
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
April 15, 2015

• 5337: Proposed by Kenneth Korbin, New York, NY

Given convex quadrilateral ABCD with sides,

AB = 1 + 3
√

2
BC = 6 + 4

√
2 and

CD = −14 + 12
√

2.

Find side AD so that the area of the quadrilateral is maximum.

• 5338: Proposed by Arkady Alt, San Jose, CA Determine the maximum value of

F (x, y, z) = min

{
|y − z|
|x|

,
|z − x|
|y|

,
|x− y|
|z|

}
,

where x, y, z are arbitrary nonzero real numbers.

• 5339: Proposed by D.M. Bătinetu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu “George Emil Palade” School, Buzău,
Romania

Calculate:

∫ π/2

0

3 sinx+ 4 cosx

3 cosx+ 4 sinx
dx.

• 5340: Proposed by Oleh Faynshteyn, Leipzig, Germany

Let a, b and c be the side-lengths, and s the semi-perimeter of a triangle. Show that

a2 + b2

(s− c)2
+

b2 + c2

(s− a)2
+
c2 + a2

(s− b)2
≥ 24.

• 5341: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let z1, z2, · · · , zn, and w1, w2, · · · , wn be sequences of complex numbers. Prove that

Re

(
n∑
k=1

zkwk

)
≤ 3

(n+ 1)(n+ 2)

n∑
k=1

|zk|2 +
3n2 + 6n+ 1

20

n∑
k=1

|wk|2 .
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• 5342: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let a, b, c, α > 0 be real numbers. Study the convergence of the integral

I(a, b, c, α) =

∫ ∞
1

(
a1/x − b1/x + c1/x

2

)α
dx.

The problem is about studying the conditions which the four parameters, a, b, c, and α,
should verify such that the improper integral would converge.

Solutions

• 5319: Proposed by Kenneth Korbin, New York, NY

Let N be an odd integer greater than one. Then there will be a Primitive Pythagorean
Triangle with perimeter equal to

(
N2 +N

)2
. For example, if N = 3, then the perimeter

equals
(
32 + 3

)2
= 144.

Find the sides of the PPT for perimeter
(
152 + 15

)2
and for perimeter

(
992 + 99

)2
.

Solution by David E. Manes, SUNY College at Oneonta, Oneonta, NY

The Primitive Pythagorean Triangle (a, b, c) with perimeter (152 + 15)2 is
(6975, 24832, 25793), and the PPT with perimeter (992 + 99)2 is
(1950399, 48010000, 48049601). One may easily verify that these triangles satisfy the
conditions of the problem.

If m > n are relatively prime positive integers of opposite parity, then they generate a
PPT

(a, b, c) = (m2 − n2, 2mn,m2 + n2),

with perimeter P = 2m(m+ n). If P is a square, then m = 2q2 and m+ n = p2 for some
positive integers p and q. Therefore,

(m,n) = (2q2, p2 − 2q2)

and

a = m2 − n2 = p2(4q2 − p2),

b = 2mn = 4q2(p2 − 2q2),

c = m2 + n2 = p4 − 4p2q2 + 8q4.

Note that p is odd,
√

2q < p < 2q since 4q2 − p2 > 0 and p2 − 2q2 > 0, and gcd(p, q) = 1.
Furthermore, the perimeter P is 4p2q2 = (2pq)2.
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If P = (152 + 15)2, then 2pq = 240. Therefore pq = 120 and the only factors of 120 that
statisfy p as being odd and

√
2q < p < 2q are p = 15 and q = 8. For these values of p

and q,

a = 152
(
4 · 82 − 152

)
= 6975,

b = 4 · 82
(
152 − 2 · 82

)
= 24832,

c = 154 − 4 · 152 · 82 + 8 · 84 = 25793.

If P = (992 + 99)2, then 2pq = 992 + 99 = 9900. Therefore pq = 4950 and the only factors
of 4950 that satisfy p as being odd and

√
2q < p < 2q are p = 99 and q = 50. Then

a = 992
(
4 · 502 − 992

)
= 1950399,

b = 4 · 502
(
992 − 2 · 502

)
= 48010000,

c = 994 − 4 · 992 · 502 + 8 · 504 = 480449601.

