
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
April 15, 2012

• 5194: Proposed by Kenneth Korbin, New York, NY

Find two pairs of positive integers (a, b) such that,

14

a
+
a

b
+

b

14
= 41.

• 5195: Proposed by Kenneth Korbin, New York, NY

If N is a prime number or a power of primes congruent to 1 (mod 6), then there are
positive integers a and b such that 3a2 + 3ab+ b2 = N with (a, b) = 1.

Find a and b if N = 2011, and if N = 20112, and if N = 20113.

• 5196: Proposed by Neculai Stanciu, Buzău, Romania

Determine the last six digits of the product (2010)
(
52014

)
.

• 5197: Proposed by Pedro H. O. Pantoja, UFRN, Brazil

Let x, y, z be positive real numbers such that x2 + y2 + z2 = 4. Prove that,

1

6− x2
+

1

6− y2
+

1

6− z2
≤ 1

xyz
.

• 5198: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let m,n be positive integers. Calculate,

2n∑
k=1

m∏
i=0

(
bk +

1

2
c+ a+ i

)−1
,

where a is a nonnegative number and bxc represents the greatest integer less than or
equal to x.

• 5199: Proposed by Ovidiu Furdui, Cluj, Romania
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Let k > 0 and n ≥ 0 be real numbers. Calculate,∫ 1

0
xn ln

(√
1 + xk −

√
1− xk

)
dx.

————————————————————–

Solutions

• 5176: Proposed by Kenneth Korbin, New York, NY

Solve: x
2 + xy + y2 = 32

y2 + yz + z2 = 42

z2 + xz + x2 = 52.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

Let A = x2 + xy + y2 − 9
B = y2 + yz + z2 − 16
C = z2 + xz + x2 − 25

By assumption A = B = C = 0. So, 0 = A+B −C = xy+ yz− xz + 2y2 or equivalently
z(x− y) = y(x+ 2y). Obviously x 6= y, since if x = y then 0 = B = x2 + xz + z2 − 16
and 0 = C = z2 + xz + x2 − 25 which is a contradiction. So,

z =
y (x+ 2y)

x− y
. (1)

We insert this value of z into the equation B = 0 and obtain

16 = y2 + y · y(x+ 2y)

x− y
+

(
y(x+ 2y)

x− y

)2

= y2 · (x− y)2 + (x− y)(x+ 2y) + (x+ 2y)2

(x− y)2

= y2 · x
2 − 2xy + y2 + x2 + xy − 2y2 + x2 + 4xy + 4y2

(x− y)2

= y2 · 3x2 + 3xy + 3y3

(x− y)2
=

27y2

(x− y)2
.

So,

4(x− y) = ±3
√

3y or equivalently,

x =

(
1 +

3
√

3

4

)
y or x =

(
1− 3

√
3

4

)
y . (2)
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A = 0 then implies 
(

1± 3
√

3

4

)2

+

(
1± 3

√
3

4

)
+ 1

 y2 = 9.

Taking into account (1) and (2) we conclude that

(x, y, z) ∈


 9 + 4

√
3√

25 + 12
√

3
,

4
√

3√
25 + 12

√
3
,

4(4 +
√

3)√
25 + 12

√
3

 ,
− 9 + 4

√
3√

25 + 12
√

3
,− 4

√
3√

25 + 12
√

3
,− 4(4 +

√
3)√

25 + 12
√

3

 ,
 −9 + 4

√
3√

25− 12
√

3
,

4
√

3√
25− 12

√
3
,

4(−4 +
√

3)√
25− 12

√
3

 ,
 9− 4

√
3√

25− 12
√

3
,
−4
√

3√
25− 12

√
3
,

4(4−
√

3)√
25− 12

√
3

 .

The system of equations in the statement of the problem has an interesting geometric
interpretation. Let ABC be a triangle all of whose angles are smaller than 120◦. The
Fermat point (or Torricelli point) of the triangle ABC is a point P such that the total
distance from the three vertices of the triangle to the point is the minimum possible (see
http://en.wikipedia.org/wiki/Fermat point).

