
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
April 15, 2016

• 5385: Proposed by Kenneth Korbin, New York, NY

A triangle with integer length sides and integer area has perimeter P = 66. Find the
sides of the triangle when the area is minimum.

• 5386: Proposed by Michael Brozinsky, Central Islip, NY.

Determine whether or not there exit nonzero constants a and b such that the conic
whose polar equation is

r =

√
a

sin(2θ)− b cos(2θ)

has a rational eccentricity.

• 5387: Proposed by Arkady Alt, San Jose, CA

Let D := {(x, y) | x, y ∈ R+, x 6= y and xy = yx} .(Obviously x 6= 1 and y 6= 1 ).

Find sup
(x,y)∈D

(
x−1 + y−1

2

)−1
• 5388: Proposed by Jiglău Vasile, Arad, Romania

Let ABCD be a cyclic quadrilateral, R and r its exradius and inradius respectively, and
a, b, c, d its side lengths (where a and c are opposite sides.) Prove that

R2

r2
≥ a2c2

b2d2
+
b2d2

a2c2
.

• 5389: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let ABC be a scalene triangle with semi-perimeter s and area A. Prove that

3a+ 2s

a(a− b)(a− c)
+

3b+ 2s

b(b− a)(b− c)
+

3c+ 2s

c(c− a)(c− b)
<

3
√

3

4A
.
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• 5390: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let A ∈M2 (R) such that AAT =

(
a b
b a

)
, where a > b ≥ 0. Prove that AAT = ATA

if and only if A =

(
α β
β α

)
or A =

(
β α
α β

)
, where α =

±
√
a+ b±

√
a− b

2
and

β =
±
√
a+ b∓

√
a− b

2
. Here AT denotes the transpose of A.

Solutions

• 5367: Proposed by Kenneth Korbin, New York, NY

Given triangle ABC with integer length sides and integer area. The vertices have
coordinates A(0, 0), B(x, y) and C(z, w) with

√
x2 + y2 −

√
z2 + w2 = 1.

Find positive integers x, y, z and w if the perimeter is 84.

Solution by Ed Gray, Highland Beach, FL

Let the sides of the triangle be a, b, c where b =
√
z2 + w2 and c =

√
x2 + y2.

We are given that

c− b = 1
a+ b+ c = 84. So, subtracting
a+ 2b = 83, or, a = 83− 2b.

By Brahmagupta’s formula, the area T is given by

T 2 = s(s− a)(s− b)(s− c), where s =
1

2
(a + b + c) = 42. Then,

T 2 = 42 (42− (83− 2b)) (42− b) (42− (b+ 1)) , or
T 2 = 42 (2b− 41) (42− b)(41− b) =⇒ b = 34. So
T 2 = (42)(27)(8)(7) = (14)2 · 92 · 22 = (252)2 =⇒
T = 252, b = 34, c = b+ 1 = 35, and a = 15.

Since b =
√
z2 + w2, b2 = 342 = 1156 = z2 + w2 and we have z = 30, w = 16 since

900 + 256 = 1156, or vice versa, z = 16 and w = 30. Similarly,

c =
√
x2 + y2, c2 = 352 = 1225 = x2 + y2 and we have x = 28, y = 21 since

784 + 441 = 1225, or vice versa, x = 21 and y = 28.

In summary, (x, y, z, w) ∈ {(21, 28, 30, 16), (28, 21, 16, 30)}.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
Sate University, San Angelo, TX; Brian D. Beasley, Presbyterian College,
Clinton, SC; Bruno Salgueiro Fanego, Viveiro, Spain; Paul M. Harms, North
Newton, KS; Kee-Wai Lau, Hong Kong, China; David E. Manes, SUNY
College at Oneonta, Oneonta, NY; Neculai Stanciu, “George Emil Palade”
General School, Buzău, Romania and Titu Zvonaru, Comănesti, Romania;
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David Stone and John Hawkins, Georgia Southern University, Statesboro,
GA, and the proposer.

