
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
April 15, 2018

5481: Proposed by Kenneth Korbin, New York, NY

A triangle with integer area has integer length sides (3, x, x+ 1). Find five possible
values of x with x > 4.

5482: Proposed by Daniel Sitaru, “Theodor Costescu” National Economic College,
Drobeta Turnu-Severin, Mehedinti, Romania

Prove that if n is a natural number then

(tan5◦)n

(tan4◦)n + (tan3◦)n
+

(tan4◦)n

(tan3◦)n + (tan2◦)n
+

(tan3◦)n

(tan2◦)n + (tan1◦)n
≥ 3

2
.

5483: Proposed by D.M. Bătinetu-Giurgiu, “Matei Basarab” National College,
Bucharest and Neculai Stanciu, “George Emil Palade” School Buzău, Romania

If a, b > 0, and x ∈
(

0,
π

2

)
then show that

(i) (a+ b) · sinx

x
+

2ab

a+ b
· tanx

x
≥ 6ab

a+ b
.

(ii) a · tanx+ b · sinx > 2x
√
ab.

5484: Proposed by Mohsen Soltanifar, Dalla Lana School of Public Health, University
of Toronto, Canada

Let X1, X2 be two continuous positive valued random variables on the real line with
corresponding mean, median, and mode x1, x̃1, x̂1 and x2, x̃2, x̂2 respectively. Assume
for their associated CDFs, (Cummulative Distribution Functions) we have

FX1(t) ≤ FX2(t) (t > 0).

Prove or give a counter example:
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(i) x2 ≤ x1, (ii) x̃2 ≤ x̃1, (iii) x̂2 ≤ x̂1.

5485: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let x, y, z be three positive real numbers. Show that∏
cyclic

(2x+ 3y + z + 1)
∑
cyclic

(4x+ 2y + 1)−3 ≥ 3.

5486: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let (xn)n≥0 be the sequence defined by x0 = 0, x1 = 1, x2 = 1 and

xn+3 = xn+2 + xn+1 + xn + n, ∀n ≥ 0. Prove that the series
∞∑
n=1

xn
2n

converges and find

its sum.

Solutions

5463: Proposed by Kenneth Korbin, New York, NY

Let N be a positive integer. Find triangular numbers x and y such that
x2 + 14xy + y2 =

(
72N2 − 12N − 1

)2
.

Solution 1 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX

The nth triangular number Tn is given by Tn =
n (n+ 1)

2
. To simplify matters, we will

assume that x ≤ y. Then, by trial and error, we found the following solutions for the
first four values of N .

N 72N2 − 12N − 1 x y

1 59 T4 = 10 T6 = 21

2 263 T10 = 55 T12 = 78

3 611 T16 = 136 T18 = 171

4 1103 T22 = 253 T24 = 300

.

This leads to the conjecture that one solution consists of

x = T6N−2 =
(6N − 2) (6N − 1)

2
= (3N − 1) (6N − 1) = 18N2 − 9N + 1 (1)

and

y = T6N =
6N (6N + 1)

2
= 3N (6N + 1) = 18N2 + 3N. (2)
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After some algebraic simplification, we obtain

x2 + 14xy + y2 =
(
18N2 − 9N + 1

)2
+ 14

(
18N2 − 9N + 1

) (
18N2 + 3N

)
+
(
18N2 + 3N

)2
= 5184N4 − 1728N3 + 24N + 1

=
(
72N2 − 12N − 1

)2
and hence, (1) and (2) provide a solution for each N ≥ 1.

Solution 2 by Albert Stadler, Herrliberg, Switzerland

We put x =
(aN + b)(aN + b− 1)

2
, y =

(cN + d)(cN + d− 1)

2
.

(aN + b)2(aN + b− 1)2

4
+14

(aN + b)(aN + b− 1)(cN + d)2(cN + d− 1)2

4
+

(cN + d)2(cN + d− 1)2

4

= (72N2 − 12N − 1)2.

