique fixed point $t^{*} \in(0, \infty)$. Further, it is well-known that for any $\bar{t} \in(0, \infty)$, the
sequence defined recursively by $t_{1}=\bar{t}$ and $t_{k+1}=f\left(t_{k}\right)$ for $k \geq 1$ must converge to t^{*}. By trial and error, we find that $t^{*}=5$.
In this problem,

$$
\begin{aligned}
x_{1} & =f\left(x_{2}\right), \\
x_{2} & =f\left(x_{3}\right), \\
& \vdots \\
x_{n-1} & =f\left(x_{n}\right), \\
x_{n} & =f\left(x_{1}\right) .
\end{aligned}
$$

If we let $t_{1}=x_{1}$ and define $t_{k+1}=f\left(t_{k}\right)$ for $k \geq 1$, then $\left(x_{1}, x_{n}, \ldots, x_{3}, x_{2}\right)$ is a cycle in the sequence $\left\{t_{k}\right\}$. However, as described above, $t_{k} \rightarrow 5$ as $k \rightarrow \infty$. These conditions force $x_{1}=x_{2}=\cdots=x_{n}=5$ and therefore, this must be the unique solution for this system.

Also solved by Arkady Alt, San Jose, CA; Scott H. Brown, Montgomery, AL; Bruno Salgueiro Fanego, Viveiro, Spain; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong, China; Paolo Perfetti, Department of Mathematics, "Tor Vergata" University, Rome, Italy; Albert Stadler, Herrliberg, Switzerland; Neculai Stanciu, Buzău Romania, jointly with Titu Zvonaru, Comănesti, Romania, and the proposer.

- 5180: Paolo Perfetti, Department of Mathematics, "Tor Vergata" University, Rome, Italy
Let a, b and c be positive real numbers such that $a+b+c=1$. Prove that

$$
\frac{1+a}{b c}+\frac{1+b}{a c}+\frac{1+c}{a b} \geq \frac{4}{\sqrt{a^{2}+b^{2}-a b}}+\frac{4}{\sqrt{b^{2}+c^{2}-b c}}+\frac{4}{\sqrt{a^{2}+c^{2}-a c}} .
$$

Solution 1 by Kee-Wai Lau, Hong Kong, China

Multiplying both sides of the desired inequality by $a b c$, we see that it is equivalent to

$$
\begin{equation*}
1+a^{2}+b^{2}+c^{2} \geq 4 a b c\left(\frac{1}{\sqrt{a^{2}+b^{2}-a b}}+\frac{1}{\sqrt{b^{2}+c^{2}-b c}}+\frac{1}{\sqrt{a^{2}+c^{2}-a c}}\right) . \tag{1}
\end{equation*}
$$

Since

$$
a^{2}+b^{2}-a b=(a-b)^{2}+a b \geq a b, \quad b^{2}+c^{2}-b c \geq b c, \quad a^{2}+c^{2}-a c \geq a c,
$$

the right hand side of (1) is less than or equal to

$$
\begin{aligned}
& 4(\sqrt{a b c}+\sqrt{b c a}+\sqrt{c a b}) \\
\leq & 2((a+b) c+(b+c) a+(c+a) b) \\
= & 4(a b+b c+c a) \\
= & 2\left((a+b+c)^{2}-a^{2}-b^{2}-c^{2}\right)
\end{aligned}
$$

$$
=2-2\left(a^{2}+b^{2}+c^{2}\right) .
$$

Now

$$
a^{2}+b^{2}+c^{2}=\left(a-\frac{1}{3}\right)^{2}+\left(b-\frac{1}{3}\right)^{2}+\left(c-\frac{1}{3}\right)^{2}+\frac{2(a+b+c)}{3}-\frac{1}{3} \geq \frac{1}{3}
$$

so that $1+a^{2}+b^{2}+c^{2} \geq 2-2\left(a^{2}+b^{2}+c^{2}\right)$.
This proves (1) and completes the solution.

Solution 2 by Albert Stadler, Herrliberg, Switzerland.

By the AM-GM inequality,

$$
\begin{aligned}
\frac{1+a}{b c}+\frac{1+b}{c a}+\frac{1+c}{a b} & =\frac{a+a^{2}+b+b^{2}+c+c^{2}}{a b c} \\
& =\frac{1+a^{2}+b^{2}+c^{2}}{a b c} \\
& =\frac{(a+b+c)^{2}+a^{2}+b^{2}+c^{2}}{a b c} \\
& =\frac{\left(2 a^{2}+2 b c\right)+\left(2 b^{2}+2 c a\right)+\left(2 c^{2}+2 a b\right)}{a b c} \\
& \geq 4 \frac{a \sqrt{b c}+b \sqrt{c a}+c \sqrt{a b}}{a b c} \\
& =\frac{4}{\sqrt{b c}}+\frac{4}{\sqrt{c a}}+\frac{4}{\sqrt{a b}} .
\end{aligned}
$$

The conclusion follows since

$$
\frac{1}{\sqrt{x y}} \geq \frac{1}{\sqrt{x^{2}+y^{2}-x y}}
$$

(Note that this inequality is equivalent to $x^{2}+y^{2}-x y \geq x y$ which is obviously true.)
Also solved by Arkady Alt, San Jose, CA; Dionne T. Bailey, Elsie M. Campbell, and Charles Diminnie (jointly), San Angelo, TX; Bruno Salgueiro Fanego, Viveiro, Spain; David E. Manes, Oneonta, NY; Titu Zvonaru, Comănesti, Romania jointly with Neculai Stanciu, Buzău, Romania, and the proposer.