• 5368: Proposed by Ed Gray, Highland Beach, FL

Let abcd be a four digit number in base 10, none of which are zero, such that the last
four digits in the square of abcd are abcd, the number itself. Find the number abcd.

Solution 1 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX

If x =
(
a× 103

)
+
(
b× 102

)
+ (c× 10) + d, with a, b, c, d ∈ {1, 2, . . . , 9},then

x2 =
(
a2 × 106

)
+
(
2ab× 105

)
+
[(
b2 + 2ac

)
× 104

]
+
[
2 (ad+ bc)× 103

]
+
[(
c2 + 2bd

)
× 102

]
+ (2cd× 10) + d2.

In order for the units digit of x2 to be d, we must have d2 ≡ d (mod 10). Since
d ∈ {1, 2, . . . , 9}, this restricts our choices to d = 1, 5, or 6

Case 1. If d = 1, then d2 = 1 and to obtain c as the tens digit of x2, we need 2cd ≡ c
(mod 10). Since d = 1, this reduces to c ≡ 0 (mod 10), which is impossible when
c ∈ {1, 2, . . . , 9}. Therefore, this case fails.

Case 2. If d = 5, then d2 = 25 and to get c as the tens digit of x2, we require that
2cd+ 2 ≡ c (mod 10). With d = 5, this reduces to c ≡ 2 (mod 10) and hence, c = 2.
When c = 2 and d = 5, we have (2cd× 10) + d2 = 225. To get b as the hundreds digit of
x2, we are forced to set

c2 + 2bd+ 2 ≡ b (mod 10) .

This reduces to b ≡ 6 (mod 10) and thus, b = 6. When d = 5, c = 2, and b = 6, we have(
c2 + 2bd

)
× 102 + (2cd× 10) + d2 = 6625. Finally, to obtain a as the thousands digit of

x2, we are left with
2 (ad+ bc) + 6 ≡ a (mod 10) ,

which reduces to a ≡ 0 (mod 10). Since this is impossible when a ∈ {1, 2, . . . , 9}, this
case also fails.

Case 3. If d = 6, then d2 = 36 and to get c as the tens digit of x2, we must set
2cd+ 3 ≡ c (mod 10). This reduces to c ≡ 7 (mod 10) and hence, c = 7. When d = 6 and
c = 7, (2cd× 10) + d2 = 876. To get b as the hundreds digit of x2 now requires that
c2 + 2bd+ 8 ≡ b (mod 10), i.e., b ≡ 3 (mod 10). Hence, b = 3 and(
c2 + 2bd

)
× 102 + (2cd× 10) + d2 = 9376. Finally, in order for the thousands digit of x2

to be a, we need 2 (ad+ bc) + 9 ≡ a (mod 10) or a ≡ 9 (mod 10). This yields a = 9 and
x = 9376. Since (9376)2 = 87909376, our solution is complete.

Solution 2 by Bruno Salguerio Fanego, Viveiro, Spain

Note that abcd can be expressed as 1000a+ 100b+ 10c+ d, whose square (abcd)2 is

a2 · 106 + 2ab · 105 + (2ac+ b2) · 104 + (2ad+ 2bc) · 1000 + (2bd+ c2) · 100 + 2cd · 10 + d2.

Moreover, 1 ≤ a, b, c, d ≤ 9 . We distinguish several cases:

If d ≤ 3, the last digit of (abcd)2 is d2, which, since its last four digits are abcd, must be
equal to d, so d = 1, in which case, for c ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}, we obtain that the last
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two digits of (abc1)2 = . . .+ 2c · 10 + 1 are, respectively, {21, 41, 61, 81, 01, 21, 41, 61, 81}
and, on the other hand, since the last two digits of (abc1)2 are equal to c1, they must be
also equal to {11, 21, 31, 41, 51, 61, 71, 81, 91}. But none of the two possible ending digits
for (abcd)2 coincides with units digit of this last possible ending, and so we conclude
that this case, that is, d ≤ 3, is impossible, so d ≥ 4. Since d2 ends in 1, 4, 9, 6 or
5, (abcd)2 ends in 1, 4, 9, 6 or 5, so d ∈ {4, 5, 6, 9} and, hence, (abcd)2 ends in 6, 5, 6, 1
respectively, so d ∈ {6, 5, 6, 1} respectively, which implies that d ∈ {5, 6}.
When d = 5, (abcd)2 = . . .+ (2bd+ c2 + c) · 10 + 25 ends in 25, so c = 2. Then,

