
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
April 15, 2013

• 5242: Proposed by Kenneth Korbin, New York, NY

Let N be any positive integer, and let x = N(N + 1). Find the value of

x/2∑
K=0

(
x−K
K

)
xK .

• 5243: Proposed by Neculai Stanciu, “George Emil Palade” Secondary School,
Buzău, Romania

If a, b, c are consecutive Pythagorean numbers, then solve in the integers the equation:

x2 + bx

ay − 1
= c.

(A consecutive Pythagorean triple is a Pythagorean triple that is composed of
consecutive integers.)

• 5244: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

Let Ta and Sb denote the ath triangular and the bth square number, respectively. Find
explicit instances of such numbers to prove that every Fibonacci number Fn occurs
among the values gcd(Ta, Sb).

• 5245: Proposed by Enkel Hysnelaj, University of Technology, Sydney, Australia and
Elton Bojaxhiu, Kriftel, Germany

Determine all functions f : < → <− {−2,−1

2
,−1, 0,

1

2
, 2}, which satisfy the relation

f(x) + f

(−x− 5

2x+ 1

)
+ f

(
4x+ 5

−2x+ 2

)
= ax+ b

where a, b,∈ <.

• 5246: Proposed by José Luis Dı́az-Barrero, Polytechnical University of Catalonia,
Barcelona, Spain
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Let a1, a2, . . . an, (n ≥ 3) be distinct complex numbers. Compute the sum

n∑
k=1

sk
∏
j 6=k

(−1)n

aj − ak
,

where sk =

(
n∑
i=1

ai

)
− ak, 1 ≤ k ≤ n.

• 5247: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Calculate

lim
n→∞

1

n
n

√∫ 1

0
ln(1 + ex) ln(1 + e2x) · · · ln(1 + enx) dx.

Solutions

• 5224: Proposed by Kenneth Korbin, New York, NY

Let T1 = T2 = 1, T3 = 2, and TN = TN−1 + TN−2 + TN−3. Find the value of

∞∑
N=1

TN
πN

.

Solution 1 by Arkady Alt, San Jose, CA

Noting that {Tn}n≥1 is an increasing sequence of positive integers we obtain:

Tn+1

Tn
= 1 +

Tn−1
Tn

+
Tn−2
Tn

= 1 +
Tn−1
Tn

+
Tn−2
Tn−1

· Tn−1
Tn

< 1 + 1 + 1 · 1 = 3, n ∈ N.

Hence,

Tn+1

Tn
< 3 ⇐⇒ Tn+1

3n+1
<
Tn
3n
, n ∈ N =⇒ Tn

3n
<
T1
31
⇐⇒ Tn < 3n−1, n ∈ N.

and therefore, by the comparison test for series,
n∑
i=1

Tix
i−1 is convergent for any

x ∈
(

0,
1

3

)
because for such x it is bounded by

∞∑
n=1

(3x)n−1 =
1

1− 3x
.

Since(
1− x− x2 − x3

) ∞∑
n=1

Tnx
n−1 = T1 + x(T2 − T1) + x2(T3 − T2 − T1)
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+
∞∑
n=1

xn+2 (Tn+3 − Tn+2 − Tn+2 − Tn)

= T1 + x(1− 1) + x2(2− 1− 1) +
∞∑
n=1

xn+2 · 0 = 1

then ∞∑
n=1

Tnx
n−1 1

1− x− x2 − x3
⇐⇒

∞∑
n=1

Tnx
n =

x

1− x− x2 − x3

and therefore, for x =
1

π
< 3, we obtain

∞∑
n=1

Tn
πn

=
1
π

1− 1
π −

1
π2 − 1

π3

=
π2

π3 − π2 − π − 1
.

Solution 2 by Albert Stadler, Herrliberg, Switzerland

We first claim that 1 ≤ Tn ≤ 2n−1 for n ≥ 1. Indeed this is true for n = 1, 2, and 3 and

1 ≤ Tn = Tn−1+Tn−2+Tn−3 ≤ 2n−2+2n−3+2n−4 < 2n−2+2n−3+2n−3 = 2n−1, as claimed.

