
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
February 15, 2019

5517: Proposed by Kenneth Korbin, New York, NY

Find positive integers (a, b, c) such that

arccos
( a

1331

)
= arccos

(
b

1331

)
+ arccos

( c

1331

)
with a < b < c.

5518: Proposed by Roger Izard, Dallas, TX

Let triangle PQR be equilateral and let it intersect another triangle ABC at points
U,U ′,W,W ′, V, V ′ such that WU ′, UV ′, V W ′ are equal in length, and triangles
AU ′W,BV ′U,CW ′V are equal in area (see Figure 1). Show that triangle ABC must
then also be equilateral
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5519: Proposed by Titu Zvonaru, Comănesti, Romania

Let a, b, c be positive real numbers. Prove that

a2

b2
+
b2

c2
+
c2

a2
+

2abc

a3 + b3 + c3
≥ 11

3
.

5520: Proposed by Raquel León (student) and Angel Plaza, University of Las Palmas
de Gran Canaria, Spain

Let n be a positive integer. Prove that

2n∑
k=0

(
2n+ k

k

)(
2n

k

)
(−1)k

2k
1

k + 1
= 0.

5521: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let a > 0 be a real number. If f is an odd non-constant real function having second
derivative in the interval [−a, a] and f ′(−a) = f ′(a) = 0, then prove that there exists a
point c ∈ (−a, a) such that

1

2
f ′′(c) ≥ |f(a)|

a2

5522: Proposed by Ovidiu Furdui and Cornel Vălean from Technical University of
Cluj-Napoca, Cluj-Napoca, Romania and Timiş, Romania, respectively

Calculate ∫ 1

0

∫ 1

0

log(1− x)− log(1− y)

x− y
dxdy.

Solutions

5499: Proposed by Kenneth Korbin, New York, NY

Given a triangle with sides (21, 23, 40). The sum of these digits is
2 + 1 + 2 + 3 + 4 + 0 = 12. Find primitive pythagorean triples in which the sum of the
digits is 12 or less.

Solution 1 by Anthony J. Bevelacqua, University of North Dakota, Grand
Forks, ND

The two best-known primitive pythagorean triples (3, 4, 5) and (5, 12, 13) have this
property. We will give two infinite families of such triples.

Recall that a = s2 − t2, b = 2st, c = s2 + t2 is a primitive pythagorean triple for any
s > t ≥ 1 with gcd(s, t) = 1 and s and t of opposite parity.
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1. For any n ≥ 1 let s = 10n + 1 and t = 10n. Then

a = s2 − t2 = 2 · 10n + 1
b = 2st = 2 · 102n + 2 · 10n

c = s2 + t2 = 2 · 102n + 2 · 10n + 1

is a primitive pythagorean triple. The sum of the digits in (a, b, c) is

2 + 1 + 2 + 2 + 2 + 2 + 1 = 12.

2. For any n ≥ 1 let s = 102n + 1 and t = 10n. Then

a = s2 − t2 = 104n + 102n + 1
b = 2st = 2 · 103n + 2 · 10n

c = s2 + t2 = 104n + 3 · 102n + 1

is a primitive pythagorean triple. The sum of the digits in (a, b, c) is

1 + 1 + 1 + 2 + 2 + 1 + 3 + 1 = 12.

Solution 2 by Dionne Bailey, Elsie Campbell, Charles Diminnie, and Trey
Smith, Angelo State University, San Angelo, TX

To begin, we note the well-known result that (a, b, c) is a primitive Pythagorean triple,
with a2 + b2 = c2 and a odd if and only if a = m2 − n2, b = 2mn, and c = m2 + n2 for
some positive integers m and n such that m > n, gcd (m,n) = 1, and m and n have
opposite parity.