- 5181: Proposed by Ovidiu Furdui, Cluj, Romania

Calculate:

$$
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{n \cdot m}{(n+m)!}
$$

Solution 1 by Anastasios Kotronis, Athens, Greece The summands being all positive we can sum by triangles :

$$
\begin{aligned}
\sum_{n=1}^{+\infty} \sum_{m=1}^{+\infty} \frac{n m}{(n+m)!} & =\sum_{k, \ell, n \in \wedge k+\ell=n} \frac{n m}{(n+m)!}=\sum_{n=2}^{+\infty} \frac{\sum_{\ell=1}^{n-1}(n-\ell) \ell}{n!} \\
& =\frac{1}{6} \sum_{n=2}^{+\infty} \frac{(n-1) n(n+1)}{n!}=\frac{1}{6} \sum_{n=2}^{+\infty} \frac{(n+1)}{(n-2)!} \\
& =\frac{1}{6} \sum_{n=0}^{+\infty} \frac{(n+3)}{n!}=\left.\frac{1}{6} \sum_{n=0}^{+\infty} \frac{1}{n!} \frac{d x^{n+3}}{d x}\right|_{x=1} \\
& =\left.\frac{1}{6} \frac{d}{d x}\left(\sum_{n=0}^{+\infty} \frac{x^{n+3}}{n!}\right)\right|_{x=1}=\left.\frac{1}{6} \frac{d\left(x^{3} e^{x}\right)}{d x}\right|_{x=1} \\
& =\frac{2 e}{3} .
\end{aligned}
$$

Solution 2 by Arkady Alt, San Jose, CA

Let $k=m+n$. Then $m=k-n$ and domain of summation $\left\{\begin{array}{l}1 \leq n \\ 1 \leq m\end{array}\right.$ can be represented as $\left\{\begin{array}{l}2 \leq k \\ 1 \leq n \leq k-1 . \text { Hence, } \\ m=k-n\end{array}\right.$

$$
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{n m}{(n+m)!}=\sum_{k=2}^{\infty} \sum_{n=1}^{k-1} \frac{n(k-n)}{k!}=\sum_{k=2}^{\infty} \frac{1}{k!} \sum_{n=1}^{k-1} n(k-n)=\sum_{k=2}^{\infty} \frac{1}{k!} \sum_{n=1}^{k-1} n(k-n)
$$

Since

$$
\begin{aligned}
\sum_{n=1}^{k-1} n(k-n) & =\frac{k^{2}(k-1)}{2}-\frac{(k-1) k(2 k-1)}{6} \\
& =\frac{k}{6}\left(3 k^{2}-3 k-2 k^{2}+3 k-1\right) \\
& =\frac{k\left(k^{2}-1\right)}{6}
\end{aligned}
$$

then

$$
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{n m}{(n+m)!}=\frac{1}{6} \sum_{k=2}^{\infty} \frac{k+1}{(k-2)!}
$$

$$
\begin{aligned}
& =\frac{1}{6} \sum_{k=0}^{\infty} \frac{k+3}{k!} \\
& =\frac{1}{6}\left(\sum_{k=0}^{\infty} \frac{3}{k!}+\frac{k}{k!}\right) \\
& =\frac{1}{2} \sum_{k=0}^{\infty} \frac{1}{k!}+\frac{1}{6} \sum_{k=1}^{\infty} \frac{1}{(k-1)!} \\
& =\frac{1}{2} \sum_{k=0}^{\infty} \frac{1}{k!}+\frac{1}{6} \sum_{k=0}^{\infty} \frac{1}{k!} \\
& =\sum_{k=0}^{\infty} \frac{1}{k!}\left(\frac{1}{2}+\frac{1}{6}\right) \\
& =\frac{2}{3} \sum_{k=0}^{\infty} \frac{1}{k!} \\
& =\frac{2 e}{3} .
\end{aligned}
$$

Solution 3 by the proposer

The series equals $\frac{2 e}{3}$. First we note that for $m \geq 0$ and $n \geq 1$ one has that

$$
\int_{0}^{1} x^{m}(1-x)^{n-1} d x=B(m+1, n)=\frac{m!\cdot(n-1)!}{(n+m)!} .
$$

Thus,

$$
\begin{aligned}
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{n \cdot m}{(n+m)!} & =\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{n}{(n-1)!} \cdot \frac{1}{(m-1)!} \int_{0}^{1} x^{m}(1-x)^{n-1} d x \\
& =\int_{0}^{1}\left(\sum_{n=1}^{\infty} \frac{n}{(n-1)!}(1-x)^{n-1}\right) \cdot\left(\sum_{m=1}^{\infty} \frac{x^{m}}{(m-1)!}\right) d x \\
& =\int_{0}^{1}\left(1+\sum_{n=2}^{\infty} \frac{n}{(n-1)!}(1-x)^{n-1}\right) \cdot x e^{x} d x \\
& =\int_{0}^{1}\left(1+\sum_{n=2}^{\infty} \frac{(1-x)^{n-1}}{(n-2)!}+\sum_{n=2}^{\infty} \frac{(1-x)^{n-1}}{(n-1)!}\right) \cdot x e^{x} d x \\
& =\int_{0}^{1}\left(1+(1-x) e^{1-x}+e^{1-x}-1\right) \cdot x e^{x} d x \\
& =e \int_{0}^{1}(2-x) x d x=\frac{2 e}{3},
\end{aligned}
$$

and the problem is solved.
Also solved by Kee-Wai Lau, Hong Kong, China; Paolo Perfetti, Department of Mathematics, "Tor Vergata" University, Rome, Italy, and Albert Stadler, Herrliberg, Switzerland.