So, S =
∞∑
n=1

Tn
πn

is convergent and

S =
∞∑
n=1

Tn
πn

=
1

π
+

1

π2
+

2

π3
+
∞∑
n=1

Tn−1 + Tn−2 + Tn−3
πn

=
1

π
+

1

π2
+

2

π3
+

1

π

∞∑
n=3

Tn
πn

+
1

π2

∞∑
n=2

Tn
πn

+
1

π3

∞∑
n=1

Tn
πn

=
1

π
+

1

π2
+

2

π3
+

1

π

(
S − 1

π
− 1

π2

)
+

1

π2

(
S − 1

π

)
+

1

π3
S

=
1

π
+ S

(
1

π
+

1

π2
+

1

π3

)
. So,

S =
π2

π3 − π2 − π − 1

Solution 3 by Adrian Naco, Polytechnic University, Tirana, Albania

Let us pose, an =
Tn
πn

, T0 = 0. We prove by induction that, Tn ≤ Tn+1 ≤ 2Tn.

Tn ≤ Tn+1 = Tn + Tn−1 + Tn−2 ≤ 2Tn−1 + 2Tn−2 + 2Tn−3 = 2Tn.

Thus, it implies that,

∀n ∈ N :
1

π
an ≤ an+1 =

Tn+1

πn+1
=

1

π
· Tn+1

Tn
· Tn
πn
≤ 2

π
an,
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and by induction it results that(
1

π

)n
=

(
1

π

)n
a1 ≤ an+1 ≤

(
1

π

)n
a1 =

(
2

π

)n
.

Thus, the given series converges, and

1

π − 1
=
∞∑
n=1

(
1

π

)n
≤
∞∑
n=1

an =
∞∑
n=1

Tn
πn
≤
∞∑
n=1

(
2

π

)n
=

1

π − 2
.

Considering the given difference equation for Tn we transform it to a difference equation
for an

Tn = Tn−1 + Tn−2 + Tn−3 ⇔ Tn
πn

=
1

π
· Tn−1
πn−1

+
1

π2
· Tn−2
πn−2

+
1

π3
· Tn−3
πn−3

⇔ an =
1

π
· an−1 +

1

π2
· an−2 +

1

π3
· an−3.

The respective characteristic equation is the following one, the left side of which is a
nonnegative polynomial,

p(λ) = 0 ⇔ λ3 − 1

π
· λ2 − 1

π2
· λ− 1

π3
= 0.

Studying its derivative, p′(λ) = 3(λ+ 1
3)(λ− 1), we come to the conclusion that the

characteristic polynomial has a unique positive real root, α ∈ (0; 1), and two complex
conjugate roots, β, γ ∈ C .

Recall the Theorem for the dominance of the unique positive root of a nonnegative
polynomial that states:

Theorem. If λ0 is a positive root of a nonnegative polynomial p(x), then λ0 is a
dominant root, in the sense that any other root λ ∈ C satisfies the relation |λ| ≤ λ0.
Thus, 0 < |β| = |γ| < α < 1.

The general structure of the term an is,

∀n = 0, 1, 2, : an = c1 · αn + c2 · βn + c3 · γn, where c1, c2, c3 ∈ C.

To define the constants we consider the initial conditions,

a0 = 0 = c1 · α0 + c2 · β0 + c3 · γ0

a1 =
1

π
= c1 · α1 + c2 · β1 + c3 · γ1

a2 =
1

π2
= c1 · α2 + c2 · β2 + c3 · γ2

And these imply:

c1 =
(β − γ)(β + γ − 1

π
)

π(α− β)(β − γ)(γ − α)
, c2 =

(γ − α)(γ + α− 1

π
)

π(α− β)(β − γ)(γ − α)
, c3 =

(α− β)(α+ β − 1

π
)

π(α− β)(β − γ)(γ − α)
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Since, α, β, γ ∈ {z ∈ C : |z| < 1} ⇒ lim
n→∞

αn = lim
n→∞

βn = lim
n→∞

γn = 0

Doing some simple operations and based on Vieta’s formulas

αβγ =
1

π3
, αβ + βγ + γα = − 1

π2
, α+ β + γ =

1

π3

implies that

⇒
∞∑
n=0

an =
∞∑
n=0

(c1 · αn + c2 · βn + c3 · γn) = c1 ·
∞∑
n=0

αn + c2 ·
∞∑
n=0

βn + c3 ·
∞∑
n=0

γn

=
c1

1− α
+

c2
1− β

+
c3

1− γ
=

c1
1− α

+
c2

1− β
+

c3
1− γ

=
1

π(1− α)(1− β)(1− γ)
=

1

π

(
1− 1

π
− 1

π2
− 1

π3

)
=

π2

π3 − π2 − π − 1

since p(1) = (1− α)(1− β)(1− γ) = 1− 1

π
− 1

π2
− 1

π3
is the value of the characteristic

polynomial for λ = 1.

Comment: Let us prove that an = (c1 · αn + c2 · βn + c3 · γn) ∈ R, even if c1, c2, c3 are
complex constants.