We can provide an infinite family of primitive Pythagorean triples for which the sum of
the digits is 12 by choosing m = 10k + 1 and n = 10k with k ≥ 0. Then,

ak =
(

10k + 1
)2
− 102k = 2× 10k + 1,

bk = 2
(

10k + 1
)(

10k
)

= 2× 102k + 2× 10k,

and

ck =
(

10k + 1
)2

+ 102k = 2× 102k + 2× 10k + 1

for k ≥ 0. As noted above, (ak.bk, ck) is a primitive Pythagorean triple for each k ≥ 0.
Further, in each case, the sum of the non-zero digits for ak, bk, and ck is
(2 + 1) + (2 + 2) + (2 + 2 + 1) = 12. In particular, when k = 0, we have
(a0, b0, c0) = (3, 4, 5), the best known primitive Pythagorean triple.

Another example is (a, b, c) = (5, 12, 13). However, we haven’t been able to generalize
this in a manner similar to that shown above. Also, we haven’t found any other
examples of primitive Pythagorean triples (a, b, c) for which the sum of the digits of a, b,
and c is 12 or less.

Editor′s comment : David Stone and John Hawkins, both of Georgia Southern
University in Stateboro, GA stated that a computer search revealed no triples with
total digit sum < 12. In each triple with total digit sum 12, the 12 was achieved as
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3+4+5. They also found no triples with total digit sum 13 or 14. They went on to find
the above mentioned infinite class with digit sum15 and ended their solution with the
comment: “We do not know whether there are other triples with total digit sum 12.
Note that x+ y + z = 2ab+

(
b2 − a2

)
+
(
b2 + a2

)
= 2b(ab). For any integer w we know

that w = Digitsum(w) mod 3. Thus Digitsum (x)+ Digitsum (y)+ Digitsum
(z) = x+ y + z = 2b(a+ b) mod 3. So if the total digit sum is 12, then b = 0 mod 3 or
a+ b = 0 mod 3. That is, there are restrictions on the generators a and b.”

Also solved by Ed Gray, Highland Beach, FL; David E. Manes, Oneonta,
NY; Ioannis D. Sfikas, National and Kapodistrian University of Athens,
Greece; Albert Stadler, Herrliberg, Switzerland, and the proposer.

5500: Proposed by Moshe Stupel, “Shaanan” Academic College of Education and
Gordon Academic College of Education, and Avi Sigler, “Shaanan” Academic College of
Education, Haifa, Israel

Without the use of a calculator, show that: 8 sin 20◦ · sin 40◦ · sin 60◦ · sin 80◦ =
3

2
.

Solution 1 by David A. Huckaby, Angelo State University, San Angelo, TX

8 sin 20◦ · sin 40◦ · sin 60◦ · sin 80◦

= 8 sin(30◦ − 10◦) · sin(30◦ + 10◦) · sin 60◦ · sin(90◦ − 10◦)

= 8[sin 30◦ · cos 10◦ − cos 30◦ · sin 10◦] · [sin 30◦ · cos 10◦ + cos 30◦ · sin 10◦]

·
√

3

2
· [sin 90◦ · cos 10◦ − cos 90◦ · sin 10◦]

= 8

[
1

2
· cos 10◦ −

√
3

2
· sin 10◦

]
·

[
1

2
· cos 10◦ +

√
3

2
· sin 10◦

]
·
√

3

2
· [cos 10◦]

=
√

3 cos 10◦ ·
[
cos 10◦ −

√
3 sin 10◦

]
·
[
cos 10◦ +

√
3 sin 10◦

]
=
√

3 cos 10◦ ·
[
cos2 10◦ − 3 sin2 10◦

]
=
√

3
[
cos3 10◦ − 3 sin2 10◦ · cos 10◦

]
=
√

3 cos 30◦

=
√

3 ·
√

3

2

=
3

2

Solution 2 by Cartesian Gains Student Problem Solving Group, Mountain
Lakes High School, Mountain Lakes, NJ

We use the well known formula: sin θ =
eiθ − e−iθ

2i
.