(abcd)2 = · · ·+ (2b · 5 + 2 · 22) · 100 + (2 · 2 · 5 + 22) · 10 + 25 = . . .+ 625,

which ends in 625, so b = 6 . Hence,

(abcd)2 = . . .+ (2 · a · 5 + 2 · 6 · 2) · 1000 + (2 · 6 · 5 + 22) · 100 + (2 · 2 · 5) · 10 + 25,

which ends in 0625 and this contradicts the fact that (abcd)2 must end in abcd (because
a cannot be equal to zero).

When d = 6 , we obtain respectively that, for c ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9} , (abcd )2 ends in
56, 76, 96, 16, 36, 56, 76, 96, 16. Thus, the only possible case is c = 7, being thus

(abcd)2 = (ab76)2 = (12a+ 14b) · 1000 + (12b+ 49) · 100 + 876.

Hence, we obtain that, when b ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}, (abcd)2 ends in
976, 176, 376, 576, 776, 976, 176, 376, 576, respectively, which implies that b = 3 is the
only possibility.

Then, (abcd)2 = (a376)2, which ends 3376, 5376, 7376, 9376, 1376, 3376, 5376, 7376, 9376
for a equal to 1, 2, 3, 4, 5, 6, 7, 8, 9. This implies that a = 9 and since 93762 ends in 9376,
we conclude that the only solution to the problem is the number 9376.

Solution 3 by Paul M. Harms, North Newton, KS

Let us look for the answer to the problem by checking one digit at a time. First consider
a one-digit number whose square has the same units digit as the original number. The
one-digit number will have to be 1, 5, or 6.

Let us now try two-digit numbers whose units digit is 1 and whose square has the same
last two digits as the original number. It is easy to show that no two-digit number exists
for this case.

Now consider the case where the units digit is 5. All numbers of this type have squares
ending in 25. Thew number 25 is the only two-digit number whose square ends in 25.

We find 625 is the only three-digit number whose square ends in 625.

If a is any non-zero fourth digit, we find that a625 has a square that ends in 0625.Thus
the number satisfying the problem cannot end in 5. We now consider the case where the
units digit is 6. We see that 762 = 5776, 3762 = 141376, and 93762 = 87909376. The
number 9376 satisfies the problem.

Editor′s comment: Brian D. Beasley of Presbyterian College in Clinton SC,
Kenneth Korbin of New York, NY, and the team of David Stone and John
Hawkins of Georgia Southern University each mentioned in their solution that
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such sequences are called “automorphic numbers” and start as
{5, 25, 625, 0625, 90625, . . .} and {6, 76, 376, 9376, 09376, . . .}. See: Weisstein, Eric W.
“Automorphic Number” in MathWorld-A Wolfram Web Resource,
<http://matheworld.wolfram.com/Automorphic Number.html>.

David Stone and John Hawkins constructed and proved the following theorem.

For any n ≥ 1, there are exactly four n-digit integers N such that the last n digits of N2

are the digits of N . The four numbers are 0 and 1 (considered as n-digit integers),
2n·4·5

n−1
and 5n·2

n−1
(both being reduced mod 10n).

They went on to say that they did not find the above theorem in the literature that they
searched on automorphic numbers.