The first term c1α
n is a real number since c1 ∈ R and α ∈ R. Indeed,

c1 =
(β − γ)(β + γ − 1

π )

π(α− β)(β − γ)(γ − α)
=

−α
π(α− β)(γ − α)

=
−α

π[α(β + γ)− α2 − βγ]
∈ R

since
α

π
∈ R, (β + γ) = 2Reβ ∈ R and βγ = |β|2 ∈ R.

To prove that the summation of the other two terms in the expression for an is a real

number, we need to prove by induction in n that ∀n ∈ N ,
(βn − γn)

(β − γ)
∈ R.

Indeed, supposing that the given expression is a real number ∀ k < n. Then

(βn − γn)

(β − γ)
=

(βn−1 − γn−1)(β + γ)− βγ(βn−2 − γn−2)
(β − γ)

= (β + γ)
(βn−1 − γn−1)

(β − γ)
− βγ (βn−2 − γn−2)

(β − γ)
∈ R since

(β + γ) = 2Reβ ∈ R , βγ = |β|2 ∈ R.

Thus,

c2 · βn + c3 · γn =
(γ − α)(γ + α− 1

π )

π(α− β)(β − γ)(γ − α)
· βn +

(α− β)(α+ β − 1
π )

π(α− β)(β − γ)(γ − α)
· γn
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=
(γ − α)(−β)βn + (α− β)(−γ)γn

π(α− β)(β − γ)(γ − α)

=
α(βn+1 − γn+1)− βγ(βn−1 − γn−1)

π(α− β)(β − γ)(γ − α)

=
1

π[α(β + γ)− α2 − βγ)]

[
α

(βn+1 − γn+1)

(β − γ)
− βγ (βn−1 − γn−1)

(β − γ)

]
∈ R

∀n ∈ N ,
(βn − γn)

(β − γ)
∈ R , α ∈ R, (β + γ) = 2Reβ ∈ R , βγ = |β|2 ∈ R.

Editor’s Comment: David Stone and John Hawkins of Georgia Southern
University, Statesboro, GA noted in their solution that the π in the statement of
the problem is simply a stand in. They found the characteristic equation for the linear
recurrence to be p(x) = x3 − x2 − x− 1. Letting z, z, and r be the roots of the

characteristic polynomial they observed that
∞∑
n=0

Tn
πn

=
∞∑
n=0

k1z
n + k2 (z)n + k3r

n

πn
is the

sum of three geometric series, each of which must necessarily converge. They then found
the values of z, z, and r.

p(x) = x3 − x2 − x− 1, and also
= (x− z) (x− z) (x− r)
= x3 − (z + z + r)x2 − (zz + zr + zr)x− zzr,

and by equating coefficients
z + z = 1− r and

|z|2 = zz =
1

r
.

Using a calculator they approximated r ≈ 1.87 so |z| = |z| ≈ 0.54. They went on to say
that they could have solved the characteristic equation with Cardan’s formula, but all
they needed to know about the roots is that each, in absolute value, is smaller than π,

which they just saw; so that the three geometric series in
∞∑
n=0

Tn
πn

converge. By Cardan’s

formula, the root r equals
1

3
− C

3
− 4

3C
where C =

3
√

3
√

33− 19. They calculated

r ≈ 1.839286755.

They then noted that if t is any real constant larger than r, the same calculations hold,
thus showing

∞∑
n=0

Tn
tn

=
t2

p(t)
=

t2

t3 − t2 − t− 1
.

For instance,
∞∑
n=0

Tn
2n

=
22

p(t)
=

4

1
.

Also solved by Brian D. Beasley, Presbyterian College, Clinton, SC; Bruno
Salgueiro Fanego Viveiro, Spain; Michael N. Fried, Ben-Gurion University, Beer
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Sheva, Israel; Noel Evens, Dionne Bailey, Elsie Campbell, and Charles Diminnie,
Angelo State University, San Angelo TX; Paul M. Harms, North Newton, KS;
Kee-Wai Lau, Hong Kong, China; Enkel Hysnelaj, University of Technology,
Sydney, Australia together with Elton Bojaxhiu, Kriftel, Germany; Anastasios
Kotronis, Athens, Greece; David E. Manes, SUNY College at Oneonta, Oneonta,
NY; Paolo Perfetti, Department of Mathematics, “Tor Vergata” University,
Rome, Italy; Boris Rays, Brooklyn, NY; Albert Stadler, Herrliberg, Switzerland;
David Stone and John Hawkins of Georgia Southern University, Statesboro, GA
and the proposer.