Also solved by Ashland University Undergraduate Problem Solving Group,
Ashland, OH; Brian D. Beasley, Presbyterian College, Clinton, SC; Elsie M.
Campbell, Dionne T. Bailey, and Charles Diminnie, Angelo State University,
San Angelo, TX; Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland
Beach, FL; Paul M. Harms, North Newton, KS; Jahangeer Kholdi and
Farideh Firoozbakht, University of Isfahan, Khansar, Iran; Kee-Wai Lau,
Hong Kong, China; Corneliu Mănescu-Avram, Transportation High School
Ploiesti, Romania; Albert Stadler, Herrliberg, Switzerland; Titu Zvonaru,
Comănesti, Romania (jointly with) Neculai Stanciu, “Geroge Emil Palade
School,” Buzău, Romania; David Stone and John Hawkins, Georgia
Southern University, Statesboro, GA, and the proposer.

• 5320: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

It is fairly well known that if (a, b, c) is a Primitive Pythagorean Triple (PPT), then the
product abc is divisible by 60. Find infinitely many PPT’s (a, b, c) such that the sum
(a+ b+ c) is also divisible by 60.

Solution 1 by Bruno Salgueiro Fanego,Viveiro Spain

It is know that a, b and c are the respective legs and hypothenuse of a PPT if and only if
a = m2 − n2, b = 2mn, and c = m2 + n2 for some positive integers m and n such that
m > n and gcd(m,n) = 1 and m− n is odd.

Hence, the perimeter, a+ b+ c = 2m(m+ n), will be divisible by 60 if, for example, m is
divisible by 30 because in that case, 2m and hence 2m(m+ n) would each be divisible
by 60.
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Thus, we can find infinitely many PPT’s (a, b, c) = (m2 − n2, 2mn,m2 + n2) such that
the sum a+ b+ c is also divisible by 60, if we take m = 30k, with k being a positive
integer and, for example, n = 1 because in that case, m = 30k > 1, gcd(m, 1) = 1, and
m− n = 30k − 1 is odd. A possible infinite set of PPT’s is given by

(a, b, c) = (900k2 − 1, 60k, 900k2 + 1), where k is a positive integer.

Solution 2 by Paul M. Harms, North Newton, KS

Consider the Pythagorean Triangle {n2 + 1, n2 − 1, 2n} where n is a positive even
integer. Then the odd integers (n2 + 1) and (n2 − 1), do not have 2 as a factor. Since
their difference is 2 units, these two integers have no common prime factor greater than
one. Thus the triple (n2 + 1, n2 − 1, 2n) represents the sides of a PPT when n is a
positive even integer. The sum of the three side is 2n2 + 2n = 2n(n+ 1). Let n = 30K
where K is a positive integer. Then n is a positive even integer and the sum of the three
sides is divisible by 60. Using different K ′s we see that there are infinitely many PPT’s
satisfying the problem whose sides have the form (n2 + 1, n2 − 1, 2n) and n = 30K. In
these cases the sum of the three sides is 2n(n+ 1) = 60K(30K + 1).

Solution 3, a generalization by Brian D. Beasley, Presbyterian College,
Clinton, SC

We may generalize the given problem as follows: Given any positive integer m, find
infinitely many PPT’s (a, b, c) such that the sum (a+ b+ c) is divisible by m.
Fix any positive integer m. If m is even, then for each positive integer k, we let s = mk
and t = 1 to produce the PPT

(a, b, c) = (m2k2 − 1, 2mk,m2k2 + 1),

for which a+ b+ c = 2mk(mk + 1). If m is odd, then for each positive integer k, we let
s = 2mk and t = 1 to produce the PPT

(a, b, c) = (4m2k2 − 1, 4mk, 4m2k2 + 1),

for which a+ b+ c = 4mk(2mk + 1).

Also solved by Adnan Ali (Student in A.E.C.S-4), Mumbai, India; Elsie M.
Campbell, Dionne T. Bailey, and Charles Diminnie, Angelo State University,
San Angelo, TX; Ed Gray, Highland Beach, FL; Jahangeer Kholdi and
Farideh Firoozbakht, University of Isfahan, Khansar, Iran; Moti Levy,
Rehovot, Israel; Kenneth Korbin, New York, NY; Kee-Wai Lau, Hong Kong,
China; David E. Manes, SUNY College at Oneonta, Oneonta, NY; Corneliu
Mănescu-Avram, Transportation High School Ploiesti, Romania; Angel
Plaza, Universidad de Las Palmas de Gran Canaria, Spain; Titu Zvonaru,
Comănesti, Romania (jointly with) Neculai Stanciu, “Geroge Emil Palade
School,” Buzău, Romania; David Stone and John Hawkins, Georgia
Southern University, Statesboro, GA, and the proposer.

