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*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.
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Solutions to the problems stated in this issue should be posted before
April 15, 2014

• 5289: Proposed by Kenneth Korbin, New York, NY

Part 1: Thirteen different triangles with integer length sides and with integer area each

have a side with length 1131. The angle opposite 1131 is Arcsin

(
3

5

)
in all 13 triangles.

Find the sides of the triangles.

Part 2: Fourteen different triangles with integer length sides and with integer area each
have a side with length 6409. The size of the angle opposite 6409 is the same in all 14
triangles.

Find the sides of the triangles.

• 5290: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

Someone wrongly remembered the description of an even perfect number as:
N = 2p

(
2p−1 − 1

)
, where p is a prime number. Classify these numbers correctly. Which

are deficient and which are abundant?

( If n and d are positive integers, d 6= n, but d

∣∣∣∣n, then d is called a proper divisor of n.

The integer n is called perfect if the sum of its proper divisors is equal to n. The number
n is called deficient if the sum of its proper divisors is less than n; and if the sum of its
proper divisors is greater than n, then n is called an abundant number. E.g., The proper
divisors of 6 are 1, 2, and 3. Their sum is 1+2+3=6, and so 6 is a perfect number; all
prime numbers are deficient, and the proper divisors of 12 are 1, 2, 4, and 6. So 12 is an
abundant number.)

• 5291: Arkady Alt, San Jose, CA

Let mamb be the medians of a triangle with side lengths a, b, c. Prove that:

mamb ≤
2c2 + ab

4
.

• 5292: Proposed by D.M. Bătinetu−Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “Geroge Emil Palade” General School,
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Buzău, Romania

Let a and b be real numbers with a < b, and let c be a positive real number. If
f : R −→ R+ is a continuous function, calculate:

∫ b

a

ef(x−a) (f(x− a))
1
c

ef(x−a) (f(x− a))
1
c + ef(b−x) (f(b− x))

1
c

dx.

• 5293: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let ABC be a triangle. Prove that

4
√

sinA cos2B +
4
√

sinB cos2C +
4
√

sinC cos2A ≤ 3
8

√
3

64
.

• 5294: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

a) Calculate
∞∑
n=2

(n− ζ(2)− ζ(3)− · · · − ζ(n)).

b) More generally, for k ≥ 2 an integer, find the value of the multiple series

∞∑
n1,n2,···,nk=1

(n1 + n2 + · · ·+ nk − ζ(2)− ζ(3)− · · · − ζ(n1 + n2 + n3 + · · ·+ nk)),

where ζ denotes the Riemann Zeta function.

Solutions

• 5271: Proposed by Kenneth Korbin, New York, NY

Given convex cyclic quadrilateral ABCD with AB = x,BC = y, and
BD = 2AD = 2CD.

Express the radius of the circum-circle in terms of x and y.

Solution 1 by Andrea Fanchini, Cantú, Italy

Method I
In a cyclic quadrilateral with successive vertices A,B,C,D and sides
a = AB, b = BC, c = CD, d = DA, the length of the diagonal q = BD can be expressed
in terms of the sides as:

q =

√
(ac+ bd) (ab+ cd)

ad+ bc
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Let t = AD = CD. Then in our case we have

2t =

√
(xt+ yt) (xy + t2)

xt+ yt
⇒ t =

√
xy

3

Let p = AC and according Ptolemy’s theorem

p =
ac+ bd

q
=
x+ y

2

Then we denote 6 ABD = 6 DBC = β, so 6 ABC = 26 ABD = 26 DBC = 2β.
Furthermore, from the angle at the center theorem 6 AOD = 6 ABC = 2β.
Now with the Carnot’s theorem at the side AC of the 4ABC, we have

p2 = x2 + y2 − 2xy cos 2β ⇒ cos 2β =
3x2 + 3y2 − 2xy

8xy

Using another time Carnot’s theorem at the side AD of the 4AOD, we obtain

t2 = R2 +R2 − 2R2 cos 2β

from which, we finally obtain, the radius R of the circum-circle in terms of x and y

R =
2xy√

3 (10xy − 3x2 − 3y2)

Method II
Applying Parameshvara’s formula, a cyclic quadrilateral with successive sides a, b, c, d
and semiperimeter s has the circumradius R given by

R =
1

4

√
(ab+ cd) (ac+ bd) (ad+ bc)

(s− a) (s− b) (s− c) (s− d)

In our case we have a = x, b = y and c = d =

√
xy

3
. Substituting, we obtain the formula

requested.