• 5225: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

Find infinitely many integer squares x that are each the sum of a square and a cube and a
fourth power of positive integers a, b, c. That is, x = a2 + b3 + c4.

Solution 1 by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie,
Angelo State University, San Angelo, TX

By observation, we conclude that for n ≥ 1,

(2n3)4 + (2n2)3 + 12 = 16n12 + 8n6 + 1

= (4n6 + 1)2.

Also, it can be observed for n ≥ 1,

14 + (2n2)3 + (4n6)2 = 1 + 8n6 + 16n12

= (4n6 + 1)2.

Thus, for n ≥ 1, x2 = (4n6 + 1)2 generates infinitely many integer squares such that
x2 = a2 + b3 + c4 where a, b, c are positive integers

Solution 2 by Ángel Plaza, University of Las Palmas de gran, Canaria, Spain

Since (a+ c2)2 = a2 + c4 + 2ac2 it is enough to consider b = 2a = c to obtain infinitely many
integer squares x = (a+ c2)2 = a2 + c4 + 2ac2 = a2 + b3 + c4.

Solution 3 by Kee-Wai Lau, Hong Kong, China

Let m and n be any positive integers. Using the identity(
4m3 + 4n3 + n

)2
=
(
4m3 − 4n3 + n

)2
+ (4mn)3 + (2n)4 ,

we find infinitely many such x.

Solution 4 by David E. Manes, SUNY College at Oneonta, Oneonta, NY

For each positive integer n, let a = 23n−2 + 3, b = 2n, and c = 2. Then

a2 + b3 + c4 =
(
23n−2 + 3

)2
+ 23n + 24

= 26n−4 + 10 · 23n−2 + 25

=
(
23n−2 + 5

)2
= x.
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Note that if b = 2n, c = 2 and x = y2, then y2 = a2 + 23n + 24. Therefore,

y2 − a2 = 23n + 24 or (y + a)(y − a) = 2(23n−1 + 23).

Let {
y + a = 23n−1 + 23 and
y − a = 2 .

The simultaneous solution for this system of equations is y = 23n−2 + 5 and a = 23n−2 + 3.

Accordingly, the infinitely many integer squares x = a2 + b3 + c4 are x =
(
23n−2 + 5

)2
for

each positive integer n.

Solution 5 by Ken Korbin, New York, NY

There are infinitely many pairs of positive integers b and c such that b+ c is odd. If

a =
b3 + c4 − 1

2
then a2 + b3 + c4 = (a+ 1)2 = x. Examples:

a b c x = (a+ 1)2

316 2 5 (317)2

70 5 2 (71)2

128 1 4 (129)2

72 4 3 (73)2

If a, b, and c are positive integers such that a2 + b3 + c4 = (a+ 1)2 and if k is a positive integer
then

a2 · k12 + b3 · k12 + c4 · k12 = (a+ 1)2 · k12

=
(
a · k6

)2
+
(
b · k4

)3
+
(
c · k3

)4
=

(
(a+ 1) · k6

)2
= x.

Solution 6 by Brian D. Beasley, Presbyterian College, Clinton, SC

In order to have x = k2 = a2 + b3 + c4 for positive integers k, a, b, and c, we need b3 + c4 to be
expressible as the difference of two squares. As Burton notes (Elementary Number Theory ,
7th ed., Theorem 13-4, p. 269), a positive integer n has such an expression if and only if n is
not congruent to 2 modulo 4. Thus as long as b3 + c4 is not congruent to 2 modulo 4, we may
solve for k and a.

In particular, when b3 + c4 is odd, we may take a = (b3 + c4 − 1)/2 and k = a+ 1, as seen in
the following two cases:

One infinite set of solutions occurs when c = 1 and b = 2n for any positive integer n, which
makes b3 + c4 = 8n3 + 1 odd. We then take a = 4n3 to produce k = 4n3 + 1 and hence
x = (4n3 + 1)2 = 16n6 + 8n3 + 1.
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Another infinite set of solutions occurs when b = 1 and c = 2n for any positive integer n,
which makes b3 + c4 = 16n4 + 1 odd. We then take a = 8n4 to produce k = 8n4 + 1 and hence
x = (8n4 + 1)2 = 64n8 + 16n4 + 1.

Also solved by Farideh Firoozbakht and Jahangeer Kholdi University of Isfahan,
Khansar, Iran; Enkel Hysnelaj, University of Technology, Sydney, Australia
together with Elton Bojaxhiu, Kriftel, Germany; Paul M. Harms, North Newton,
KS; Charles McCracken, Dayton, OH; Albert Stadler, Herrliberg, Switzerland;
David Stone and John Hawkins, Southern Georgia University, Statesboro, GA,
and the proposer.