• 5321: Proposed by Lawrence Lesser, University of Texas at El Paso, TX

On pop quizzes during the fall semester, Al gets 1 out of 3 questions correct, while Bob
gets 3 of 8 correct. During the spring semester, Al gets 3/5 questions correct, while Bob
gets 2/3 correct. So Bob did better each semester (3/8 > 1/3 and 2/3 > 3/5) but worse
for the overall academic year (5/11 < 4/8). The total number of questions involved in
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the above example was 3 + 8 + 5 + 3 = 19, and the author conjectures (in his chapter in
the 2001 Yearbook of the National Council of Teachers of Mathematics) that this is the
smallest dataset with nonzero numerators in which this reversal (Simpson’s Paradox)
happens. If we allow zeros, the smallest dataset is conjectured to be 9 : 0/1 < 1/4 and
2/3 < 1/1, but 2/4 > 2/5 .

Prove these conjectures or find counterexamples.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

I wrote a small computer program that did an exhaustive search. It turned out that the
first conjecture is wrong. The smallest value in the first case is 13 and not 19, and these
are the solutions:

1/1 > 6/7, 1/2 > 1/3, 2/3 < 7/10

1/1 > 4/5, 1/3 > 1/4, 2/4 < 5/9

1/1 > 6/7, 2/3 > 1/2, 3/4 < 7/9

1/1 > 4/5, 2/4 > 1/3, 3/5 < 5/8

1/1 > 3/4, 2/5 > 1/3, 3/6 < 4/7

1/1 > 4/5, 3/5 > 1/2, 4/6 < 5/7

1/2 > 1/3, 1/1 > 6/7, 2/3 < 7/10

2/3 > 1/2, 1/1 > 6/7, 3/4 < 7/9

1/3 > 1/4, 1/1 > 4/5, 2/4 < 5/9

2/4 > 1/3, 1/1 > 4/5, 3/5 < 5/8

3/5 > 1/2, 1/1 > 4/5, 4/6 < 5/7

2/5 > 1/3, 1/1 > 3/4, 3/6 < 4/7

The smallest value in the second case is indeed 9 and these are the solutions:

1/1 > 3/4, 1/3 > 0/1, 2/4 < 3/5

1/1 > 2/3, 1/4 > 0/1, 2/5 < 2/4

1/3 > 0/1, 1/1 > 3/4, 2/4 < 3/5

1/4 > 0/1, 1/1 > 2/3, 2/5 < 2/4

Solution 2 by David E. Manes, SUNY College at Oneonta, Oneonta, NY
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The conjecture is false for nonzero numerators since 4/5 < 1/1 and 1/4 < 1/3 but
5/9 > 2/4, and the data set is 13 < 19.

If zero numerator are allowed, then we will show that the smallest data set is indeed

mine, that is if
a2
a1

<
A2

A1
and

b2
b1
<
B2

B1
, then

a2 + b2
a1 + b1

>
A2 +B2

A1 +B1
is impossible if

A1 +B1 + a1 + b1 ≤ 8 and a2 = 0. To do so , we will maximize
a2 + b2
a1 + b1

while minimizing

A2 +B2

A1 +B1
Then a1 = 1 and the maximum value of A1 is 4.

If A1 = 4, then maximizing
a2 + b2
a1 + b1

and minimizing
A2 +B2

A1 +B1
yields the following

0/1 < 1/4

1/2 < 1/1

}
=⇒ 1/3 < 2/5.

Note that for other values of A2, the fraction
A2 +B2

A1 +B1
>

2

5
while

a2 + b2
a1 + b1

=
1

3
.

If A1 = 3, then b1 +B1 ≤ 4 implies b1 is 2 or 3. If b1 = 2, then maximizing
a2 + b2
a1 + b1

, one

obtains
0/1 < 1/3

1/2 < 1/1

}
=⇒ 1/3 < 2/4.