Solution 2 by Kee-Wai Lau, Hong Kong, China

Let BD = 2z and 6 BAD = θ = π − 6 BCD. Applying the cosine formula to triangles
BAD and BCD respectively, we obtain,

cos θ =
x2 − 3z2

2xz
and − cos θ = cos(π − θ) =

y2 − 3z 2

2yz
.

Hence,

z =

√
xy

3
, cos θ =

√
3(x− y)

2
√
xy

, and sin θ =
1

2

√
(3x − y)(3y − x )

xy
.

It is easy to check that sin θ is a positive real number not exceeding 1 if and only if
1

3
<
x

y
< 3. Subject to this condition, we obtain

that the radius of the circum-cirlce =
BD

2 sin θ
=

2xy√
3(3x− y)(3y − x)

.
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Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland
Beach, FL; Neculai Stanciu, Buzău, Romania and Titu Zvonaru, Comănesti,
Romania; David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA; Ercole Suppa, Teramo, Italy, and the proposer.

• 5272: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

The Jacobsthal numbers begin 0, 1, 1, 3, 5, 11, 21, · · · with general term

Jn =
2n − (−1)n

3
, ∀n ≥ 0. Prove that there are infinitely many Pythagorean triples like

(3, 4, 5) and (13, 84, 85) that have “hypotenuse” a Jacobsthal number.

Solution 1 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX

For n ≥ 1,
(
22n − 1, 2n+1, 22n + 1

)
is a primitive Pythagorean triple since

gcd
(
22n − 1, 2n+1

)
= 1 and(
22n − 1

)2
+
(
2n+1

)2
= 24n − 22n+1 + 1 + 22n+2

= 24n + 22n+1 + 1

=
(
22n + 1

)2
.

It follows that for any positive integer m,((
22n − 1

)
m, 2n+1m,

(
22n + 1

)
m
)

is also a Pythagorean triple. In particular, when
n ≥ 1,

((
22n − 1

)
J2n, 2

n+1J2n,
(
22n + 1

)
J2n

)
is a Pythagorean triple with

(
22n + 1

)
J2n =

(
22n + 1

)
· 22n − 1

3

=
24n − 1

3
= J4n.

Hence, for n ≥ 1,
((

22n − 1
)
J2n, 2

n+1J2n, J4n
)

is a Pythagorean triple whose
“hypotenuse” is a Jacobsthal number.

Solution 2 by Ed Gray, Highland Beach, FL

1) 22 ≡ (−1) (mod 5)
2) 22k ≡ (−1)k (mod 5)
3) If k is even, 22k − 1 ≡ 0 (mod 5)
4) If k is odd, 22k + 1 ≡ 0 (mod 5), in either case

5)
(
22k − 1

) (
22k + 1

)
≡ 0 (mod 5), or

6) 24k − 1 ≡ 0 (mod 5).

Suppose
7) n = 4k.
Then

8) Jn = J4k =
24k − 1

3
≡ 0 (mod 5) by (6).

4



Therefore,
9) If n = 4k, let Jn = J4k = r(22 + 12).
Let this be the “hypotenuse.” The formulae for a Pythagorean triple are:
10) x = r(2ab), y = r(a2 − b2), z = r(a2 + b2).
From (9), let a = 2, b = 1.
Then (10) becomes:
11) x = r(2ab), y = r(a2 − b2), z = r(a2 + b2), or
12) x = 4r, y = 3r, z = 5r, where r is defined by (9).
13) Hence x2 + y2 = z2.

Solution 3 by Kenneth Korbin, New York, NY

If a positive integer is a multiple of 5, then it is the length of the hypotenuse of at least
one Pythagorean triangle.