By comparing the coefficients of N4, N3, N2, N and the statement of the problem we
find the solutions

(x, y) =

(
(6N − 1)(6N − 2)

2
,
(6N + 1)6N

2

)
and

(x, y) =

(
(6N + 1)6N

2
,
(6N − 1)(6N − 2)

2

)
.

Also solved by Brian D. Beasley, Presbyterian College, Clinton, SC;
Anthony Bevelacqua, University of North Dakota, Grand Forks, ND;
Jeremiah Bartz, University of North Dakota, Grand Forks, ND; Bruno
Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland Beach, FL; Kee-Wai
Lau, Hong Kong, China; David E. Manes, Oneonta, NY; Ioannis D. Sfikas,
National and Kapodistrian University of Athens, Greece; Titu Zvonaru,
Comănesti and Neculai Stanciu,“George Emil Palade” School Buzău,
Romania; David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA, and the proposer.

5464: Proposed by Ed Gray, Highland Beach, FL

Let ABC be an equilateral triangle with side length s that is colored white on the front
side and black on the back side. Its orientation is such that vertex A is at lower left, B
is its apex, and C is at lower right. We take the paper at B and fold it straight down
along the bisector of angle B, thus exposing part of the back side which is black. We
continue to fold until the black part becomes 1/2 of the existing figure, the other half
being white. The problem is to determine the position of the fold, the distance defined
by x (as a function of s) which is the distance from B to the fold.

Solution 1 by David E. Manes, Oneonta, NY

If x =

√
3

2
(2−

√
2)s, then the area of the resulting black triangle equals the sum of the

areas of the two resulting white triangles.
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Introduce the coordinates A(−s/2, 0), B(0,
√

3s/2) and C(s/2, 0). Then triangle ABC is
an equilateral triangle with side length s and altitude

√
3s/2). In view of the coordinates

x and y, let t denote the distance from vertex B to the fold. The equation of the line L

containing the points B and C is y = −
√

3
(
x− s

2

)
. Note that for a given value of t, the

value of y is given by y =

√
3

2
s− t. For example, let t =

√
3s

4
. Then y =

√
3s

4
and

vertex B has been moved to the origin, thus creating three equilateral triangles two of

which are white. Substituting the above value of y in the equation for L yields x =
s

4
so

that the point P

(
s

4
,

√
3

4
s

)
is a base vertex for the black triangle and an apex for one of

the white triangles with side PC. By symmetry, the side length for the black triangle is

2
(s

4

)
=
s

2
so that its area AB is given by AB =

(√
3

4

)(s
2

)2
=

√
3

16
s2. However, the

side length PC =

√√√√(s
4

)2
+

(√
3s

4

)2

=
s

2
, hence the sum of the areas AW of the two

white triangles is AW = 2

(√
3

4

)(s
2

)2
=

√
3

8
s2. Since AW > AB, it follows that the

value of t is greater than

√
3s

4
. For this reason, let t =

√
3

4
s+ k, where k is a real

number such that 0 < k <

√
3

4
s. Then

y =

√
3

2
s− t =

√
3

2
−

(√
3

4
s+ k

)
=

√
3

4
s− k.

Substituting this value of y in the equation for L, one obtains x =
s

4
+

√
3

3
k. Hence, the

point P =

(
s

4
+

√
3

3
k,

√
3

4
s− k

)
is a base vertex for the black triangle and an apex for

the white triangle with side PC. Therefore, the side length of the black triangle is

2

(
s

4
+

√
3

3
k

)
=
s

2
+

2
√

3

3
k so that its area is AB =

√
3

4

(
s

2
+

2
√

3

3
k

)2

. Moreover, for

the white triangle

PC =

√√√√(√3

3
k − s

4

)2

+

(√
3

4
s− k

)2

=
s

2
− 2
√

3

3
k.

Therefore, the sum of the areas of the two white triangles is AW =

√
3

2

(
s

2
− 2
√

3

3
k

)2

.