Let AB = c,BC = a,CA = b, AP = x,BP = y, CP = z. Then

6 APB = 6 APC = 6 BPC = 120◦ and

x2 + xy + y2 = c2,

y2 + yz + z2 = a2,

z2 + xz + x2 = b2,

by the law of cosines. So x, y and z are the distances from the three vertices of the
triangle to the Fermat point of the triangle.

• Solution 2 by José Luis Dı́az-Barrero, Barcelona, Spain

Subtracting the equations term by term, we obtain

(x2 − y2) + z(x− y) = 9,
(x2 − z2) + y(x− z) = −7,

⇔ (x− y)(x+ y + z) = 9,
(x− z)(x+ y + z) = −7.

Putting u = x+ y + z, then we obtain (x− y)u = 9 and (x− z)u = −7. Adding both

equations yields (3x− (x+ y + z))u = 2 from which follows x =
u2 + 2

3u
. Likewise, we
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obtain y =
u2 − 25

3u
, and z =

u2 + 23

3u
. Substituting the values of x, y, z into one of the

equations of the given system, yields(
u2 + 2

3u

)2

+

(
u2 + 2

3u

)(
u2 − 25

3u

)
+

(
u2 − 25

3u

)2

= 32

or equivalently,
3u4 − 150u2 + 579 = 0.

Solving the preceding equation, we have the solutions:

±
√

25− 12
√

3, ±
√

25 + 12
√

3.

Substituting these values in the expressions of x, y, z yields four triplets of solutions for
the system. Namely,

(x1, y1, z1) =

 27− 12
√

3

3
√

25− 12
√

3
,
−4
√

3√
25− 12

√
3
,

48− 12
√

3

3
√

25− 12
√

3


= (1.009086173,−3.374440097, 4.418495493)

(x2, y2, z2) =

− 27− 12
√

3

3
√

25− 12
√

3
,

4
√

3√
25− 12

√
3
,− 48− 12

√
3

3
√

25− 12
√

3


= (−1.009086173, 3.374440097,−4.418495493)

(x3, y3, z3) =

 27 + 12
√

3

3
√

25 + 12
√

3
,

4
√

3√
25 + 12

√
3
,

48 + 12
√

3

3
√

25− 12
√

3


= (2.354003099, 1.023907822, 3.388521646)

(x4, y4, z4) =

− 27 + 12
√

3

3
√

25 + 12
√

3
,− 4

√
3√

25 + 12
√

3
,− 48 + 12

√
3

3
√

25− 12
√

3


= (−2.354003099,−1.023907822,−3.388521646)

Also solved by Arkady Alt, San Jose, CA; Bruno Salgueiro Fanego, Viveiro,
Spain; Paul M. Harms, North Newton, KS; Enkel Hysnelaj, University of
Technology, Sydney, Australia jointly with Elton Bojaxhiu, Kriftel,
Germany; Kee-Wai Lau, Hong Kong, China; Paolo Perfetti, Department of
Mathematics, University “Tor Vergata,” Rome, Italy; Boris Rays, Brooklyn,
NY; Titu Zvonaru, Comănesti, Romania jointly with Neculai Stanciu,
Buzău, Romania, and the proposer.

4



• 5177: Proposed by Kenneth Korbin, New York, NY

A regular nonagon ABCDEFGHI has side 1.

Find the area of 4ACF .

Solution 1 by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie,
San Angelo, TX

We begin with the following known facts:

1. Each angle in a regular nonagon is 140◦.

2. cos 140◦ = cos(180◦ − 40◦) = − cos 40◦.

3. cos 100◦ = − cos 80◦.

4. 1 + cos 2θ = 2 cos2 θ.

5. A = 1
2ab sinC in 4ABC.

Hence, 4ABC ∼= 4HIA ∼= 4HGF by SAS. Using Fact 1, since 6 B = 6 I = 6 G = 140◦,
it follows that 6 BAC = 6 IAH = 6 IHA = 6 GHF = 6 GFH = 20◦. Thus,
6 AHF = 100◦. Since 4AHF is an isosceles triangle, 6 HAF = 6 HFA = 40◦.
Therefore, 6 CAF = 60◦. In 4ABC, using the Law of Cosines and Facts 2 and 4,

AC2 = 1 + 1− 2 cos 140◦

= 2(1− cos 140◦)

= 2(1 + cos 40◦)

= 4 cos2 20◦ Then,

AC = 2 cos 20◦.