Converting to radians, we rewrite the left side of the equation as

8 ·
(

1

2i

)4

·
(
eiπ/9 − e−iπ/9

)
·
(
ei2π/9 − e−i2π/9

)
·
(
ei3π/9 − e−i3π/9

)
·
(
ei4π/9 − e−i4π/9

)
.
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Expanding gives:

1

2
·
(
ei(10π/9) + e−i(10π/9) − ei(8π/9) − e−i(8π/9) − ei(6π/9) − e−i(6π/9) + 2

)
(1)

We use the fact that on the unit circle ei(10π/9) represents the same complex number as
e−i(8π/9). Similarly, ei(8π/9) = e−i(10π/9). These terms cancel out in our equation.

Additionally,

−
(
ei(6π/9) + e−i(6π/9)

)
= −

(
cos

6π

9
+ i sin

6π

9
+ cos

−6π

9
+ i sin

−6π

9

)
= −2 cos(6π/9) = 1.

Therefore, equation (1) reduces to:
1

2
(1 + 2) =

3

2
.

Editor′s comments: Albert Stadler of Herrliberg, Switzerland and several other
solvers, noticed that this problem is a special case of problem 5497, which asked us to
find a closed form of

n−1∏
k=1

2 sin

(
kπ

n

)
.

He showed that
n−1∏
k=1

2 sin

(
kπ

n

)
= lim

x
1
xn − 1

x− 1
= n.

By symmetry sin

(
kπ

n

)
= sin

(
n− k)π

n

)
, so if n is odd then

n−1
2∏

k=1

2 sin

(
kπ

n

)
=
√
n.

So problem is 5500 is the special case with n = 9.

Yagub Alyiev of ADA University in Baku, Azerbaijan, mentor to the two
students listed below from his university who solved the problem, sent two web
addresses wherein animated solutions can be found. See:

https://www.youtube.com/watch?v=Tc58b2AGFf4 (and)

https://www.youtube.com/watch?v=zAiXPhPvWpct=187s.

Also solved by Arkady Alt; San Jose, CA; Michel Bataille, Rouen, France;
Brian D. Beasley (two solutions), Presbyterian College, Clinton, SC;
Anthony J. Bevelacqua, University of North Dakota, Grand Forks, ND;
Scott H. Brown, Montgomery, AL; Michael Brozinsky, Central Islip, NY;
Elsie Campbell, Dionne T. Bailey, Charles Diminnie, and Trey Smith,
Angelo State University, San Angelo, TX; : Michael C. Faleski, Delta
College, University Center, MI; Bruno Salgueiro Fango, Viveiro, Spain; Ed
Gray, Highland Beach, FL; Vagif Hamzayev(student), ADA University,
Baku, Azerbaijan; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong
Kong, China; Carl Libis, Columbia Southern University, Orange Beach, AL;
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David E. Manes, Oneonta, NY; Kamal Mustafayev (student), ADA
University, Baku, Azerbaijan; Pedro H.O. Pantoja, Natal/RN, Brazil; Paolo
Perfetti, Department of Mathematics, Tor Vergata University, Rome, Italy;
Ioannis D. Sfikas (two solutions), National and Kapodistrian University of
Athens, Greece; Digby Smith, Mount Royal University, Calgary, Canada;
Albert Stadler of Herrliberg, Switzerland; Neculai Stanciu, “George Emil
Palade” School Buzău, Romania and Titu Zvonaru, Comănesti, Romania;
David Stone and John Hawkins of Georgia Southern University, Statesboro,
GA; Daniel Văcaru, Pitesti, Romania, and the proposers.

5501: Proposed by D.M. Bătinetu-Giurgiu, Bucharest, Romania, Neculai Stanciu,
“George Emil Palade” School Buzău, Romania and Titu Zvonaru, Comănesti, Romania

Determine all real numbers a, b, x, y that simultaneously satisfy the following relations:

(1) ax+ by = 5

(2) ax2 + by2 = 9

(3) ax3 + by3 = 17

(4) ax4 + by4 = 33.

Solution 1 by Stanley Rabinowitz, Chelmsford, MA

(1) ax+ by = 5.

(2) ax2 + by2 = 9.

(3) ax3 + by3 = 17.

(4) ax4 + by4 = 33.

(5) ax = 5− by, by (1).

(6) (5− by)xy + by3 = 9y, by (2) and (5).