Setting AW = AB, we get
√

3

2

(
s2

4
− 2
√

3

3
sk +

4

3
k2

)
=

√
3

4

(
s2

4
+

2
√

3

3
sk +

4

3
k2

)
.

This equation simplifies to the following quadratic equation in k:

4

3
k2 − 2

√
3sk +

s2

4
= 0
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with roots k =

√
3

2

(
3

2
±
√

2

)
s. The positive square root of 2 yields a value of k >

√
3

4
s

and so is inadmissable. Therefore, k =

√
3

2

(
3

2
−
√

2

)
s, whence

t =

√
3

4
+ k =

√
3

2
(2−

√
2)s.

Observe that using this value of t, the area of the black triangle as well as the sum of

the areas of the two white triangles is
√

3

(
3

2
−
√

2

)
s2.

Solution 2 by Kee-Wai Lau, Hong Kong, China

When B reaches the midpoint of AC, the black part is only 1/3 of the existing figure,
which is a trapezium. So we need to push B downwards further. The black part is then

an equilateral triangle with base 2x tan 30◦, height x and hence area
x2√

3
. The distance

between the fold and AC equals

√
3s

2
− x. The white part now consists of two congruent

equilateral triangles of lengths

(√
3s

2
− x

)
sec 30◦ = s− 2x√

3
. Since the area of the

white part equals the area of the black part, we have

√
3

2

(
s− 2x√

3

)2

=
x2√

3
. Solving, we

obtain x =

√
3
(
2−
√

2
)
s

2
.

Editor′s Comment: David Stone and John Hawkins both Georgia Southern
University in Statesboro, GA generalized the statement as follows: “The problem
asked for the configuration in which the black triangle covered half of the final figure.
We could just as well determine when the black triangle covers any given portion of the
final figure; say one fourth or nine tenths.”

They did this by looking at two cases: 1) 0 < λ <
1

3
and 2)

1

3
< λ < 1, where the Black

Area=λTotal Area. The constant
1

3
comes from when the vertex of the Black Triangle

lies on the base of the White Triangle. Letting x be the length of the height of the black
triangle (measured from its vertex to the fold line) they found that for the first case,
where the vertex of the Black Triangle lies in the interior of the White Triangle that:

x =

√
λ

1 + λ
·
√

3

2
s and in the second case, where the vertex of the Black Triangle lies in

the exterior of the White Triangle that x =
2λ−

√
2λ(1− λ)

3λ− 1
· h, where h is the altitude

of the given White Triangle. When λ =
1

2
we obtain the statement of the problem and

using their formula reaffirms the above answers.

In concluding their comment they noted, “Another nice example: with λ =
2a2

2a2 + 1
,

which is very close to 1, we find that x =

(
1− 1

2a+ 1

)
h. That is, in a precisely

measurable way, we must fold almost all the way down to get a figure which is almost all
black.”
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Also solved by Brian D. Beasley, Presbyterian College, Clinton, SC; Bruno
Salgueiro Fanego (two solutions), Viveiro, Spain; David A. Huckaby, Angelo
State University San Angelo, TX; and the proposer.

5465: Proposed by Arsalan Wares, Valdosta State University, Valdosta, GA

Quadrilateral ABCD is a rectangle with diagonal AC. Points P,R, T,Q and S are on
sides AB and DC and they are connected as shown. Three of the triangles inside the
rectangle are shaded pink, and three are shaded blue. Which is larger, the sum of the
areas of the pink triangles or the sum of the areas of the blue triangles?