• 5226: Proposed by D. M. Bătinetu-Giurgiu, “Matei Basarab” National College, Bucharest and
Neculai Stanciu, “George Emil Palade” Secondary School, Buzău, Romania

If a and b, a < b are real-valued positive numbers, then calculate:

∫ b

a

n
√
x− a

(
1 + n
√
b− x

)
n
√
x− a+ 2 n

√
−x2 + (a+ b)x− ab+ n

√
b− x

dx,

where n is a positive integer greater than one, (n > 1).

Solution 1 by Adrian Naco, Polytechnic University, Tirana, Albania

Let

I1 =

∫ b

a

n
√
x− a(1 + n

√
b− x)

n
√
x− a+ 2 n

√
x− a n

√
b− x+ n

√
b− x

dx and

I2 =

∫ b

a

n
√
b− x(1 + n

√
x− a)

n
√
x− a+ 2 n

√
x− a n

√
b− x+ n

√
b− x

dx.

Setting y = b+ a− x, we have

I1 =

∫ b

a

n
√
x− a(1 + n

√
b− x)

n
√
x− a+ 2 n

√
x− a n

√
b− x+ n

√
b− x

dx

=

∫ a

b

n
√
b− y(1 + n

√
y − a)

n
√
y − a+ 2 n

√
y − a n

√
b− y + n

√
b− y

d(b+ a− y)

=

∫ b

a

n
√
b− y(1 + n

√
y − a)

n
√
y − a+ 2 n

√
y − a n

√
b− y + n

√
b− y

dy = I2

So,

I1 + I2 =

∫ b

a
dx = b− a, and therefore,

∫ b

a

n
√
x− a(1 + n

√
b− x)

n
√
x− a+ 2 n

√
x− a n

√
b− x+ n

√
b− x

dx =
b− a

2

Solution 2 by Anastasios Kotronis, Athens, Greece
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∫ b

a

n
√
x− a(1 + n

√
b− x)

n
√
x− a+ 2 n

√
−x2 + (a+ b)x− ab+ n

√
b− x

dx; letting x = y +
a + b

2
,we obtain

∫ b−a
2

− b−a
2

n

√
y + b−a

2

(
1 + n

√
b−a
2 − y

)
n

√
y + b−a

2 + 2 n

√(
y + b−a

2

) (
b−a
2 − y

)
+ n

√
b−a
2 − y

− 1

2
+

1

2
dy

=

∫ b−a
2

− b−a
2

g(y) +
1

2
dy

=

∫ b−a
2

− b−a
2

g(y) dy +
b− a

2
.

Now it is easy to see that g(y) is odd so the given integral equals
b− a

2
.

Solution 3 by Paolo Perfetti, Department of Mathematics, “Tor Vergata”
University, Rome, Italy

Answer:
b− a

2
Proof: The integral is actually∫ b

a

n
√
x− a(1 + n

√
b− x)(

n
√
x− a+ n

√
b− x

)2dx =

∫ b

a

1

1 + n

√
b−x
x−a

dx

Setting t = (b− x)/(x− a) we get

(b− a)

∫ ∞
0

1

(1 + t)2
1

1 + t1/n
dt

The further change t = yn yields

(b− a)

∫ ∞
0

1

(1 + yn)2
1

1 + y
nyn−1dy

Integrating by parts

(b− a)
1

1 + y

1

1 + yn

∣∣∣0
∞
−
∫ ∞
0

b− a
(1 + y)2

1

1 + yn
dy = b− a−

∫ ∞
0

b− a
(1 + y)2

1

1 + yn
dy.

To compute the last integral we set y = 1/z and obtain

∫ ∞
0

1

(1 + y)2
1

1 + yn
dy =

∫ ∞
0

z2

(1 + z)2
zn

1 + zn
1

z2
dz =

∫ ∞
0

1

(1 + z)2
zn

1 + zn
dz =

=

∫ ∞
0

1

(1 + z)2
dz −

∫ ∞
0

1

(1 + z)2
1

1 + zn
dz
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that is, ∫ ∞
0

1

(1 + y)2
1

1 + yn
dy =

1

2

∫ ∞
0

1

(1 + z)2
dz =

1

2
.

The final result is
1

2
(b− a.)

Also solved by Arkady Alt, San Jose, CA; Dionne Bailey, Elsie Campbell, and
Charles Diminnie, Angelo State University, San Angelo, TX; Paul M. Harms,
North Newton, KS; Kee-Wai Lau, Hong Kong, China; Ángel Plaza, University of
Las Palmas de Gran Canaria, Spain; Albert Stadler, Herrliberg, Switzerland, and
the proposer.