Similarly, since AC = HA = HF = 2 cos 20◦, using the Law of Cosines and Facts 3 and
4 in 4HAF ,

AF 2 = (2 cos 20◦)2 + (2 cos 20◦)2 − 2(2 cos 20◦)2 cos 100◦

= 8 cos2 20◦(1− cos 100◦)

= 8 cos2 20◦(1 + cos 80◦)

= 16 cos2 20◦ cos2 40◦ Thus,

AF = 4 cos 20◦ cos 40◦.

In 4ACF , using Fact 5,

A =
1

2
(AC)(AF ) sin 60◦

=
1

2
(2 cos 20◦)(4 cos 20◦ cos 40◦)

(√
3

2

)
= 2

√
3 cos2 20◦ cos 40◦

≈ 2.343237.

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

Denote the circumcenter and the circumradius of the nonagon by O and r, respectively.
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The nonagon can be oriented within the Cartesian plane so that its vertices are

A (r cos 0◦, r sin 0◦) B (r cos 40◦, r sin 40◦) C (r cos 80◦, r sin 80◦)

D (r cos 120◦, r sin 120◦) E (r cos 160◦, r sin 160◦) F (r cos 200◦, r sin 200◦)

G (r cos 240◦, r sin 240◦) H (r cos 280◦, r sin 2800◦) I (r cos 320◦, r sin 320◦) .

Then,

12 = AB
2

= (r cos 40◦ − r cos 0◦)2 + (r sin 40◦ − r sin 0◦)2

= r2
(
cos2 40◦ − 2 cos 40◦ + 1 + sin2 40◦

)2
= 2r2 (1− cos 40◦)⇒ r2 =

1

2 (1− cos 40◦)
.

The area of 4ACF is

[4ACF ] =
1

2

∣∣∣∣∣∣∣∣∣∣∣
det


1 1 1

r r cos 80◦ r cos 200◦

0 r sin 80◦ r sin 200◦



∣∣∣∣∣∣∣∣∣∣∣
=

1

2

∣∣∣r2 cos 80◦ sin 200◦ + r2 sin 80◦ − r2 cos 200◦ sin 80◦ − r2 sin 200◦
∣∣∣

=
1

2

∣∣∣r2 (cos 80◦ sin 200◦ − sin 80◦ cos 200◦) + r2 sin 80◦ − r2 sin 200◦
∣∣∣

=
r2

2
|(sin(200◦ − 80◦) + sin 80◦ − sin 200◦|

=
1

4 (1− cos 40◦)
|sin 120◦ + sin 80◦ − sin 200◦|

≈ 2.343237.

Solution 3 by Kee-Wai Lau, Hong Kong, China

It is easy to check that 6 BAC = 20◦, 6 IAF = 6 FAC = 60◦ and AC = 2 cos 20◦.
Suppose that the perpendicular from I to AF meets AF at J , the perpendicular from H
to AF meets AF at K, and the perpendicular from I to HK meets HK at L. Then
6 HIL = 20◦ and

AF = 2(AJ + JK) = 2(AJ + IL) = 2(cos 60◦ + cos 20◦) = 1 + 2 cos 20◦.

Hence the area of 4ACF equals

(AC)(AF ) sin 6 FAC

2
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=
cos 20◦(1 + 2 cos 20◦)

√
3

2

=
(1 + cos 20◦ + cos 40◦)

√
3

2

=

√
3(1 +

√
3 cos 10◦)

2

≈ 2.343237.

Solution 4 by proposer

Area of 4ACF =
sin 40◦ · sin 60◦ · sin 80◦

2 sin2 20◦

=

√
3

16

[
3 tan2 70◦ − 1

]
≈ 2.343237.