                               
Solution by David A. Huckaby, Angelo State University, San Angelo, TX

Let p be the sum of the areas of the pink triangles, b the sum of the areas of the blue
triangles, and w the sum of the areas of the three white polygons below the diagonal.

p+ w = the sum of the areas of triangles DPQ, QRS, and STC

=
1

2
(AD ·DQ) +

1

2
(AD ·QS) +

1

2
(AD · SC)

=
1

2
[AD · (DQ+QS + SC)]

=
1

2
(AD ·DC)

= the area of triangle ADC

= b+ w

So p = b, that is, the sum of the areas of the pink triangles is equal to the sum of the
areas of the blue triangles.
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Also solved by Michael N. Fried, Ben-Gurion University of the Negev,
Beer-Sheva, Israel; Ed Gray, Highland Beach, FL; Kee-Wai Lau, Hong Kong,
China; Albert Stadler, Herrliberg, Switzerland; David Stone and John
Hawkins, Georgia Southern University, Statesboro, GA, and the proposer.

5466: Proposed by D.M. Bătinetu−Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “Geroge Emil Palade” School, Buzău,
Romania

Let f : (0,+∞)→ (0,+∞) be a continuous function. Evaluate

lim
n→∞

∫ (n+1)2

n+1
√

(n+1)!

n2
n√

n!

f
(x
n

)
dx.

Solution 1 by Moti Levy, Rehovot, Israel

The mean value theorem of the integral calculus states:
Let f (x) be continuous function, then∫ b

a
f (x) dx = (b− a) f (ξ) , a ≤ ξ ≤ b.

Therefore,∫ (n+1)2

n+1
√

(n+1)!

n2
n√

n!

f
(x
n

)
dx =

(
(n+ 1)2

n+1
√

(n+ 1)!
− n2

n
√
n!

)
f

(
ξ

n

)
,

n2

n
√
n!
≤ ξ ≤ (n+ 1)2

n+1
√

(n+ 1)!
.

Taking limits of both sides,

lim
n→∞

∫ (n+1)2

n+1
√

(n+1)!

n2
n√

n!

f
(x
n

)
dx = lim

n→∞

(
(n+ 1)2

n+1
√

(n+ 1)!
− n2

n
√
n!

)
lim
n→∞

f

(
ξ

n

)
.

Since f (x) is continuous then

lim
n→∞

f

(
ξ

n

)
= f

(
lim
n→∞

ξ

n

)
= f

(
lim
n→∞

n
n
√
n!

)
Using Stirling’s asymptotic formula, we have

n
√
n! ∼ n

e
. (1)

By (1),
n

n
√
n!
∼ e, n2

n
√
n!
∼ e · n,

which implies that

f

(
lim
n→∞

n
n
√
n!

)
= f (e)

and that
(n+ 1)2

n+1
√

(n+ 1)!
− n2

n
√
n!
∼ e.
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We conclude that

lim
n→∞

∫ (n+1)2

n+1
√

(n+1)!

n2
n√

n!

f
(x
n

)
dx = ef (e) .

Solution 2 by Bruno Salgueiro Fanego,Viveiro, Spain

Let’s proceed as in http://www./oei.es/historico/oim/revistaoim/numero
53/261 Bruno.pdf:

Let n ∈ N ; since f is continuous on (xn, xn+1), by the mean value theorem of integral

calculus, we have that

∫ xn+1

xn

f
(x
n

)
dx = f

(
ξn
n

)
(xn+1 − xn)for some ξn ∈ (xn, xn+1).

Since
xn
n
<
ξn
n
<
xn+1

n
,

lim
n→∞

xn
n

= lim
n→∞

n

√
n2n

nnn!
= lim

n→∞
n

√
nn

n!
= lim

n→∞

(n+ 1)n+1

(n+ 1)!
nn

n!

= lim
n→∞

(n+ 1)n(n+ 1)n!

(n+ 1)!nn
= lim

n→∞

(
n+ 1

n

)n

= e

and lim
n→∞

xn+1

n
= lim

n→∞

xn+1

n+ 1
· n+ 1

n
= lim

n→∞

xn+1

n+ 1
· lim
n→∞

n+ 1

n
= e · 1 = e, by the

sandwich rule we obtain that lim
n→∞

ξn
n

= e, and, hence,

lim
n→∞

f

(
ξn
n

)
=

(
lim
n→∞

ξn
n

)
= f(e).