• 5227: Proposed by José Luis Dı́az-Barrero, Polytechnical University of Catalonia, Barcelona,
Spain

Compute

lim
n→∞

n∏
k=1

(
(n+ 1) +

√
nk

n+
√
nk

)
.

Solution 1 by Kee-Wai Lau, Hong Kong, China

Since ln(1 + x) = x+O
(
x2
)

as x −→ 0, so

n∑
k=1

ln

(
1 +

1

n+
√
nk

)
=

n∑
k=1

1

n+
√
nk

+O

(
1

n

)
.

Hence,

lim
n→∞

n∑
k=1

ln

(
1 +

1

n+
√
nk

)
= lim

n→∞

n∑
k=1

1

n

1(
1 +

√
k
n

) =

∫ 1

0

dx

1 +
√
x
.

By the substitution x = y2, we easily evaluate the last integral to be 2(1− ln 2).

Now by exponentiation, we find the limit of the problem to be
e2

4
.

Solution 2 by Arkady Alt, San Jose, CA

First note that for any positive real x we have

ex
(

1− x2

2

)
< 1 + x < ex. (1)

Indeed, for any positive x we can obtain from the Taylor representation of ex that:

1 + x < ex = 1 + x+
x2

2!
+
∞∑
n=1

xn+2

(n+ 2)!

= 1 + x+
x2

2

(
1 +

∞∑
n=1

2xn

(n+ 2)!

)

11



< 1 + x+
x2

2

(
1 +

∞∑
n=1

xn

n!

)

= 1 + x+
x2ex

2
and then we have

ex < 1 + x+
x2ex

2
⇐⇒ ex

(
1− x2

2

)
< 1 + x.

Applying inequality (1) to x =
1

n+
√
nk
, k = 1, 2, ..., n we obtain

eaknbkn < 1 +
1

n+
√
nk

< eakn , k = 1, 2, ..., n, (2)

where akn =
1

n+
√
nk

and bkn = 1− 1

2
(
n+
√
nk
)2 .

Let Sn =
∑n
k=1 akn. Hence,

eSn
n∏
k=1

bkn <
n∏
k=1

(
(n+ 1) +

√
nk

n+
√
nk

)
< eSn .

Note that lim
n→∞

n∏
k=1

bkn = 1. Indeed, since n < n+
√
nk < 2n, k = 1, 2, ..., n then

1− 1

2n2
< 1− 1

2
(
n+
√
nk
)2 < 1− 1

8n2
, k = 1, 2, ..., n

and we obtain (
1− 1

2n2

)n
<

n∏
k=1

bkn <

(
1− 1

8n2

)n
< 1.

Since

lim
n→∞

(
1− 1

2n2

)n2

=
1√
e

then

lim
n→∞

(
1− 1

2n2

)n
= lim

n→∞
n

√(
1− 1

2n2

)n2

= 1.

Since

lim
n→∞

Sn = lim
n→∞

1

n

n∑
k=1

1

1 +
√

k
n

=

∫ 1

0

1

1 +
√
x
dx =

[
x = t2; dx = 2tdt

]

12



= 2

∫ 1

0

t

1 + t
dt = 2 (t− ln (1 + t)) |10 = 2 (1− ln 2) , then

lim
n→∞

eSn = lim
n→∞

eSn
n∏
k=1

bkn = e2(1−ln 2) =
e2

4
.

By the Squeeze Principle we see that

lim
n→∞

n∏
k=1

(
(n+ 1) +

√
nk

n+
√
nk

)
=
e2

4
.

Solution 3: by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain.

The proposed limit may be written as L = lim
n→∞

n∏
k=1

1 +
1
n

1 +
√

k
n

. So,

lnL = lim
n→∞

n∑
k=1

ln

1 +
1
n

1 +
√

k
n

 . Now we expand each of the logs according to its power

series and write this as a double sum. Then we change order of summation and sum up by
columns. This is allowed because both directions provide convergent sums. So

ln

1 +
1
n

1 +
√

1
n

 =
1
n

1 +
√

1
n

−

(
1
n

1+
√

1
n

)2

2
+

(
1
n

1+
√

1
n

)3

3
+ · · · .

ln

1 +
1
n

1 +
√

2
n

 =
1
n

1 +
√

2
n

−

(
1
n

1+
√

2
n

)2

2
+

(
1
n

1+
√

2
n

)3

3
+ · · · .

ln

1 +
1
n

1 +
√

3
n

 =
1
n

1 +
√

3
n

−

(
1
n

1+
√

3
n

)2

2
+

(
1
n

1+
√

3
n

)3

3
+ · · · .