If b1 = 3, then maximizing
a2 + b2

a+ 1 + b+ 1
yields

0/1 < 1/3

2/3 < 1/1

}
=⇒ 2/4 = 2/4.

If A1 = 2, then A2 = 1 and b1 +B1 ≤ 5 implies b1 is 2,3, or 4. If b1 = 2, then b2 = 1 and
minimizing B2/B1 so that b2/b1 < B2/B1 implies B1 = 3 and B2 = 2 . Thus,

0/1 < 1/2

1/2 < 2/3

}
=⇒ 1/3 < 3/5.

If b1 = 3 then b2 = 2 and minimizing B2/B1 implies B1 = 1 = B2. Therefore,

0/1 < 1/2

2/3 < 1/1

}
=⇒ 2/4 < 2/3.

If b1 = 4 then b2 = 3 and B1 = B2 = 1. Therefore,

0/1 < 1/2

3/4 < 1/1

}
=⇒ 3/5 < 2/3.

If A1 = 1 then A2 = 1 and b1 +B1 ≤ 6. Therefore b1is 2,3, or 4. If b1 = 2, then b2 = 1
and minimizing B2/B1 implies B1 = 3 and B2 = 2 . Therefore,

0/1 < 1/1

1/2 < 2/3

}
=⇒ 1/3 < 3/4.
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If b1 = 3, then b2 = 2 and b2/b1 < B2/B1 implies B1 = B2 = 1 since B1 ≤ 3. Thus,

0/1 < 1/1

2/3 < 1/1

}
=⇒ 2/4 < 1/1.

Note if b1 = 3 and b2 = 1, then minimizing B2/B1 implies B1 = 2 and B2 = 1.
Therefore,

0/1 < 1/1

1/3 < 1/2

}
=⇒ 1/4 < 2/3.

If b1 = 4, then the only case when
A2 +B2

A1 +B1
6= 1 is when b2 =. Then B1 = 2 and B2 = 1.

Then
0/1 < 1/1

1/4 < 1/2

}
=⇒ 1/5 < 2/3.

Hence, if zero numerators are allowed, then the smallest dataset in which Simpson’s
Paradox can happen is nine.

Comments by the Michael N Fried of Kibbutz Revivim, Israel and by Lawrence
Lesser, the proposer.

Michael: The inequalities need not be strict, we have for example Bob 1/1, 2/10 and Al
1/2, 1/5. So Bob does better OR AS WELL as Al, while the total for Bob is 3/11, is
worse than the total for Al, 2/7. Under this assumption, the total number of questions
is 1+10+2+5=18<19.

Michael went on to say that these numbers can be represented as slopes of lines, i.e., the
slopes of the lines from (0,0) to (1,1) and (10,2) are great than those from (0,0) to (2,1)
and (5,1), while the slope of the line given by the vector sum of (1,1) and (10,2) is less
than that given by the vector sum of (2,1) and (5,1).

Lawrence: By allowing equality we could actually get it all the way down to 9 (e.g, Bob
1/1, 2/4; Al 1/2, 1/2) but almost every formulation of the problem that I have seen
maintains strict inequality.

Slopes of lines is one of many representations of problem that I complied in my chapter
in the 2001 NCTM yearbook, <http://www.statlit.org/pdf/2001LesserNCTM. pdf>

• 5322: Proposed by D.M. Bătinetu-Girugiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu “G.E. Palade”, School, Buzău, Romania

If lim
n→∞

(
−3

2

3
√
n2 +

n∑
k=1

1
3
√
k

)
= a > 0, then compute lim

n→∞


−3

2

3
√
n2 +

n∑
k=1

1
3
√
k

a


3√n

.