In the J series, every fourth term is a multiple of 5.
For example, J4 = 5, J8 = 85, J12 = 1365, and in general J4n = 16J4(n−1) + 5.

We have

Jn =
2n − (−1)n

3
. Then,

J4n =
24n − (−1)4n

3
=

16n − 1n

3
.

16n − 1 ≡ 15 (mod 15)

16n − 1

3
≡ 5 (mod 5).

The J sequence (mod 10) is

(1, 1, 3, 5, 1, 1, 3, 5, . . . , 1, 1, 3, 5, . . .)

If a and b are positive integers and if a|b, then J4a|J4b.

Also solved by Jahangeer Kholdi and Farideh Firoozbakht, University of
Isfahan, Khansar, Iran; Carl Libis, Lane College, Jackson, TN; Bob Sealy,
Sackville, NB, Canada; David Stone and John Hawkins, Georgia Southern
University, Statesboro, GA, and the proposer.

• 5273: Proposed by Titu Zvonaru, Comănesti, Romania and Neculai Stanciu, “Geroge
Emil Palade” General School, Buzău, Romania

Solve in the positive integers the equation abcd+ abc = (a+ 1)(b+ 1)(c+ 1).

Solution 1 by Adrian Naco, Polytechnic University,Tirana, Albania.

We have that,

2 ≤ d+ 1 =

(
1 +

1

a

)(
1 +

1

b

)(
1 +

1

c

)
≤
(

1 +
1

1

)(
1 +

1

1

)(
1 +

1

1

)
= 8, or 1 ≤ d ≤ 7.
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Let us suppose that 1 ≤ c ≤ b ≤ a, then,

2 ≤ (d+ 1) =

(
1 +

1

a

)(
1 +

1

b

)(
1 +

1

c

)
≤
(

1 +
1

c

)3

⇒ 3
√

2 ≤ 1 +
1

c
⇒ c ≤ 1

3
√

2− 1

⇒ c ∈ {1, 2, 3}

Case 1. c = 1. Thus,

ab(d+ 1) = 2(a+ 1)(b+ 1) ⇒ d+ 1 = 2

(
a+ 1

a

)(
b+ 1

b

)
> 2

Thus, we have that 2 ≤ d ≤ 7.
a) If a = b, then it implies that,

d = 1 + 2 · 2a+ 1

a2
⇒ a = 1 = b, d = 7

b) If a ≥ b+ 1, then,

3ab ≤ ab(d+ 1) = 2(a+ 1)(b+ 1) ⇒ 3ab ≤ 2ab+ 2a+ 2b+ 2

⇒ ab ≤ 2a+ 2b+ 2

⇒ b ≤ 2 +
2(b+ 1)

a
≤ 2 + 2 = 4

⇒ b ∈ {1, 2, 3, 4}

Thus, we have the following solutions

b = 1, a = 2, d = 5

b = 1, a = 4, d = 4

b = 3, a = 8, d = 2

b = 4, a = 5, d = 2

Case 2. If c = 2, then,

2ab(d+ 1) = 3(a+ 1)(b+ 1).

a) If a = b, then it implies that,

2a2(d+ 1) = 2(a+ 1)2 ⇒ a2/3 ⇒ a = 1 < 2 = c ≤ a ⇒ a < a!
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b) If a ≥ b+ 1, then,

4ab ≤ 2ab(d+ 1) = 3(a+ 1)(b+ 1) ⇒ 4ab ≤ 3ab+ 3a+ 3b+ 3

⇒ ab ≤ 3a+ 3b+ 3

⇒ b ≤ 3 + 3
(b+ 1)

a
≤ 3 + 3 = 6

⇒ b ∈ {2, 3, 4, 5, 6}

Thus, we have the following solutions

b = 2, a = 3, d = 2

b = 4, a = 15, d = 1

b = 6, a = 7, d = 1.