(7) ax2 = 9− by2, by (2).

(8) (9− by2)x+ by3 = 17, by (3) and (7).

Subtracting (8) from (6) gives

(9) 5xy − 9x = 9y − 17.

(10) ax3 = 17by3, by (3).

(11) (17− by3)x+ by4 = 33, by (4) and (10).

Multiplying (8) by y and subtracting (11) yields

(12) 9xy − 17x = 17y − 33.

Subtracting 5 times (12) from 9 times (9) and dividing the result by 4 gives (13)
x = −y + 3.

Substituting this value of x into (9) and simplifying yields: −5(y − 1)(y − 2) = 0.

Therefore, y = 1 or 2.

Suppose y = 1. Then, x = 2, by (13). Thus, 2a+ b = 5 and 4a+ b = 9,

by (1) and (2). Hence, a = 2 and b = 1. That is, (x, y, a, b) = (2, 1, 2, 1).

Similarly, if y = 2, then (x, y, a, b) = (1, 2, 1, 2).
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Note that this result holds in any commutative ring with unity, which has no zero
divisors and 5 6= 0.

Solution 2 by David E. Manes, Oneonta, NY

Writing 5 = 22 + 1, 9 = 23 + 1, 17 = 24 + 1 and 33 = 25 + 1, one notes that two of the
solutions (a, b, x, y) for the system of equations are (1, 2, 1, 2) and (2, 1, 2, 1). We will
show that these are the only solutions. Let A be the augmented 4× 3 matrix for the
system of equations where a and b are regarded as the unknowns and the powers of x
and y are regarded as the coefficients. Then

A =



x y 5

x2 y2 9

x3 y3 17

x4 y4 33


.

Row-reducing A, we find that it is row-equivalent to the matrix R given by

R =



1 0 5y−9
x(y−x)

0 1 9−5x
y(y−x)

0 0 17− 9y − 9x+ 5xy

0 0 33− 9(x2 + y2 + xy) + 5xy(y + x)


.

If x = 1 and y = 2, then the two expressions 17− 9y − 9x+ 5xy and
33− 9(x2 + y2 + xy) + 5xy(y + x) both equal 0. Therefore, a = 1 and b = 2 since
5y−9
x(y−x) = 1 and 9−5x

y(y−x) = 2 when x = 1 and y = 2. If x = 2 and y = 1, then

17− 9x− 9y + 5xy = 33− 9(x2 + y2 + xy) + 5xy(y + x) = 0 so that a = 2 and b = 1.
Working with residues modulo 3, one finds that the equation 17− 9y − 9x+ 5xy ≡ 0
(mod 3) if and only if x ≡ 1 (mod 3) and y ≡ 2 (mod 3) or x ≡ 2 (mod 3) and y ≡ 1
(mod 3). Furthermore, these residues have to be least residues since otherwise, the
residues can be made to satisfy the first equation in the system, but not the second.

Also solved by Arkady Alt; San Jose, CA; Hatef Arshagi, Guilford Technical
Community College, Jamestown, NC; Michel Bataille, Rouen, France; Brian
D. Beasley, Presbyterian College, Clinton, SC; Anthony Bevelacqua,
University of North Dakota, Grand Forks, ND; Cartesian Gains Student
Problem Solving Group, Mountain Lakes High School, Mountain Lakes, NJ;
Dionne Bailey, Elsie Campbell, Charles Diminnie, and Trey Smith, Angelo
State University, San Angelo, TX; Ed Gray, Highland Beach,FL; Paul M.
Harms, North Newton, KS; Kee-Wai Lau, Hong Kong, China; Perfetti
Paolo, Department of Mathematics, Tor Vergata University, Rome, Italy;
Ioannis D. Sfikas (two solutions), National and Kapodistrian University of
Athens, Greece; Digby Smith, Mount Royal University, Calgary, Canada;
Albert Stadler of Herrliberg, Switzerland; David Stone and John Hawkins,
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Georgia Southern University, Statesboro, GA; Daniel Văcaru, Pitesti,
Romania, and the proposers.