Solution 1 by Kee-Wai Lau, Hong Kong, China

Let [x] be the greatest integer not exceeding x. It is easy to prove by induction that for
positive integers n,

n∑
k=1

k−1/3 − 3

2
n2/3 = b+

1

2
n−1/3 +

1

3

∫ ∞
n

(
t− [t]− 1

2

)
t−4/3dt (1)
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where b = −
(

1

2
+

1

3

∫ ∞
1

(t− [t]) t−4/3dt

)
. The constant b is finite since

∣∣∣∣∫ ∞
1

(t− [t]) t−4/3dt

∣∣∣∣ ≤ ∫ ∞
1

t−4/3dt = 3. Moreover it is negative by (1), a = b. For

t ≥ 0, let f(t) =

∫ t

0

(
x− [x]− 1

2

)
dx. For any integer k, we have

∫ k+1

k

(
x− [x]− 1

2

)
dx = 0, and so f(t) = O(1). Integrating by parts, we see that the

integral in (1) equals
4

3

∫ ∞
n

f(t)t−7/3dt = O
(
n−4/3

)
. Hence by (1), we have

3
√
n lim
n→∞


−3

2

3
√
n2 +

n∑
k=1

1
3
√
k

a

 = 3
√
n ln

(
1 +

1

2a
n−1/3 +O

(
n−4/3

))
=

1

2a
+O

(
n−1/3

)
,

as n→∞. It follows that the limit of the problem equals e1/2a.

Solution 2 by Nicusor Zlota “Traian Vuia” Technical College, Focsani,
Romania

We have the case of 1∞.

Denoting an = −3

2
3
√
n
2

+
n∑
k=1

1
3
√
k

, we may write the limit as:

l = lim
n→∞

(
1 +

an
a

) 3√n
= lim

n→∞

[(
1 +

an − a
a

) a
an−a

]an−a
a

3√n

= elimn→∞
an−a

a
3√n

For l1 = lim
n→∞

an − a
a

3
√
n =

1

a
lim
n→∞

an − a
1
3√n

, and by the Cesaro -Stolz lemma, we have

successively:

l1 =
1

a
lim
n→∞

an+1 − an
1

3√n+1
− 1

3√n
=

1

a
lim
n→∞

−3
2

3
√

(n+ 1)2 + 1
3√n+1

= 3
2

3
√
n

1
3√n+1

− 1
3√n

l1 =
1

2a
lim
n→∞

(
3n+ 1− 3 3

√
n2(n+ 1)

)
3
√
n

3
√
n+ 1− 3

√
n
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=
1

2a
lim
n→∞

(9n+ 1)
(

3
√
n(n+ 1)2 + 3

√
n2(n+ 1) + n

)
(3n+ 1)2 + (9n+ 3) 3

√
n2(n+ 1) + 9n 3

√
n(n+ 1)2

=
1

2a
.

Therefore the limit is l = 21/2a.

Generalization:

If lim
n→∞

(
− p

p− 1

p
√
np−1 +

n∑
k=1

1
p
√
k

)
= a > 0, and we wish to compute

lim
n→∞


− p
p−1

p
√
np−1 +

n∑
k=1

1
p
√
k

a


p√n

, p ∈ N, p ≥ 2

the answer is e1/(p−1)a and its proof is similar to the above.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Moti Levy, Rehovot,
Israel; Corneliu Mănescu-Avram, Transportation High School Ploiesti,
Romania, and the proposers.

• 5323: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let n be a positive integer and let a1, a2, . . . , an be positive real numbers greater than or
equal to one. Prove that(

1

n

n∑
k=1

ak

)−2
+

(
1

n2

n∏
k=1

a−2k

)(
n∑
k=1

(
a2k − 1

)1/2)2

≤ 1.

Solution 1 by Moti Levy, Rehovot, Israel

Let p (x) = (x− 1)

x− n∏
j=1

a2j

 . Then clearly p (x) ≤ 0 for 1 ≤ x ≤
n∏
j=1

a2j .

Every a2k, satisfies 1 ≤ a2k ≤
n∏
j=1

a2j , hence

p
(
a2k
)

=
(
a2k − 1

)a2k − n∏
j=1

a2j

 ≤ 0, 1 ≤ k ≤ n. (1)

Rearranging the terms in (1), we obtain,

1

a2k
+

 n∏
j=1

a−2j

(a2k − 1
)
≤ 1, 1 ≤ k ≤ n. (2)

Taking average of both sides of (2), we get

1

n

n∑
k=1

1

a2k
+

 n∏
j=1

a−2j

( 1

n

n∑
k=1

(
a2k − 1

))
≤ 1. (3)
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The power mean Mp (x1, . . . , xn), is a mean of the form

Mp (x1, . . . , xn) =

(
1

n

n∑
k=1

xpk

) 1
p

,

M0 (x1, . . . , xn) =

(
n∏
k=1

xk

) 1
n

.