Also solved by Stephen Acampa (student at Eastern Kentucky University),
Richmond, KY; Brian D. Beasley, Presbyterian College, Clinton SC;
Kee-Wai Lau, Hong Kong, China; Kenneth Korbin, New York, NY; Carl
Libis, Columbia Southern University, Orange Beach, AL; David E. Manes,
SUNY College at Oneonta, Oneonta, NY; Susan Popp (graduate student at
Eastern Kentucky University), Richmond, KY; Erron Prickett (graduate
student at Eastern Kentucky University), Richmond, KY; Neculai Stanciu,
“George Emil Palade” School, Buzău, Romania and Titu Zvonaru,
Comănesti, Romania; David Stone and John Hawkins of Georgia Southern
University, Statesboro, GA; Deven Turner (student at Eastern Kentucky
University), Richmond, KY, and the proposer.

• 5369: Proposed by Chirita Marcel, Bucuresti, Romania

A convex quadrilateral ABCD has area S and side lengths
AB = a,BC = b, CD = c,DA = d. Show that

2 (a+ b+ c+ d)2 + a2 + b2 + c2 + d2 ≥ 36

√(
S2 + abcd cos2

A+ C

2

)
.

Solution by Nikos Kalapodis, Patras, Greece

Taking into account the Bretschneider’s formula (see [1]) for the area of a convex
quadrilateral:

S =

√
(s− a)(s− b)(s− c)(s− d)− abcd cos2

A+ C

2
, where s =

a+ b+ c+ d

2
,

we see that the given inequality is equivalent to

2(a+ b+ c+ d)2 + a2 + b2 + c2 + d2 ≥ 36
√

(s− a)(s− b)(s− c)(s− d) (∗).

Now from the Cauchy-Schwartz inequality and the AM-GM inequality we have

2(a+ b+ c+ d)2 + a2 + b2 + c2 + d2 ≥ 2(a+ b+ c+ d)2 +
(a+ b+ c+ d)2

4

=
9

4
(a+ b+ c+ d)2

=
9

4
[(s− a) + (s− b) + (s− c) + (s− d)]2
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≥ 9

4

[
4 4
√

(s− a)(s− b)(s− c)(s− d)
]2

= 36
√

(s− a)(s− b)(s− c)(s− d).

We have thus proved (∗) and this completes the solution.

[1] https://en.wikipedia.org/wiki/Bretschneider

Also solved by Bruno Salguerio Fanego, Viveiro, Spain; Kee-Wai Lau, Hong
Kong, China; Moti Levy, Rehovot, Israel; Neculai Stanciu, “George Emil
Palade” School, Buzău, Romania and Titu Zvonaru, Comănesti, Romania;
Nicusor Zlota, “Traian Vuia” Technical College, Focsani, Romania, and the
proposer.

• 5370: Proposed by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain

Let f(x) and g(x) be arbitrary functions defined for all x ∈ <. Prove that there is a
function h(x) such that

(f(x)− h(x))2015 · (g(x)− h(x))2015

is an odd function for all x ∈ <.

Solution by Moti Levy, Rehovot, Israel

If f (x) is odd then (f(x))2015 is odd, hence proving that there is a
function h(x) such that

(f(x)− h(x))(g(x)− h(x))

is an odd function for all x ∈ R will suffice.
Let

h (x) =
1

2
(f (x) + f (−x) + g (x)− g (−x)) .

(f(x)− h(x)) (g(x)− h(x))

=

(
f(x)− 1

2
(f (x) + f (−x) + g (x)− g (−x))

)(
g(x)− 1

2
(f (x) + f (−x) + g (x)− g (−x))

)
=

(
f (x)− f (−x)

2
− g (x)− g (−x)

2

)(
g(x) + g (−x)

2
− f (x) + f (−x)

2

)
.

The first factor is odd function, while the second factor is even function, hence the
product is an odd function, as required.

Also solved by Arkady Alt, San Jose, CA; Bruno Salgueiro Fanego, Viveiro,
Spain; Neculai Stanciu, “George Emil Palade” General School, Buzău,
Romania and Titu Zvonaru, Comănesti, Romania, and the proposer.