Moreover, from Stolz’ rule,

lim
n→∞

(xn+1 − xn) = lim
n→∞

(xn+1 − xn)

(n+ 1)− n
= lim

n→∞

xn
n

= e.

So, the required limit is equal to

lim
n→∞

∫ xn+1

xn

f
(x
n

)
dx = lim

n→∞
f

(
ξn
n

)
lim
n→∞

(xn+1 − xn) = ef(e).

Solution 3 by Ioannis D. Sfikas, National and Kapodistrian University of
Athens, Greece

This particular problem is similar to Problem 121, which was proposed by D.M.
Bătinetu-Giurgiu (“Matei Basarab” National College, Bucharest, Romania) and Neculai
Stanciu (“George Emil Palade” School, Buzău, Romania) to the Math Problems
Journal, Volume 5, Issue 2 (2015), pp. 420-421. We’ll use the following lemma.

Lemma: Let f : [a, b]→ < be continuous and (xn)n, (yn)n two convergent sequences of
[a, b] that have the same limit c, then∫ yn

xn

f(t)dt = f(c)(yn − xn) +O(yn − xn).

Proof: Let ε > 0 , then there exists δ > 0 such that |f(t)− f(c)| < ε, whenever
|x− c| < δ. Since xn, yn → c, the there is an n0 ∈ N such that xn, yn ∈ (C − δ, C + δ),
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whenever n > n0. Therefore,∣∣∣∣∫ yn

xn

f(t)dt− f(c)(yn − xn)

∣∣∣∣ ≤ ∫ yn

xn

|f(t)− f(c)| dt ≤ ε |yn − xn| .

Note that the given integral equals

In = n

∫ n

(n+1)2

n+1
√

(n+1)!

n
n√

n!

f(t)dt,

this comes directly from the substitution t =
x

n
. Let xn, yn be the lower, upper bound of

the last integral respectively then xn, yn → e, since
n

n
√
n!
→ e, and thus

(n+ 1)2

n n+1
√

(n+ 1)!
=
n+ 1

n

(n+ 1)
n+1
√

(n+ 1)!
−→ e, as n −→∞. Note that by Stolz’ theorem

n(yn − xn) =
(n+ 1)2

n+1
√

(n+ 1)!
− n2

n
√
n!
−→ e, as n −→∞.

By the lemma we have

In = n [f(c)(yn − xn) +O(yn − xn)] = ef(e) +O(1),

which proves that the limit equals ef(e).

Also solved by Arkady Alt, San Jose, CA; Kee-Wai Lau, Hong Kong, China;
Soumitra Mandal, Scottish Church College, Chandan -Nagar, West Bengal,
India; Paolo Perfetti, Department of Mathematics, Tor Vergata University,
Rome, Italy; Albert Stadler, Herrliberg, Switzerland; Anna V. Tomova,
Varna, Bulgaria, and the proposers.

5467: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

In an arbitrary triangle 4ABC, let a, b, c denote the lengths of the sides, R its
circumradius, and let ha, hb, hc respectively, denote the lengths of the corresponding
altitudes. Prove the inequality

a2 + bc

b+ c
+
b2 + ca

c+ a
+
c2 + ab

a+ b
≥ 3abc

2R
3

√
1

ha · hb · hc
,

and give the conditions under which equality holds.

Solution 1 by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy

We know that ha = (bc)/(2R) and cyclic so the inequality actually is

a2 + bc

b+ c
+
b2 + ca

c+ a
+
c2 + ab

a+ b
≥ 3abc

2R

(
8R3

(abc)2

) 1
3

= 3(abc)
1
3 .