The monotonicity property of the power mean is

if p < q, then Mp ((x1, . . . , xn)) ≤Mq ((x1, . . . , xn)) . (4)

By this property M 1
2
≤M1, hence(

1

n

n∑
k=1

(
a2k − 1

) 1
2

)2

≤ 1

n

n∑
k=1

(
a2k − 1

)
. (5)

By (3) and (5),

1

n

n∑
k=1

1

a2k
+

 n∏
j=1

a−2j

( 1

n

n∑
k=1

(
a2k − 1

) 1
2

)2

≤ 1. (6)

Since the function f (x) = 1
x2

is convex for x ≥ 1, then by Jensen’s inequality

1

n

n∑
k=1

1

a2k
≥ 1(

1

n

n∑
k=1

ak

)2 . (7)

It follows from (6) and (7) that

1(
1

n

n∑
k=1

ak

)2 +

 n∏
j=1

a−2j

( 1

n

n∑
k=1

(
a2k − 1

) 1
2

)2

≤ 1.

Solution 2 by Kee-Wai Lau, Hong Kong, China

For k = 1, 2, . . . , n, let ak = sec bk, where 0 ≤ bk <
π

2
. Since the function secx is convex

for 0 <
π

2
, so

1

n

n∑
k=1

ak ≥ sec


n∑
k=1

bk

n

. By the concavity of the function sinx for

0 ≤ x < π

2
, we have

(
1

n

n∏
k=1

a−1k

)(
n∑
k=1

(a2k − 1)1/2

)
=

(
1

n

n∏
k=1

cos bk

)(
n∑
k=1

sin bk
cos bk

)
≤

n∑
k=1

sin bk

n
≤ sin


n∑
k=1

bk

n

 .
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It follows that

(
1

n

n∑
k=1

ak

)−2
+

(
1

n2

n∏
k=1

a−2k

)(
n∑
k=1

(a2k − 1)1/2

)2

≤ cos2


n∑
k=1

bk

n

+sin2


n∑
k=1

bk

n

 = 1,

as required.

Also solved by, Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland
Beach, FL; Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy, and the proposer.

• 5324: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Calculate
∞∑
n=1

(
n ln

(
1 +

1

n

)
− 1 +

1

2n

)
.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

We note that
N∑
n=1

n ln

(
1 +

1

n

)
=

N∑
n=1

n ln(n+ 1)−
N∑
n=1

n ln(n) =

N+1∑
n=1

(n− 1) ln(n)−
N∑
n=1

n ln(n)

= N ln(N + 1)−
N∑
n=1

ln(n) = N ln(N) +N ln

(
1 +

1

N

)
− ln(N !)

= N ln(N) + 1 +O

(
1

N

)
− ln

(√
2πN

)
−N ln(N) +N + o(1)

= N + 1− 1

2
ln(N)− 1

2
ln(2π) + o(1), as N →∞,

where we have used Stirling’s formula in the form N ! =
√

2πNNNe−N+o(1), as N →∞.

N∑
n=1

1 = N

N∑
n=1

1

2n
=

1

2
ln(N) +

γ

2
+ o

(
1

N

)
, as N →∞.

Collecting results we find that

N∑
n=1

(
n ln

(
1 +

1

n

)
− 1 +

1

2n

)
= N + 1− 1

2
ln(N)− 1

2
ln(2π)−N +

1

2
ln(N) +

γ

2
+ o(1)
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= 1− 1

2
ln(2π) +

γ

2
+ o(1), as N →∞, and so

∞∑
n=1

(
n ln

(
1 +

1

n

)
− 1 +

1

2n

)
= 1− 1

2
ln(2π) +

γ

2
.