Note that

lim
n→∞

n∑
k=1

1
n

1 +
√

k
n

=

∫ 1

0

1

1 +
√
x
dx = ln

(
e2

4

)
,

lim
n→∞

n∑
k=1

(
1
n

1+
√

k
n

)m
m

= 0, for m > 1.

From where lnL = ln

(
e2

4

)
, and therefore L =

e2

4
.

Also solved by Bruno Salgueiro Fanego Viveiro, Spain; Enkel Hysnelaj,
University of Technology, Sydney, Australia and Elton Bojaxhiu, Kriftel,
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German; Anastasios Kotronis, Athens, Greece; Adrian Naco, Polytechnic
University, Tirana, Albania; Paolo Perfetti, Department of Mathematics, “Tor
Vergata” University, Rome, Italy; Albert Stadler, Herrliberg, Switzerland;

• 5228: Proposed by Mohsen Soltanifar, University of Saskatchewan, Saskatoon, Canada

Given a random variable X with non-negative integer values. Assume the nth moment of X is
given by

E (Xn) =
∞∑
k=1

fn(k)P (X ≥ k) n = 1, 2, 3, · · · ,

where fn is a non-negative function defined on N . Find a closed formula for fn.

Solution by Enkel Hysnelaj, University of Technology, Sydney, Australia and
Elton Bojaxhiu, Kriftel, Germany.

From the first principle we have

E(Xn) =
∞∑
k=1

knP (X = k)

Doing easy manipulations we have

E(Xn) =
∞∑
k=1

fn(k)P (X ≥ k)

= fn(1)P (X ≥ 1) + fn(2)P (X ≥ 2) + ...+ fn(k)P (X ≥ k) + ...

= fn(1)(P (X = 1) + P (X = 2) + ...) + fn(2)(P (X = 2) + P (X = 3) + ...) + ...

+fn(k)(P (X = k) + P (X = k + 1) + ...) + ...

= fn(1)P (X = 1) + (fn(1) + fn(2))P (X = 2) + ...

+(fn(1) + fn(2) + ...+ fn(k))P (X = k) + ...

=
∞∑
k=1

k∑
i=1

fn(i)P (X = k)

Comparing this with the expression we have from the first principle we have

k∑
i=1

fn(i) = kn

for any non-negative integers k and n.

Finally, using the above result implies

fn(k) =
k∑
i=1

fn(i)−
k−1∑
i=1

fn(i) = kn − (k − 1)n

and this is the end of the proof.

Also solved by Kee-Wai Lau, Hong Kong, China, and the proposer.
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• 5229: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

Let β > 0 be a real number and let (xn)n∈N be the sequence defined by the recurrence relation

x1 = a > 0, xn+1 = xn +
n2β

x1 + x2 · · ·+ xn
.

1) Prove that lim
n→∞

xn =∞.

2) Calculate lim
n→∞

xn
nβ
.

Solution 1 by Kee-Wai Lau, Hong Kong, China

1) By induction, we have xn > 0 for positive integers n. Hence xn is strictly increasing.

Suppose, on the contrary that, lim
x→∞

sn = L, where 0 < L <∞.

Since 0 < x1 + x2 + . . .+ xn < nL, so, xn+1 > xn +
n2β−1

L
.

Hence for any positive integer N , we have
N∑
n=1

xn+1 >
N∑
n=1

xn +
1

L

N∑
n=1

n2β−1, so that

L > xN+1 > a+
1

L

N∑
n=1

n2β−1. Since
N∑
n=1

n2β−1 −→∞ as N −→∞, this is a

contradiction. It follows that lim
n→∞

xn =∞.

2) To find the leading behavior of xn as n→∞, we try

xn ∼ knα (1)

for some positive constants k and α. We then have x1 + x2 + . . .+ xn ∼
knα+1

α+ 1
.

Hence xn+1 − xn ∼
(α+ 1)n2β−α−1

k
. If α > 2β, then xn+1 is bounded, which is not true.

If α = 2β, then xn+1 ∼
(α+ 1) lnn

k
, which is inconsistent with (1) . So

0 < α < 2β, and we we have

xn+1 ∼
(α+ 1)n2β−α

k(2β − α)
.

By (1) and (2), we see that α = 2β − α and k =
α+ 1

k(2β − α)
. Hence α = β and k =

√
β + 1

β
. It

follows that lim
n→∞

sn
nβ

=

√
β + 1

β
.