5502: Proposed by Daniel Sitaru, “Theodor Costescu” National Economic College,
Drobeta Turnu-Severin, Mehedinti, Romania

Prove that if a, b, c > 0 and a+ b+ c = e then

eac
e · ebae · ecbe > ee · abe2 · bce2 · cae2 .

Here, e = lim
n→∞

(
1 +

1

n

)n
Solution 1 by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy

The inequality is equivalent to

ace + bae + cbe > e+ be2 ln a+ ce2 ln b+ ae2 ln c

that is
a(ce − e2 ln c) + b(ae − e2 ln a) + c(be − e2 ln b) > e

Let f(x) = xe − e2 lnx.

f ′′(x) = e(e− 1)xe−2 +
e2

x2
> 0

Thus by Jensens’s inequality

e
∑
cyc

a

e
(ce − e2 ln c) ≥ e

[(
a+ b+ c

e

)e
− a2 ln

a+ b+ c

e

]
= e

Solution 2 by Moti Levy, Rehovot, Israel

The function lnx is monotone increasing, then by applying log function on both sides of
the inequality, we get

ace + bae + cbe > e+ be2 ln a+ ce2 ln b+ ae2 ln c, (1)

or
a

e
ce +

b

e
ae +

c

e
be > 1 + e2

(
b

e
ln a+

c

e
ln b+

a

e
ln c

)
. (2)

The function lnx is concave, hence

ln

(
ab+ bc+ ca

e

)
≥ b

e
ln a+

c

e
ln b+

a

e
ln c. (3)

Thus we get for the right hand side of inequality (2) :

1− e2 + e2 ln (ab+ bc+ ca) ≥ 1 + e2
(
b

e
ln a+

c

e
ln b+

a

e
ln c

)
. (4)

The function xe is convex, hence we get for the left hand side of inequality (2):

a

e
ce +

b

e
ae +

c

e
be ≥

(
ab+ bc+ ca

e

)e
. (5)
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By (4) and (5), to finish the solution, we have to show that(
ab+ bc+ ca

e

)e
> 1− e2 + e2 ln (ab+ bc+ ca) . (6)

Let us denote
x := (ab+ bc+ ca)e . (7)

Since ab+ bc+ ca ≤ e2

3 , then

0 < x ≤
(
e2

3

)e
. (8)

Setting (7) in (6), we need to show that

x

ee
> 1− e2 + e lnx, for 0 < x ≤

(
e2

3

)e
,

or that

f (x) := x− e1+e lnx+ ee
(
e2 − 1

)
> 0, for 0 < x ≤

(
e2

3

)e
. (9)

One can easily check that f
′
(x) = 1− e1+e

x < 0 for 0 < x ≤
(
e2

3

)e
. Hence, f (x) is

monotone decreasing function for 0 < x ≤
(
e2

3

)e
. Moreover, limx→0 f (x) = +∞ and

f
((

e2

3

)e)
=
(
e2

3

)e
− e1+e

(
ln
(
e2

3

)e)
+ ee

(
e2 − 1

) ∼= 7.478 9 > 0. These and the

monotonicity of f (x) imply that x− e1+e lnx+ ee
(
e2 − 1

)
> 0, for 0 < x ≤

(
e2

3

)e
.

Solution 3 by Kee-Wai Lau, Hong Kong, China

For 0 < x < 1, let f(x) be the convex function xe − e2 lnx. By taking

logarithms, we see that the inequality of the problem is equivalent to

af(c) + bf(a) + cf(b) > e. (1)

Let γ1 =
a

e
, γ2 =

b

e
and γ3 =

c

e
. By Jensen’s inequality, the left side of (1)

is greater than or equal to ef(γ1c+ γ2a+ γ3b) = ef

(
ab+ bc+ ca

e

)
.

Since f ′(x) =
e(xe − e)

x
< 0 and

ab+ bc+ ca =
2(a+ b+ c)2 − (a− b)2 − (b− c)2 − (c− a)2

6
≤ e3

3
, so

f

(
ab+ bc+ ca

e

)
≥ f

(e
3

)
= 1.49 · · · > 1.