• 5371: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let a1, a2, . . . , an be positive real numbers where n ≥ 4 . Prove that(
a1

an + a2

)2

+

(
a2

a1 + a3

)2

+ . . .+

(
an

an−1 + a1

)2

≥ 4

n
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Solution 1 by David E. Manes, SUNY College at Oneonta, Oneonta, NY

Define vector ~u and ~v in Rn such that

~u = (1, 1, 1, . . . , 1) and ~v =

(
a1

an + a2
,

a2
a1 + a3

, · · · , an
an−1 + a1

)
.

Then the Cauchy-Schwarz inequality implies ||~u||||~v|| ≥ ~u·~v. Therefore,

√
n

√(
a1

an + a2

)2

+

(
a2

a1 + a3

)2

+ · · ·+
(

an
an−1 + a1

)2

≥ a1
an + a2

+
a2

a1 + a3
+· · ·+ an

an−1 + a1
.

Squaring the inequality, we obtain

(
a1

an + a2

)2

+

(
a2

a1 + a3

)2

+· · ·+
(

an
an−1 + a1

)2

≥

(
a1

an + a2
,

a2
a1 + a3

, · · · , an
an−1 + a1

)2

n
.

The result now follows provided we can show that if n ≥ 4, then

Jn =
a1

an + a2
+

a2
a1 + a3

+ · · ·+ an
an−1 + a1

≥ 2.

To this end, let n = 4. Then

J4 =
a1

a4 + a2
+

a2
a1 + a3

+
a3

a2 + a4
+

a4
a3 + a1

=
a1 + a3
a2 + a4

+
a2 + a4
a1 + a3

≥ 2,

since x+
1

x
≥ 2 for all x > 0. Assume inductively tht k is a positive integer, k ≥ 4, and

Jk ≥ 2. Consider k + 1 positive numbers a1, a2, . . . ak, ak+1. Since Jk+1 is symmetric
with respect to these numbers, we can assume without loss of generality that
aj ≥ ak + 1 for j = 1, 2, . . . , k. Then

Jk+1 =
a1

ak+1 + a2
+

a2
a1 + a3

+ · · ·+ ak
ak−1 + ak+1

+
ak+1

ak + a1
.

Observe that

ak+1 ≤ ak implies ak+1 + a2 ≤ ak + a2 implies
a1

ak+1 + a2
≥ a1
ak + a2

, and similarly

ak
ak−1 + ak+1

≥ ak
ak−1 + a1

. Therefore,

Jk+1 ≥ Jk +
ak+1

ak + a1
> Jk ≥ 2

by the induction hypothesis. Hence, by induction Jn ≥ 2 if n ≥ 4.

Accordingly,(
a1

an + a2

)2

+

(
a2

a1 + a3

)2

+ · · ·+
(

an
an−1 + a1

)2

≥ (Jn)2

n
≥ 4

n
.

Solution 2 by Neculai Stanciu, “George Emil Palade” General School,
Buzău, Romania and Titu Zvonaru, Comănesti, Romania

Since
(
an + a2)

2 ≤ 2
(
a2n + a22) , it suffices to prove that
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x1
xn + x2

+
x2

x1 + x3
+ · · ·+ xn

xn−1 + x1
≥ 8

n
, where x1 = a2i .

We shall prove that

x1
xn + x2

+
x2

x1 + x3
+ · · ·+ xn

xn−1 + x1
≥ 2.

By Bergstrm’s inequality we obtain

x1
xn + x2

+
x2

x1 + x3
+ · · ·+ xn

xn−1 + x1
≥ (x1 + x2 + · · ·+ xn)2

2 (x1x2 + x2x3 + · · ·+ xn−1xn + xnx1)
,

so it suffices to show that

(x1 + x2 + · · ·+ xn)2 ≥ 4 (x1x2 + x2x3 + · · ·+ xn−1xn + xnx1) . (1)

The inequality (1) is cyclic; we can assume that xn = min{x1, x2, . . . , xn−1, xn}.
• For n odd we have

(x1 + x2 + · · ·+ xn)2 − 4 (x1x2 + x2x3 + · · ·+ xn−1xn + xnx1)

≥ (x1 − x2 + . . .− xn−1 + xn)2 + 4x1xn−1 − 4x1xn ≥ 0.