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

∞∑
n=1

(
n ln

(
1 +

1

n

)
− 1 +

1

2n

)
= lim

N→∞

∞∑
n=1

(
n ln (n+ 1)− n lnn− 1 +

1

2n

)

= lim
N→∞

N∑
n=1

(
(n+ 1) ln (n+ 1))− n lnn− ln(n+ 1)− 1 +

1

2n

)

= lim
N→∞

N∑
n=1

(n+ 1) ln(n+ 1)− n lnn)− lim
N→∞

N∑
n=1

ln(n+ 1)− lim
N→∞

N∑
n=1

1 + lim
N→∞

N∑
n=1

1

2n

= lim
N→∞

(N + 1) ln(N + 1)− lim
N→∞

(ln(N + 1)!)− lim
N→∞

lnN +
1

2
lim
N→∞

N∑
n=1

1

n

= lim
N→∞

(
ln(N + 1)N − ln(N !)− ln(eN )

)
+

1

2
lim
N→∞

N∑
n=1

1

n

= lim
N→∞

ln
(N + 1)N

N !eN
+

1

2
lim
N→∞

N∑
n=1

1

n

= lim
N→∞

ln

(N + 1)N

NN
NN
√
N

1√
N

N !eN
+

1

2
lim
N→∞

N∑
n=1

1

n

= lim
N→∞

ln

(
1 +

1

N

)N
NN

NN
√
N

1√
N

N !eN
+

1

2
lim
N→∞

N∑
n=1

1

n

= lim
N→∞

(
ln

((
1 +

1

N

)N)
+ ln

NN
√
N

N !eN
+ ln

1√
N

)
+

1

2
lim
N→∞

N∑
n=1

1

n

= ln lim
N→∞

(
1 +

1

N

)N
+ ln lim

N→∞

NN
√
N

N !eN
+

1

2
lim
N→∞

(
N∑
n=1

1

n
− lnN

)

12



= ln e+ ln

(
1√
2π

)
+
γ

2

=
1

2
(2− ln(2π) + γ) ,

where we have used the Stirling approximation for N ! and where γ is the
Euler-Mascheroni constant.

Also solved by Ed Gray, Highland Beach, FL; G.E. Greubel, Newport News,
VA; Moti Levy, Rehovot, Israel; Kee-Wai Lau, Hong Kong, China; Corneliu
Mănescu-Avram, Transportation High School Ploiesti, Romania; Paolo
Perfetti, Department of Mathematics, Tor Vergata Roma University, Rome,
Italy, and the proposer.

Late Solutions, Comments, and an Announcement

A late solution to problem #5316 was received from Raymon M. Melone of
Waynesburg University, Waynesburg, PA.

Comment by Titu Zvonaru, Comănesti, Romania. Solution 4 of problem #5317 is
incorrect, because inequality (2) in the solution does not hold. For example: If

n = 3, bs+2
1 = 6, bs+2

2 = 9, bs+2
3 = 3, a1 =

1

6
, a2 =

1

2
and a3 =

1

3

then the LHS= 36 + 18 + 9+ = 63, while the RHS=
1

3
(6 + 2 + 3) (6 + 9 + 3) = 66.

The Chebyschev inequality maybe applied only if the sequences are both ascending or
both descending. Of course, we may assume that one of the sequences is ascending but
this assumption does not imply that the second sequence is also ascending:

b1 ≥ b2 ≥ · · · ≥ bn 6=⇒ a1 ≥ a2 ≥ · · · ≥ an.

For example, the inequality

n∑
k=1

bs+2
k ≥ 1

n

(
n∑
k=1

bk

)(
n∑
k=1

bs+1
k

)

is correct.

Announcement: Following is part of a letter that was received from Don Allen of
Brossard, Canada. Don has agreed that I may distribute his pdf file and an
accompanying article entitled “The verse problems of early American arithmetics” to
anyone who is interested in receiving them. Please send your requests to me at
<eisenbt@013.net>

—————————-

Dear Professor Eisenberg:
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When we corresponded in late October, I related how SSM program 5314 had reminded
me of the more challenging problems routinely posed in nineteenth-century school
algebra and arithmetic texts, which I had searched through in a then-uncatalogued
collection at the United States university when I was completing doctoral studies –
Rutgers, in New Jersey. I copied hundreds of such early “word problems” (authors had
been copying one another for decades), and used many of them as challenges for
teachers and for abler students. When I was working in Canada’s Eastern Arctic
decades later, I assembled some of the more satisfying teacher columns that I had
prepared for such problems and their suggested solutions, and shared them with able,
interested students and their parents on an evening at the library/museum of an
appropriate arctic community. I recently located the original of the 30-page handout, I
would like to put them at your disposal. You may print any you wish, and use in SSM
any you feel appropriate and desirable.

Cordially,

Don Allen
Brossard, Canada
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