Case 3. If c = 3, then,

6ab ≤ 3ab(d+ 1) = 4(a+ 1)(b+ 1) ⇒ 6ab ≤ 4ab+ 4a+ 4b+ 4

⇒ ab ≤ 2a+ 2b+ 2

⇒ b ≤ 2 + 2
b+ 1

a
≤ 2 + 2 = 4

⇒ b ∈ {3, 4}

Thus, we have the following solutions

b = 3, a = 8, d = 1

b = 4, a = 5, d = 1.

Finally, the solutions (a, b, c, d), of the given equality are,

Case 1 : (1, 1, 1, 8)

(1, 1, 2, 5), (1, 2, 1, 5), (2, 1, 1, 5)

(1, 1, 4, 4), (1, 4, 1, 4), (4, 1, 1, 4)

(1, 3, 8, 2), (1, 8, 3, 2), (3, 1, 8, 2), (3, 8, 1, 2), (8, 1, 3, 2), (8, 3, 1, 2)
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(1, 4, 5, 2), (1, 5, 4, 2), (4, 1, 5, 2), (4, 5, 1, 2), (5, 1, 4, 2), (5, 4, 1, 2).

Case 2 : (2, 2, 3, 2), (2, 3, 2, 2), (3, 2, 2, 2)

(2, 4, 15, 1), (2, 15, 4, 1), (4, 2, 15, 1), (4, 15, 2, 1), (15, 2, 4, 1), (15, 4, 2, 1)

(2, 6, 7, 1), (2, 7, 6, 1), (6, 2, 7, 1), (6, 7, 2, 1), (7, 2, 6, 1), (7, 6, 2, 1).

Case 3 : (3, 3, 8, 1), (3, 8, 3, 1), (8, 3, 3, 1)

(3, 4, 5, 1), (3, 5, 4, 1), (4, 3, 5, 1), (4, 5, 3, 1), (5, 3, 4, 1), (5, 4, 3, 1).

Solution 2 by Kee-Wai Lau, Hong Kong, China

We show that the solutions are given by

(a, b, c, d) = (1, 1, 1, 7), (1, 1, 2, 5), (1, 1, 4, 4), (1, 2, 3, 3), (1, 3, 8, 2), (1, 4, 5, 2),

(2, 2, 3, 2), (2, 4, 15, 1), (2, 5, 9, 1), (2, 6, 7, 1), (3, 3, 8, 1), (3, 4, 5, 1).

together with solutions obtained by permutations of entries a, b, c.

Clearly it suffices to consider the case a ≤ b ≤ c. We have

1 ≤ d =

(
1 +

1

a

)(
1 +

1

b

)(
1 +

1

c

)
− 1 ≤

(
1 +

1

a

)3

− 1 so that a ≤ 1

2
1
3 − 1

< 4.

Hence, for a = 1, 2, 3, we have respectively 1 ≤ d ≤ 7, 1 ≤ d ≤ 2, d = 1. We then obtain
the following table readily:
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a d c in terms of b Solutions (b,c) in positive integers with a≤ b ≤ c

1 1 -b -1 No solutions

2 2+
6

b− 2
(3,8),(4,5)

3 1+
2

b− 1
(2,3)

4 1+
4− b
3b− 2

(1,4)

5 1+
2− b
2b− 1

(1,2)

6 1+
4− 3b

5b− 2
No solutions

7 1+
2(b− 1)

3b− 1
(1,1)

2 1 3 +
12

b− 3
(4,15), (5,9),(6,7)

2 1 +
2

b− 1
(2,3)

3 1 2 +
6

b− 2
(3,8), (4,5)

Also solved by Ed Gray, Highland Beach, FL; Jahangeer Kholdi and Farideh
Firoozbakht, University of Isfahan, Khansar, Iran; Kenneth Korbin, NY,
NY, and by David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA, and the proposers.

• 5274: Proposed by Enkel Hysnelaj, University of Technology, Sydney, Australia

Let x, y, z, α be real positive numbers. Show that if∑
cycl

(n+ 1)x3 + nx

x2 + 1
= α

then ∑
cycl

1

x
>

9n

α
− α

n
+

9nα

9n2 + α2

where n is a natural number.