• For n even we have

(x1 + x2 + · · ·+ xn)2 − 4 (x1x2 + x2x3 + · · ·+ xn−1xn + xnx1)

≥ (x1 − x2 + . . .+ xn−1 − xn)2 .

Remark. For n ≥ 8 we have a simple solution, i.e.,

x1
xn + x2

+
x2

x1 + x3
+· · ·+ xn

xn−1 + x1
≥ x1
x1 + x2 + · · ·+ xn

+· · ·+ xn
x1 + x2 + · · ·+ xn

= 1 ≥ 8

n
.

Editor′s comment: Paolo Perfetti mentioned in his solution that
a1

an + a2
+

a2
a1 + a3

+ · · ·+ an
an−1 + a1

≥ 2 is known as being one of the Shapiro

inequalities, and that its proof by induction can be found in
<http://olympiads.mccme.ru/1ktg/2010/5/5-1en.pdf>.

Also solved by Arkady Alt, San Jose, CA; Bruno Salgueiro Fanego, Viveiro,
Spain; Ed Gray, Highland Beach, FL; Kee-Wai Lau, Hong Kong, China;
Moti Levy, Rehovot, Israel; Paolo Perfetti, Mathematics Department, Tor
Vergata University, Rome, Italy; Nicusor Zlota, “Traian Vuia” Technical
College, Focsani, Romania, and the proposer.

• 5372: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

(a) Let k ≥ 2 be an integer. Calculate∫ ∞
0

ln(1 + x)

x k
√
x

dx.
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(b) Calculate ∫ ∞
0

ln(1− x+ x2)

x
√
x

dx.

Solution 1 by Moti Levy, Rehovot, Israel

Reference: Emil Artin, “The Gamma Function”, Holt, Rinehart and Winston, 1964.
Page 29.

(a)

The well known Euler’s reflection formula for the Gamma function is

Γ (x) Γ (1− x) =
π

sinπx
, 0 < x < 1.

From the definition of the Beta function,

B (x, 1− x) =
Γ (x) Γ (1− x)

Γ (1)
=

∫ 1

0
tx−1 (1− t)−x dt.

Since Γ (1) = 1, ∫ 1

0
tx−1 (1− t)−x dt =

π

sinπx
, 0 < x < 1.

Changing the variable of integration u = t
1−t , we get∫ ∞

0

ux−1

1 + u
du =

π

sinπx
, 0 < x < 1.

By integration by parts, we get∫ ∞
0

ux−1

1 + u
du = (1− x)

∫ ∞
0

ln (1 + u)

u2−x
du

Now set x = 1− 1
k to obtain,

1

k

∫ ∞
0

ln (1 + u)

u1+
1
k

du =
π

sinπ
(
1− 1

k

) =
π

sin π
k

.

We conclude that ∫ ∞
0

ln (1 + x)

x k
√
x

dx =
kπ

sin π
k

, k ≥ 2.

(b)
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1− x+ x2 = (x+ α) (x+ β) with αβ = 1 and α+ β = −1.∫ ∞
0

ln
(
1− x+ x2

)
x
√
x

dx =

∫ ∞
0

ln ((x+ α) (x+ β))

x
√
x

dx

=

∫ ∞
0

ln (x+ α)

x
√
x

dx+

∫ ∞
0

ln (x+ β)

x
√
x

dx

=

∫ ∞
0

lnα+ ln
(
x
α + 1

)
x
√
x

dx+

∫ ∞
0

lnβ + ln
(
x
β + 1

)
x
√
x

dx

=

∫ ∞
0

ln (αβ)