We prove the stronger one
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a2 + bc

b+ c
+
b2 + ca

c+ a
+
c2 + ab

a+ b
≥ a+ b+ c,

that is (
a2 + bc

b+ c
− a
)

+

(
b2 + ca

c+ a
− b
)

+

(
c2 + ab

a+ b
− c
)
≥ 0,

or

(a− b)(a− c)
b+ c

+
(b− c)(b− a)

a+ c
+

(c− a)(c− b)
a+ b

≥ 0.

We can suppose a ≥ b ≥ c by symmetry so we come to

(a− b)(a− c)
b+ c

+
(a− c)(b− c)

a+ b
≥ (a− b)(b− c)

a+ c
.

This is implied by

(a− b)(a− c)
b+ c

+
(a− b)(b− c)

a+ b︸ ︷︷ ︸
a−c≥a−b

≥ (a− b)(b− c)
a+ c

,

or

a− c
b+ c

+
b− c
a+ b

≥ b− c
a+ c

.

This is in turn implied by

a− c
a+ c︸ ︷︷ ︸
a≥b

+
b− c
a+ b

≥ b− c
a+ c

and this evidently holds true by a− c ≥ b− c ≥ 0. The equality case is a = b = c.

Solution 2 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX

We will prove the following slight improvement:

a2 + bc

b+ c
+
b2 + ca

c+ a
+
c2 + ab

a+ b
≥ a+ b+ c

≥ 3
3
√
abc

=
3abc

2R
3

√
1

ha · hb · hc
, (1)

with equality if and only if a = b = c.

To begin, we note that

a4 + b4 + c4 − a2b2 − b2c2 − c2a2 =

(
a2 − b2

)2
+
(
b2 − c2

)2
+
(
c2 − a2

)2
2

≥ 0, (2)

10



with equality if and only if a2 = b2 = c2. Since a, b, c > 0, it follows that equality is
attained in (2) if and only if a = b = c.

Next, we use (2) to obtain

a2 + bc

b+ c
+
b2 + ca

c+ a
+
c2 + ab

a+ b

=

(
a2 − b2

)
+
(
b2 + bc

)
b+ c

+

(
b2 − c2

)
+
(
c2 + ca

)
c+ a

+

(
c2 − a2

)
+
(
a2 + ab

)
a+ b

=
a2 − b2

b+ c
+
b2 − c2

c+ a
+
c2 − a2

a+ b
+ a+ b+ c

=

(
a2 − c2

)
+
(
c2 − b2

)
b+ c

+
b2 − c2

c+ a
+
c2 − a2

a+ b
+ a+ b+ c

=
(
a2 − c2

)( 1

b+ c
− 1

a+ b

)
+
(
b2 − c2

)( 1

c+ a
− 1

b+ c

)
+ a+ b+ c

=
(
a2 − c2

) a− c
(a+ b) (b+ c)

+
(
b2 − c2

) b− a
(b+ c) (c+ a)

+ a+ b+ c

=

(
a2 − c2

)2
+
(
b2 − c2

) (
b2 − a2

)
(a+ b) (b+ c) (c+ a)

+ a+ b+ c

=
a4 + b4 + c4 − a2b2 − b2c2 − c2a2

(a+ b) (b+ c) (c+ a)
+ a+ b+ c

≥ a+ b+ c, (3)

with equality if and only if a = b = c.

Also, the Arithmetic - Geometric Mean Inequality implies that

a+ b+ c ≥ 3
3
√
abc, (4)

with equality if and only if a = b = c.

For the final step, let K = area (4ABC). Then,

K =
1

2
aha =

1

2
bhb =

1

2
chc

and hence,

ha =
2K

a
, hb =

2K

b
, and hc =

2K

c
.

Since R =
abc

4K
, we have

3abc

2R
3

√
1

ha · hb · hc
=

12KR

2R
3

√
abc

8K3

=
6K

2K
3
√
abc

= 3
3
√
abc. (5)
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If we combine (3), (4), and (5), statement (1) follows and equality is attained
throughout if and only if a = b = c.