Solution 2 by proposer

(1) It is easy to see that xn > 0, for all n ∈ N . Also, xn+1 − xn = n2β

x1+x2+···+xn > 0, and hence
the sequence is strictly increasing. By way of contradiction, we assume that limn→∞ xn = l.
We have, since (xn) increases, that l 6= 0 and xn < l for all n ∈ N . Iterating the recurrence
relation we get that

xn+1 = x1 +
1

x1
+

22β

x1 + x2
+ · · ·+ n2β

x1 + x2 + · · ·+ xn
> x1 +

1

l
+

22β

2l
+ · · ·+ n2β

nl
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= x1 +
1

l

(
1 + 22β−1 + · · ·+ n2β−1

)
.

Passing to the limit in the preceding inequality we get that l ≥ ∞, which is a contradiction.

2) The limit equals
√

(β + 1)/β. We apply Cesaro-Stolz Lemma and we have that

L = lim
n→∞

xn
nβ

= lim
n→∞

xn+1 − xn
(n+ 1)β − nβ

= lim
n→∞

n2β

x1+x2+···+xn
(n+ 1)β − nβ

= lim
n→∞

(
nβ+1

x1 + x2 + · · ·+ xn
· nβ−1

(n+ 1)β − nβ

)

=
1

β
· lim
n→∞

(
nβ+1

x1 + x2 + · · ·+ xn

)

Cesaro− Stolz again =
1

β
· lim
n→∞

(n+ 1)β+1 − nβ+1

xn+1

=
1

β
lim
n→∞

(
(n+ 1)β

xn+1
· (n+ 1)β+1 − nβ+1

(n+ 1)β

)

=
(β + 1)

β · L
.

Thus, L =
√

(β + 1)/β and the problem is solved.

Solution 3: by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain.

1) Since x1 = 1 > 0 it is easy to see that sequence {xn}n∈N is increasing and also that

xn+1 = x1 +
1

x1
+

22β

x1 + x2
+ · · ·+ n2β

x1 + x2 + · · ·+ xn

> x1 +
1

xn
+

22β

2xn
+ · · ·+ n2β

nxn

= x1 +
1

xn
Hn

where, Hn = 1 + 22β−1 + · · ·+ n2β−1. Since {xn}n∈N is increasing, then either {xn}n∈N is
convergent if bounded, or lim

n→∞
xn =∞.

Now, since lim
n→∞

Hn =∞, the hypothesis of {xn}n∈N convergent gives a contradiction with the

fact that x1 + 1
xn
Hn < xn+1. Therefore lim

n→∞
xn =∞.

2. Note that since xn+1 = x1 +
1

x1
+

22β

x1 + x2
+ · · ·+ n2β

x1 + x2 + · · ·+ xn
, then, by

Stolz-Cezaro criteria

L = lim
n→∞

xn+1

(n+ 1)β
= lim

n→∞

n2β

x1+x2+···+xn
(n+ 1)β − nβ

= lim
n→∞

1
βn

β+1

x1 + x2 + · · ·+ xn
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= lim
n→∞

1

β

nβ+1 − (n− 1)β+1

xn
= lim

n→∞
1

β
· (β + 1)nβ

xn

=
β + 1

β
· 1

L
,

from where L =
√

β+1
β .

Also solved by Paolo Perfetti, Department of Mathematics, “Tor Vergata”
University, Rome, Italy

Notes and Comments

From Charles McCracken of Dayton, OH:

In their solution to Problem 5213 David Stone and John Hawkins note that n4 is always the
sum of two triangular numbers. But n2 is also the sum of two (consecutive) triangular
numbers:

Tn + Tn+1 =
n(n+ 1)

2
+

(n+ 1)(n+ 2)

2

=
n2 + n+ n2 + 3n+ 2

2
=

2n2 + 4n+ 2

2

= n2 + 2n+ 1 = (n+ 1)2.

Thus, adding the triangular numbers in sequential pairs generates all the squares; which
generates all the fourth powers.

Mea Culpa

The names of Brian D. Beasley of Presbyterian College in Clinton, SC and of
Arkady Alt of San Jose, CA were inadvertently left off the list of having solved problem
5218. Arkady also solved 5220 and 5221, and I missed listing his name for those too. To Brian
and Arkardy, mea culpa, sorry.

Additionally, David Stone and John Hawkins of Georgia Southern University in
Statesboro, GA should receive credit for having solved 5215. I am happy to report that this
time the “senior moment” is theirs and not mine; they forgot to send me their solution!
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