Solution by proposer

Doing easy manipulations we have

α =
∑
cycl

(n+ 1)x3 + nx

x2 + 1
=
∑
cycl

1

x
+
∑
cycl

−1 + (n− 1)x2 + (n+ 1)x4

x(x2 + 1)
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Let f(x) =
−1 + (n− 1)x2 + (n+ 1)x4

x(x2 + 1)
. One can easy observe that

f ′(x) =
1 + (n+ 2)x2 + (2n+ 4)x4 + (n+ 1)x6

x2(1 + x2)2

f ′′(x) = −2(1 + 3x2 + 2x6)

x3(1 + x2)3

It is obvious that f ′(x) > 0 and f ′′(x) < 0 for any real positive number x, which implies
that the function f(x) is an increasing and concave function in the real positive domain.
Applying Jensen’s inequality we have

∑
cycl

−1 + (n− 1)x2 + (n+ 1)x4

x(x2 + 1)
=
∑
cycl

f(x) ≤ 3f

1

3

∑
cycl

x


Doing easy manipulations, one can easy observe that

α =
∑
cycl

(n+ 1)x3 + nx

x2 + 1
=
∑
cycl

nx+
∑
cycl

x3

x2 + 1
> n

∑
cycl

x

Finally, using the above results we have∑
cycl

1

x
= α−

∑
cycl

−1 + (n− 1)x2 + (n+ 1)x4

x(x2 + 1)

≥ α− 3f

1

3

∑
cycl

x


> α− 3f

( α
n

3

)
= α− 3f

(
α

3n

)
=

9n

α
− α

n
+

9nα

9n2 + α2

and this is the end of the proof.

• 5275: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Find all real solutions to the following system of equations√
2 +

√
2 + . . .+

√
2 + x1︸ ︷︷ ︸

n

+

√
2−

√
2 + . . .+

√
2 + x1︸ ︷︷ ︸

n

= x2
√

2,

√
2 +

√
2 + . . .+

√
2 + x2︸ ︷︷ ︸

n

+

√
2−

√
2 + . . .+

√
2 + x2︸ ︷︷ ︸

n

= x3
√

2,

. . . . . . . . . . . . . . . . . .√
2 +

√
2 + . . .+

√
2 + xn−1︸ ︷︷ ︸

n

+

√
2−

√
2 + . . .+

√
2 + xn−1︸ ︷︷ ︸

n

= xn
√

2,

√
2 +

√
2 + . . .+

√
2 + xn︸ ︷︷ ︸

n

+

√
2−

√
2 + . . .+

√
2 + xn︸ ︷︷ ︸

n

= x1
√

2,


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where n ≥ 2.

Solution by Arkady Alt, San Jose, CA

Let h (x) :=
√

2 + x. Then h (x) is a function defined on [−2,∞) with range [0,∞).

Since h : [−2,∞) −→ [0,∞) then for any n ∈ N we can define recursively n−iterated
function hn : [−2,∞) −→ [0,∞), namely h1 = h and hn+1 = h ◦ hn, n ≥ 1.

Let f (x) :=
hn (x) +

√
2− hn−1 (x)√
2

for x ∈ [−2,∞) such that hn−1 (x) ≤ 2.

Since hn−1 (x) ≤ 2 ⇐⇒ h2n−1 (x) ≤ 4 ⇐⇒ hn−2 (x) ≤ 2 ⇐⇒ .... ⇐⇒ h1 (x) ≤ 2 ⇐⇒
x ≤ 2

then Dom (f) = [−2, 2]. Moreover, applying inequality
a+ b√

2
≤
√
a2 + b2 to a = hn (x)

and b =
√

2− hn−1 (x) we obtain f (x) ≤ 2 and since by definition f (x) ≥ 0 for
x ∈ Dom (f)
then range (f) ⊂ [0, 2] .

Using f we can rewrite original system as follow:

(1)

{
xk+1 = f (xk) , k = 1, 2, ..., n− 1

x1 = f (xn)
.

Since xk ∈ [0, 2] , k = 1, 2, ..., n then by setting tk := cos−1
(
xk
2

)
, k = 1, 2, ..., n

we obtain tk ∈
[
0,
π

2

]
, xk = 2 cos tk, k = 1, 2, ..., n.