Comment by editor: Sines and cosines of angles of 10◦, 20◦, 40◦ and their complements
often appear in the above solutions. David Stone and John Hawkins of
Statesboro, GA noted in their solution that: “It may be possible to express the result
(
√

3 cos 40◦ (1 + cos 40◦)) in terms of radicals, even though cos 40◦ itself cannot be
expressed in terms of surds; it (along with sin 10◦ and − sin 70◦) is a zero of the famous
casus irreducibilis cubic 8x3 − 6x+ 1 = 0.”

Also solved by Scott H. Brown, Montgomery, AL; Brian D. Beasley, Clinton,
SC; Kenneth Day and Michael Thew (jointly, students at Saint George’s
School), Spokane, WA; Paul M. Harms, North Newton, KS; Enkel Hysnelaj,
University of Technology, Sydney, Australia jointly with Elton Bojaxhiu,
Kriftel, Germany; David E. Manes, Oneonta, NY; Charles McCracken,
Dayton, OH; John Nord, Spokane, WA; Boris Rays, Brooklyn, NY, and
Albert Stadler, Herrliberg, Switzerland.

• 5178: Proposed by Neculai Stanciu, Buzău, Romania

Prove: If x, y and z are positive real numbers such that xyz ≥ 7 + 5
√

2, then

x2 + y2 + z2 − 2(x+ y + z) ≥ 3.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

By the AM-GM inequality,
x+ y + z

3
≥ 3
√
xyz ≥ 3

√
7 + 5

√
2 = 1 +

√
2. Let

f(x) = x2 − 2x− 1. f(x) is a convex function that is monotonically increasing for x ≥ 1.
By Jensen’s inequality,

x3+y3+z3−2 (x+ y + z)−3 = f(x)+f(y)+f(z) ≥ 3f

(
x+ y + z

3

)
≥ 3f

(
1 +
√

2
)

= 0.
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Solution 2 by David E. Manes, Oneonta, NY

Note that for positive real numbers if x ≥ 1 +
√

2, then (x− 1)2 ≥ 2 with equality if and
only if x = 1 +

√
2. Therefore, if x, y, z ≥ 1 +

√
2, then xyz ≥ 7 + 5

√
2 and

(x− 1)2 + (y − 1)2 + (z − 1)2 ≥ 6. Expanding this inequality yields
x2 + y2 + x2 − 2(x+ y + z) ≥ 3 with equality if and only if x = y = z = 1 +

√
2.

Solution 3 by Paolo Perfetti, Department of Mathematics, University “Tor
Vergata,” Rome, Italy

We know tht x2 + y2 + z2 ≥ (x+ y + z)2

3
thus the inequality is implied by

S2 − 6S − 9 ≥ 0, S = x+ y + z

yielding S ≥ 3(1 +
√

2). Moreover by the AGM we have S ≥ 3(xyz)1/3 ≥ 3(7 + 5
√

2)1/3,
thus we need to check that 3(7 + 5

√
2)1/3 ≥ 3(1 +

√
2) or 7 + 5

√
2 ≥ (1 +

√
2)3 which is

actually an equality, and we are done.

Also solvled by Arkady Alt, San Jose California; Bruno Salgueiro Fanego,
Viveiro, Spain; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong
Kong, China; Boris Rays, Brooklyn, NY, and the proposer.

• 5179: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Find all positive real solutions (x1, x2, . . . , xn) of the system

x1 +
√
x2 + 11 =

√
x2 + 76,

x2 +
√
x3 + 11 =

√
x3 + 76,

· · · · · · · · ·
xn−1 +

√
xn + 11 =

√
xn + 76,

xn +
√
x1 + 11 =

√
x1 + 76.

Solution by Dionne Bailey, Elsie Campbell, and Charles Diminnie, San
Angelo, TX

If f (t) =
√
t+ 76−

√
t+ 11 on (0,∞), then

f ′ (t) =
1

2

(
1√
t+ 76

− 1√
t+ 11

)
, and hence,

∣∣f ′ (t)∣∣ =
1

2

(
1√
t+ 11

− 1√
t+ 76

)
<

1

2

1√
t+ 11

<

√
11

22

< 1

for t > 0. It follows that f (t) is a contraction mapping on (0,∞) and therefore, f (t) has
a unique fixed point t∗ ∈ (0,∞). Further, it is well-known that for any t ∈ (0,∞), the
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sequence defined recursively by t1 = t and tk+1 = f (tk) for k ≥ 1 must converge to t∗.
By trial and error, we find that t∗ = 5.