x
√
x
dx+

1√
α

∫ ∞
0

ln
(
x
α + 1

)
x
α

√
x
α

dx

α
+

1√
β

∫ ∞
0

ln
(
x
β + 1

)
x
β

√
x
β

dx

β

Changing the variable of integration, we obtain∫ ∞
0

ln
(
1− x+ x2

)
x
√
x

dx =

(
1√
α

+
1√
β

)∫ ∞
0

ln (u+ 1)

u
√
u

du

1√
α

+
1√
β

=

√
α+
√
β√

αβ
=
√
α+

√
β =

√
α+ β + 2

√
αβ =

√
−1 + 2 = 1.

We conclude that∫ ∞
0

ln
(
1− x+ x2

)
x
√
x

dx =

∫ ∞
0

ln (u+ 1)

u
√
u

du =
2π

sin π
2

= 2π.

Editor’s comment: Ulrich Abel of Technische Hochschule Mittelhessen in
Freiberg, Germany, wrote that “both integrals of Problem 5372 can be determined
by using computer algebra. Mathematica V. 9” and he then stated:

(a)

∫ ∞
0

ln(1 + x)

xa
dx = π · Cosec(a · π)

1− a
for all constants a such that 1 < Re[a] < 2. This

is slightly more general than the proposed problem.

(b)

∫ ∞
0

ln(x2 − x+ 1)

x3/2
dx =2π.

Solution 2 by Kee-Wai Lau, Hong Kong, China

(a) Denote the integral by I. By substitution x = yk, we obtain

I = k

∫ ∞
0

ln
(
1 + yk

)
y2

dy. Since lim
y→0+

(
ln(1 + yk)

y

)
= lim

y→∞

(
ln(1 + yk)

y

)
= 0,

so by integrating by parts, we obtain

I = −k
∫ ∞
0

ln(1 + yk)d

(
1

y

)
= k2

∫ ∞
0

yk−2

1 + yk
dy.
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We next substitute y =
1

z
to obtain I = k2

∫ ∞
0

1

1 + zk
dz. It is known ([1], entry

34.24(2))

that

∫ ∞
0

1

1 + zk
dz =

π

k
csc
(π
k

)
, and so I = πk csc

(π
k

)
.

(b) Denote the integral by J . By substitution x = y2 we obtain

J = 2

∫ ∞
0

ln(1− y2 + y4)

y2
dy. Since

lim
y→0+

(
ln(1− y2 + y4)

y

)
= lim

y→∞

(
ln(1− y2 + y4)

y

)
= 0,

so by integrating by parts, we obtain

J = 2

∫ ∞
0

ln(1− y2 + y4)

y2
dy = −2

∫ ∞
0

ln(1− y2 + y4)d

(
1

y

)

= 4

∫ ∞
0

2y2 − 1

1− y2 + y4
dy = 8

∫ ∞
0

y2

1− y2 + y4
dy − 4

∫ ∞
0

1

1− y2 + y4
dy.

Substituting y =
1

z
, we obtain

∫ ∞
0

y2

1− y2 + y4
dy =

∫ ∞
0

1

1− z2 + z4
dz, so that

J = 4

∫ ∞
0

1

1− y + y4
dy. It is known ([1], entry 3.242(1)) that

∫ ∞
0

1

1− y2 + y4
dy =

π

2
and so

J = 2π.

Reference [1] I.S. Gradshteyn and I.M. Ryzhik: Tables of Integrals, Series, and Products,
Seventh Edition, Elsevier, Inc., 2007.
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Solution 3 by Albert Stadler, Herrliberg, Switzerland

Both integrals can be evaluated by means of the following

Lemma

Let 0 < a < 1. Let 0 < b < 2π. Then

∫ ∞
0

x−a

x− eib
dx =

πeia(π−b)

sin(πa)
.