Noting that h (2 cos t) = 2 cos t2 for t ∈
[
0,
π

2

]
by Math. Induction we obtain

hk (2 cos t) = 2 cos
t

2k
, k = 1, 2, ..., ...and, therefore, f (2 cos t) =

1√
2

(
2 cos

t

2n
+

√
2− 2 cos

t

2n−1

)
= 2

(
1√
2

cos
t

2n
+

1√
2

sin
t

2n

)
= 2 cos

(
π

4
− t2n

)
.

Since
π

4
− t

2n
∈
[
0,
π

2

]
for t ∈

[
0,
π

2

]
then

π

4
− tk

2n
∈
[
0,
π

2

]
as well as tk ∈

[
0,
π

2

]
for

any k = 1, 2, ..., n and, therefore, (1)

⇐⇒


2 cos tk+1 = 2 cos

(
π

4
− tk

2n

)
, k = 1, 2, ..., n− 1

2 cos t1 = 2 cos

(
π

4
− tn

2n

) ⇐⇒

(2)

 tk+1 =
π

4
− tk

2n
, k = 1, 2, ..., n− 1

t1 =
π

4
− tn2n

.

Lemma:

Let a, b be real numbers such that |a| 6= 1. Then system of equations{
tk+1 = b+ atk, k = 1, 2, ..., n− 1

t1 = b+ atn

have only solution t1 = t2 = ... = tn =
b

1− a
.
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Proof: Noting that
b

1− a
= b+ a · b

1− a
and denoting c :=

b

1− a
we obtain

tk+1 = b+ atk ⇐⇒ tk+1 − c = a (tk − c) , k = 1, 2, ...n− 1
and t1 = b+ atn ⇐⇒ t1 − c = a (tn − c). Since tk − c, k = 1, 2, ...
is geometric sequence we have tk − c = ak−1 (t1 − c) , k = 1, 2, ...n− 1 and therefore,

t1− c = a ·an−1 (t1 − c) ⇐⇒ t1− c = an (t1 − c) ⇐⇒ (t1 − c) (1− an) = 0 ⇐⇒ t1 = c.

That yield tk − c = ak−1 (t1 − c) = 0 ⇐⇒ tk = c, k = 2, ..., n.

Thus, t1 = t2 = ... = tn = c =
b

1− a
.

Applying the Lemma with a = − 1

2n
and b =

π

4
we obtain the only solution of (2),

t1 = t2 = ... = tn =
2n−2π

2n + 1
and then x1 = x2 = ... = xn = 2 cos

(
2n−2π

2n + 1

)
is the only

solution of original system.

Also solved by Adrian Naco, Polytechnic University, Tirana, Albania; Paolo
Perfetti, Department of Mathematics, “Tor Vergata” University, Rome,
Italy; and the proposer.

• 5276: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

(a) Let a ∈ (0, 1] be a real number. Calculate∫ 1

0
ab

1
xcdx,

where bxc denotes the floor of x.

(b) Calculate ∫ 1

0
2−b

1
xcdx.

Solution 1 by Angel Plaza, Universidad de Las Palmas de Gran Canaria,
Spain

(a) Using the substitution 1/x = y, the integral becomes I =

∫ ∞
1

abyc/y2dy. For any

positive integer k and y ∈ [k, k + 1) we have byc = k. Then

I =
∞∑
k=1

∫ k+1

k
ak/y2dy =

∞∑
k=1

ak
(

1

k
− 1

k + 1

)

=
∞∑
k=1

ak

k
−
∞∑
k=1

ak

k + 1
( since both series are absolutely convergent)

= − ln(1− a) +
ln(1− a) + a

a
.

Since
∞∑
k=1

ak =
1

1− a
, and

ak

k
=

∫ a

0
xk−1dx for k ≥ 1.

12



(b) Since 2−b
1
xc =

(
1

2

)b 1xc
, then by part (a) we have

∫ 1

0
2−b

1
xcdx = − ln(1/2) + 2 ln(1/2) + 1 = 1− ln 2.