In this problem,

x1 = f (x2) ,
x2 = f (x3) ,

...
xn−1 = f (xn) ,
xn = f (x1) .

If we let t1 = x1 and define tk+1 = f (tk) for k ≥ 1, then (x1, xn, . . . , x3, x2) is a cycle in
the sequence {tk}. However, as described above, tk → 5 as k →∞. These conditions
force x1 = x2 = · · · = xn = 5 and therefore, this must be the unique solution for this
system.

Also solved by Arkady Alt, San Jose, CA; Scott H. Brown, Montgomery,
AL; Bruno Salgueiro Fanego, Viveiro, Spain; Paul M. Harms, North
Newton, KS; Kee-Wai Lau, Hong Kong, China; Paolo Perfetti, Department
of Mathematics, “Tor Vergata” University, Rome, Italy; Albert Stadler,
Herrliberg, Switzerland; Neculai Stanciu, Buzău Romania, jointly with Titu
Zvonaru, Comănesti, Romania, and the proposer.

• 5180: Paolo Perfetti, Department of Mathematics, “Tor Vergata” University, Rome,
Italy

Let a, b and c be positive real numbers such that a+ b+ c = 1. Prove that

1 + a

bc
+

1 + b

ac
+

1 + c

ab
≥ 4√

a2 + b2 − ab
+

4√
b2 + c2 − bc

+
4√

a2 + c2 − ac
.

Solution 1 by Kee-Wai Lau, Hong Kong, China

Multiplying both sides of the desired inequality by abc, we see that it is equivalent to

1 + a2 + b2 + c2 ≥ 4abc

(
1√

a2 + b2 − ab
+

1√
b2 + c2 − bc

+
1√

a2 + c2 − ac

)
. (1)

Since

a2 + b2 − ab = (a− b)2 + ab ≥ ab, b2 + c2 − bc ≥ bc, a2 + c2 − ac ≥ ac,

the right hand side of (1) is less than or equal to

4
(√

abc+
√
bca+

√
cab
)

≤ 2 ((a+ b)c+ (b+ c)a+ (c+ a)b)

= 4 (ab+ bc+ ca)

= 2
(
(a+ b+ c)2 − a2 − b2 − c2

)
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= 2− 2
(
a2 + b2 + c2

)
.

Now

a2 + b2 + c2 =

(
a− 1

3

)2

+

(
b− 1

3

)2

+

(
c− 1

3

)2

+
2(a+ b+ c)

3
− 1

3
≥ 1

3
,

so that 1 + a2 + b2 + c2 ≥ 2− 2
(
a2 + b2 + c2

)
.

This proves (1) and completes the solution.

Solution 2 by Albert Stadler, Herrliberg, Switzerland.

By the AM-GM inequality,

1 + a

bc
+

1 + b

ca
+

1 + c

ab
=

a+ a2 + b+ b2 + c+ c2

abc

=
1 + a2 + b2 + c2

abc

=
(a+ b+ c)2 + a2 + b2 + c2

abc

=
(2a2 + 2bc) + (2b2 + 2ca) + (2c2 + 2ab)

abc

≥ 4
a
√
bc+ b

√
ca+ c

√
ab

abc

=
4√
bc

+
4√
ca

+
4√
ab
.

The conclusion follows since

1
√
xy
≥ 1√

x2 + y2 − xy
.

(Note that this inequality is equivalent to x2 + y2 − xy ≥ xy which is obviously true.)

Also solved by Arkady Alt, San Jose, CA; Dionne T. Bailey, Elsie M.
Campbell, and Charles Diminnie (jointly), San Angelo, TX; Bruno Salgueiro
Fanego, Viveiro, Spain; David E. Manes, Oneonta, NY; Titu Zvonaru,
Comănesti, Romania jointly with Neculai Stanciu, Buzău, Romania, and the
proposer.