Solution 3 by Arkady Alt, San Jose, CA

Let F = [ABC] (area) and let s be its semi-perimeter.

Since ha =
2F

a
, hb =

2F

b
, hc =

2F

c
and abc = 4RF then

3

√
1

hahbhc
=

3

√
abc

8F 3
=

1

2F
3
√
abc and

3abc

2R
3

√
1

hahbhc
= 3

3
√
abc.

Thus, original inequality becomes

(1)
a2 + bc

b+ c
+
b2 + ca

c+ a
+
c2 + ab

a+ b
≥ 3 3
√
abc.

Since
4a2

b+ c
≥ 4a− b− c ⇐⇒ (2a− b− c)2 ≥ 0 we have

∑
cyc

a2 + bc

b+ c
=

∑
cyc

a2

b+ c
+
∑
cyc

bc

b+ c
≥
∑
cyc

4a− b− c
4

+
∑
cyc

bc

b+ c

=
a+ b+ c

2
+
∑
cyc

bc

b+ c
=
∑
cyc

(
b+ c

4
+

bc

b+ c

)
≥
∑
cyc

2

√
b+ c

4
· bc

b+ c

=
∑
cyc

√
bc ≥ 3

3

√√
bc ·
√
ca ·
√
ab = 3

3
√
abc.

Solution 4 by Nicusor Zlota,“Traian Vuia” Technical College, Focsani,
Romania, and Corneliu-Manescu Avram, Ploiesti, Romania

Assume that a ≥ b ≥ c.

First, we will prove that
a2 + bc

b+ c
+
b2 + ca

c+ a
+
c2 + ab

a+ b
≥ a+ b+ c ⇐⇒

a2 + bc

b+ c
− a+

b2 + ca

c+ a
− b+

c2 + ab

a+ b
− c ≥ 0 ⇐⇒

(a− b)(a− c)
b+ c

+
(b− c)(b− a)

c+ a
+

(c− a)(c− b)
a+ b

≥ 0 ⇐⇒

(a− b)
(
a− c
b+ c

− b− c
c+ a

)
+ (b− a)

(
b− a
c+ a

− c− a
a+ b

)
+ (c− a)

(
a− c
b+ c

− b− c
c+ a

)
≥ 0

(a− b)2 a+ b

(b+ c)(c+ a)
+ (b− c)2 b+ c

(a+ b)(c+ a)
+ (c− a)2

c+ a

(a+ b)(b+ c)
≥ 0.

12



Then, it suffices to prove that

a = b = −c ≥ 3abc

2R
3

√
1

hahbhc
=

3abc

2R
3

√
abc

8S3
=

3abc

2R

1

2S
3
√
abc = 3

√
abc,

which is the AM-GM inequality.

Equality holds for a = b = c.

Also solved by Hatef I. Arshagi, Guilford Technical Community College,
Jamestown, NC; Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland
Beach, FL; Kee-Wai Lau, Hong Kong, China; Moti Levy Rehovot, Israel;
Ioannis D. Sfikas, National and Kapodistrian University of Athens, Greece;
Albert Stadler, Herrliberg, Switzerland; Neculai Stanciu, “George Emil
Palade” School, Buzău, Romania and Titu Zvonaru, Comănesti, Romania;
David Stone and John Hawkins, Georgia Southern University,
Statesboro,GA, and the proposer.

Editor′s note: Hatef I. Arshagi’s solution was dedicated to the memory of
Mrs. Alieh Ataee.

5468: Proposed by Ovidiu Furdui and Alina Sîntămărian, both at the Technical
University of Cluj-Napoca, Cluj-Napoca, Romania

Find all differentiable functions f : < → < with f(0) = 1 such that f ′(x) = f2(−x)f(x),
for all x ∈ <.