Solution 2 by Paolo Perfetti, Department of Mathematics, “Tor Vergata”
University, Rome, Italy

Proof (a). We change y = 1/x.∫ 1

0
ab

1
x
cdx =

∫ ∞
1

abyc

y2
dy =

∞∑
k=1

∫ k+1

k

ak

y2
dy =

∞∑
k=1

ak
(

1

k
− 1

k + 1

)

If a = 1 we have telescoping

∞∑
k=1

(
1

k
− 1

k + 1

)
= 1.

If a < 1 we

∞∑
k=1

ak
(

1

k
− 1

k + 1

)
=
∞∑
k=1

∫ a

0
yk−1dy − 1

a

∞∑
k=1

∫ a

0
ykdy

= e =

∫ a

0

dy

1− y
− 1

a

∫ a

0

y

1− y
dy =

∫ a

0

dy

1− y
+

1

a

∫ a

0
dy − 1

a

∫ a

0

1

1− y
dy

= − ln(1− a) + a+
1

a
ln(1− a) = 1 +

1− a
a

ln(1− a).

(b). If a = 1/2 we have 1− ln 2.

Solution 3 by David Stone and John Hawkins, Georgia Southern University,
Statesboro,GA

The solutions:

(a)

∫ 1

0
ab

1
x
cdx =


1, if a = 1

1 +
1− a
a

ln(1− a), if 0 < a < 1

(b)

∫ 1

0
2b

1
x
cdx = 1− ln 2.

For part (a), note first that if a = 1, then

∫ 1

0
ab

1
x
cdx = 1.

13



Henceforth, we assume 0 < a < 1.

We shall use the following sums, for x ∈ (0, 1].

By integrating
∞∑
k=0

xk =
1

1− x
and re-indexing, we have the well-known sum:

(1)
∞∑
k=1

1

k
xk = − ln (1− x).

Then, by some algebraic manipulations, we have

(2)
∞∑
k=1

1

k + 1
xk = −1− 1

x
ln (1− x).

If we partition the interval (0, 1] into subintervals

(
1

k + 1
,

1

k

]
, our integral can be

written as a sum:

∫ 1

0
ab

1
xcdx =

∞∑
k=1

∫ 1/k

1/k+1
ab

1
xcdx.

We see that

1

k + 1
< x ≤ 1

k

⇐⇒ 1

k + 1
< x and x ≤ 1

k

⇐⇒ 1

x
< k + 1 and k ≤ 1

x

⇐⇒ k ≤ 1

x
< k + 1

⇐⇒
⌊

1

x

⌋
= k.

Thus ∫ 1/k

1/k+1
ab

1
x
cdx =

∫ 1/k

1/k+1
akdx = ak

(
1

k
− 1

k + 1

)
.

Therefore, summing and applying (1) and (2),∫ 1/k

1/k+1
ab

1
x
cdx =

∞∑
k=1

ak

k
−
∞∑
k=1

ak

k + 1

= − ln(1− a)−
{
− 1− 1

a
ln(1− a)

}

= − ln(1− a) + 1 +
1

a
ln(1− a)
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= 1 +
1− a
a

ln(1− a).

For part (b), note that

∫ 1

0
2−b

1
x
cdx =

∫ 1

0

(
1

2

)b 1
x
c
dx.

Applying the result for (a), this equals

1 +
1− 1

2
1
2

ln

(
1− 1

2

)
= 1 + ln

(
1

2

)
= 1− ln 2.

Also solved by Ed Gray, Highland Beach, FL; G.C. Greubel, Newport News,
VA; Adrian Naco, Polytechnic University,Tirana, Albania, and the proposer.

Mea Culpa (once again)

When Enkel Hysnelaj of the University of Technology in Sydney, Australia
submitted problem 5264, it came to me in several versions, with the successor version
correcting an error he noticed in the previous version. Foolishly I kept all versions of the
problem, and when I posted 5264, I posted an incorrect version of it. Problem 5274 is
the corrected statement of the problem. Thanks to Ed Gray for coming up with a
counter-example to 5264, and to Enkel for setting things straight in 5274.
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