• 5181: Proposed by Ovidiu Furdui, Cluj, Romania

Calculate: ∞∑
n=1

∞∑
m=1

n ·m
(n+m)!

.
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Solution 1 by Anastasios Kotronis, Athens, Greece The summands being all
positive we can sum by triangles :

+∞∑
n=1

+∞∑
m=1

nm

(n+m)!
=

∑
k,`,n∈∧ k+`=n

nm

(n+m)!
=

+∞∑
n=2

∑n−1
`=1 (n− `)`

n!

=
1

6

+∞∑
n=2

(n− 1)n(n+ 1)

n!
=

1

6

+∞∑
n=2

(n+ 1)

(n− 2)!

=
1

6

+∞∑
n=0

(n+ 3)

n!
=

1

6

+∞∑
n=0

1

n!

dxn+3

dx

∣∣∣
x=1

=
1

6

d

dx

(
+∞∑
n=0

xn+3

n!

) ∣∣∣
x=1

=
1

6

d
(
x3ex

)
dx

∣∣∣
x=1

=
2e

3
.

Solution 2 by Arkady Alt, San Jose, CA

Let k = m+ n. Then m = k − n and domain of summation

{
1 ≤ n
1 ≤ m can be represented

as


2 ≤ k
1 ≤ n ≤ k − 1
m = k − n

. Hence,

∞∑
n=1

∞∑
m=1

nm

(n+m)!
=
∞∑
k=2

k−1∑
n=1

n (k − n)

k!
=
∞∑
k=2

1

k!

k−1∑
n=1

n (k − n) =
∞∑
k=2

1

k!

k−1∑
n=1

n (k − n) .

Since

k−1∑
n=1

n (k − n) =
k2 (k − 1)

2
− (k − 1) k (2k − 1)

6

=
k

6

(
3k2 − 3k − 2k2 + 3k − 1

)
=

k
(
k2 − 1

)
6

,

then

∞∑
n=1

∞∑
m=1

nm

(n+m)!
=

1

6

∞∑
k=2

k + 1

(k − 2)!
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=
1

6

∞∑
k=0

k + 3

k!

=
1

6

( ∞∑
k=0

3

k!
+
k

k!

)

=
1

2

∞∑
k=0

1

k!
+

1

6

∞∑
k=1

1

(k − 1)!

=
1

2

∞∑
k=0

1

k!
+

1

6

∞∑
k=0

1

k!

=
∞∑
k=0

1

k!

(
1

2
+

1

6

)

=
2

3

∞∑
k=0

1

k!

=
2e

3
.

Solution 3 by the proposer

The series equals
2e

3
. First we note that for m ≥ 0 and n ≥ 1 one has that∫ 1

0
xm(1− x)n−1dx = B(m+ 1, n) =

m! · (n− 1)!

(n+m)!
.

Thus,

∞∑
n=1

∞∑
m=1

n ·m
(n+m)!

=
∞∑
n=1

∞∑
m=1

n

(n− 1)!
· 1

(m− 1)!

∫ 1

0
xm(1− x)n−1dx

=

∫ 1

0

( ∞∑
n=1

n

(n− 1)!
(1− x)n−1

)
·
( ∞∑
m=1

xm

(m− 1)!

)
dx

=

∫ 1

0

(
1 +

∞∑
n=2

n

(n− 1)!
(1− x)n−1

)
· xexdx

=

∫ 1

0

(
1 +

∞∑
n=2

(1− x)n−1

(n− 2)!
+
∞∑
n=2

(1− x)n−1

(n− 1)!

)
· xexdx

=

∫ 1

0

(
1 + (1− x)e1−x + e1−x − 1

)
· xexdx

= e

∫ 1

0
(2− x)xdx =

2e

3
,
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and the problem is solved.

Also solved by Kee-Wai Lau, Hong Kong, China; Paolo Perfetti, Department
of Mathematics, “Tor Vergata” University, Rome, Italy, and Albert Stadler,
Herrliberg, Switzerland.
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