Solution 1 by Moti Levy, Rehovot, Israel

Let us differentiate both sides of the given differential equation,

f
′′
(x) = −2f(−x)f

′
(−x) f(x) + f2(−x)f

′
(x). (1)

The following two equation are direct consequence of the original equation.

f
′
(−x) = f2(x)f(−x), (2)

f2(−x) =
f

′
(x)

f(x)
. (3)

After substitution of (2) and (3) in (1), we get differential equation (4) with initial
conditions at x = 0,

f
′′
(x) + 2f2(x)f

′
(x)−

(
f

′
(x)
)2

f(x)
= 0, f (0) = f

′
(0) = 1. (4)

By the substitution f (x) =
√
g (x),

f =
√
g,

f
′

=
1

2
√
g
g
′
,

f
′′

=
1

2
√
g
g
′′ − 1

4
(√
g
)3 (g′

)2
,
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we arrive at the equivalent differential equation

g
′′

+ 2gg
′ − 1

g

(
g
′
)2

= 0, g (0) = 1, g
′
(0) = 2. (5)

Now we want to lower the order of (5) by the substitution g
′

= dg
dx = z, g

′′
= d2g

dx2 = z dz
dg ,

z
dz

dg
+ 2gz − 1

g
z2 = 0,

or

g
dz

dg
− z = −2g2. (6)

The solution of (6) is
z = cg − 2g2.

The initial conditions on g dictate that c = 4, thus we obtain the following differential
equation for g,

dg

dx
= 4g (x)− 2g2 (x) .

or
dx

dg
=

1

4g − 2g2
.

After integration over g, we get

x =
1

4
ln

g

2− g
+ c

or

g (x) = 2k
e4x

ke4x + 1
.

Again, the initial condition g (0) = 1 dictates k = 1,

g (x) =
2e4x

e4x + 1
.

We conclude that the

f (x) =
√

2
e2x√
e4x + 1

.

Solution 2 by Ioannis D. Sfikas, National and Kapodistrian University of
Athens, Greece

The defining relation

f ′(x) = f2(−x)f(x), (1)

implies that f is continuously differentiable. Setting −x in the relation (1), one gets for
every = x, f ′(−x) = f2(x)f(−x), Multiplying (1) by f(x) yields for every x

f
′
(x)f(x) = f2(−x)f2(x) =

[
f2(x)f(−x)

]
f(−x) = f

′
(−x)f(−x),

14



that is x→ f ′(x)f(x) is even. Therefore,

∫ x

−x
f ′(t)f(t)dt = 2

∫ x

0
f ′(t)f(t)dt, and since

an antiderivative of f ′f is
f2

2
, this implies that for every x, f2(x) + f2(−x) = 2.

Replacing f2(−x) in the defining relation one get for every x

f ′(x)− 2f(x)− f2(x).

This non-linear differential equation seems to have only one solution, namely

x→
√

2e2x√
e4x + 1

(2)

Conversely, it is easily checked that (2) is indeed a solution to the equation.

Solution 3 by Kee-Wai Lau, Hong Kong, China

We show that

f(x) =

√
2e2x√

1 + e4x
. (1)

From the given equation , we obtain f(x)f ′(x) = f2(−x)f2(x), so that

f(−x)f ′(−x) = f(x)f ′(x) (2)

Integrating (2) with respect to x, and making use of the fact that f(0) = 1, we obtain

f2(−x) = 2− f2(x). (3)

Substituting (3) into the given equation, we obtain f ′(x) =
(
2− f2(x)

)
f(x) or

d(f(x))

(1− f2(x))f(x)
= dx. Integrating boh sides we obtain

ln (f(x))

2
−

ln
(
2− f2(x)

)
4

= x+ C,

where C is a constant. Since f(0) = 1, so C = 0. Now (1) follows easily by simple
algebra.

Editor′s comment: Anna Tomova of Varna Bulgaria expressed her solution in

terms of a hyperbolic function; f(x) =
ex√

cosh 2x
, f(0) = 1.

Also solved by Albert Stadler, Herrliberg, Switzerland; Anna V. Tomova,
Varna, Bulgaria, and the proposers.
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