Proof of the Lemma

Define a path C that consists of the following pieces:

C1 : Reit, 0 < t < 2π, run through once in the positive direction,

C2 : t, ε < t < R, run through in the direction of decreasing real values,

C3 : εeit, 0 < t < 2π run through once in the negative direction,

C4 : t, ε < t < R, run through in the direction of increasing real values.,

Define the branch of z−a such that z−a =
(
|z| eiArg(z)

)−a
, where 0 < Arg(z) < 2π.

Then, by Cauchy’s theorem,

1

2πi

∫
C

z−a

z − eib
dz = Res

(
z−a

z − eib
, z = eib

)
= e−abi. (1)

The integral
1

2πi

∫
C

z−a

z − eib
dz splits as follows:

1

2πi

∫
C

z−a

z − eib
dz =

1

2πi

∫
C1

z−a

z − eib
dz+

1

2πi

∫
C2

z−a

z − eib
dz+

1

2πi

∫
C3

z−a

z − eib
dz+

1

2πi

∫
C4

z−a

z − eib
dz.

We treat each of these four integrals separately.∣∣∣∣ 1

2πi

∫
C1

z−a

z − eib
dz

∣∣∣∣ ≤ 1

2π

R−a

R− 1
2πR = O

(
R−a

)
, as R→∞,

∣∣∣∣ 1

2πi

∫
C3

z−a

z − eib
dz

∣∣∣∣ ≤ 1

2π

ε−a

ε− 1
2πε = O

(
ε1−a

)
, as ε→ 0.

Therefore,

1

2πi

∫
C

z−a

z − eib
dz =

1

2πi

∫ ∞
0

x−a

x− eib
dx− 1

2πi

∫ ∞
0

(
xe2πi

)−a
x− eib

dx =
1

2πi

(
1− e−2πia

) ∫ ∞
0

x−a

x− eib
dx. (2)
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We combine (1) and (2) and get

1

2πi

(
1− e−2πia

) ∫ ∞
0

x−a

x− eib
dx = eiab

which is the claim of the lemma.

(a) Let 1 < a < 2. Partial integration yields∫ ∞
0

log(1 + x)

xa
dx =

−x1−a log(1 + x)

a− 1

∣∣∣∣∣
∞

0︸ ︷︷ ︸+
1

a− 1

∫ ∞
0

x1−a

1 + x
dx =

1

a− 1

∫ ∞
0

x1−a

1 + x
dx,

because the first term evaluates to zero.

We set b = π and apply the lemma to get∫ ∞
0

log(1 + x)

xa
dx =

1

a− 1

∫ ∞
0

x1−a

1 + x
dx =

1

a− 1
· π

sin(π(a− 1))
=
−1

a− 1
· π

sin(πa)
.

(a) is the special case a = 1 +
1

k
.

(b) Let 1 < a < 2. Partial integration yields∫ ∞
0

log(1− x+ x2)

xa
dx =

−x1−a log(1− x+ x2)

a− 1

∣∣∣∣∣
∞

0︸ ︷︷ ︸+
1

a− 1

∫ ∞
0

x1−a(2x− 1)

1− x+ x2
dx

=
1

a− 1

∫ ∞
0

x1−a

x− e
πi
3

dx+
1

a− 1

∫ ∞
0

x1−a

x− e
5πi
3

,

because the first time evaluates to zero.

We apply the lemma to get∫ ∞
0

log(1− x+ x2)

xa
dx =

1

a− 1
· πe

i(a−1)(π−π
3
)

sin(π(a− 1))
+

1

a− 1
· πe

i(a−1)(π− 5π
3
)

sin(π(a− 1))

=
2π

a− 1
·

cos
(
2π
3 (a− 1)

)
sin(π(a− 1))

=
−2π

a− 1
·

cos
(
2π
3 (a− 1)

)
sin(π(a))

.

In particular, if a =
3

2
then

∫ ∞
0

log(1− x+ x2)

x
√
x

dx = −4π ·
cos
(π

3

)
sin(3π/2)

= 2π.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain, and the proposer.
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