Thus (1) holds and this completes the solution.

Solution 4 by Michel Bataille, Rouen, France

Taking logarithms and arranging, we see that the inequality is equivalent to

a

e
· ce +

b

e
· ae +

c

e
· be > 1 + e2

(
b

e
· ln a+

c

e
· ln b+

a

e
· ln c

)
.

9



Since the functions x 7→ xe and x 7→ lnx are respectively convex and concave on (0,∞),
Jensen’s inequality yields

a

e
· ce +

b

e
· ae +

c

e
· be ≥

(
ab+ bc+ ca

e

)e
and

b

e
· ln a+

c

e
· ln b+

a

e
· ln c ≤ ln

(
ab+ bc+ ca

e

)
.

Therefore, it is sufficient to prove that

U e − e2 lnU − 1 > 0 (1)

where U = ab+bc+ca
e .

Since e2 = (a+ b+ c)2 = a2 + b2 + c2 + 2(ab+ bc+ ca) ≥ 3(ab+ bc+ ca), we have U ≤ e
3 ,

hence U ∈ (0, 1).

Now, let f(x) = xe − e2 lnx− 1. The function f satisfies f(1) = 0 and f ′(x) = e(xe−e)
x .

It follows that f is strictly decreasing on the interval (0, 1] and so f(U) > f(1), which is
the desired inequality (1).

Also solved by Ed Gray, Highland Beach, FL; Ioannis D. Sfikas, National
and Kapodistrian University of Athens, Greece; Albert Stadler of
Herrliberg, Switzerland, and the proposer.

5503: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let a1, a2, . . . , an be positive real numbers with n ≥ 2. Prove that

(am1 a2 + am2 a3 + · · ·+ amn a1)
m

(am1 + am2 + · · · amn )m+1
≤ 1

n
,

where m is a positive integer.

Solution 1 by Michel Bataille, Rouen, France

Let Im(a1, a2, . . . , an) denote the proposed inequality.
First we suppose that I1(a1, a2, . . . , an) holds for all a1, . . . , an > 0, in other words that

n(a1a2 + a2a3 + · · ·+ ana1) ≤ (a1 + a2 + · · ·+ an)2 (1)

for all positive a1, . . . , an and we show that if m is an integer with m ≥ 2, then
Im(a1, . . . , an) also holds for all positive a1, . . . , an.
Let m be an integer with m ≥ 2 and let a1, . . . , an > 0. Applying (1) with am1 , . . . , a

m
n

instead of a1, . . . , an, respectively, we obtain (am1 + · · ·+ amn )2 ≥ n(am1 a
m
2 + · · ·+ amn a

m
1 )

so that

(am1 +· · ·+amn )m+1 = (am1 +· · ·+amn )2(am1 +· · ·+amn )m−1 ≥ n(am1 a
m
2 +· · ·+amn am1 )(am1 +· · ·+amn )m−1.

But from Holder’s inequality, we have

(am1 a
m
2 + · · ·+ amn a

m
1 )(am1 + · · ·+ amn )m−1 ≥ (am1 a2 + am2 a3 + · · · amn a1)m
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and it follows that (am1 + · · ·+ amn )m+1 ≥ n(am1 a2 + am2 a3 + · · · amn a1)m, which is the
desired inequality Im(a1, . . . , an).
Now, we show that (1) holds for all positive a1, . . . , an if and only if n ≤ 4.
Suppose that n ≥ 5. If (1) holds for all a1, a2, . . . , an > 0, then in particular it holds if
we take a1 = a2 = · · · = an−2 = ε and an−1 = an = 1 where ε is an arbitrary positive
number. This provides the inequality n((n− 3)ε2 + 2ε+ 1) ≤ ((n− 2)ε+ 2)2. Letting
ε→ 0+, we obtain n ≤ 4, a contradiction. Thus, we must have n ≤ 4.
Conversely, if n = 2 (resp. n = 3, resp, n = 4), it is easily checked that (1) is equivalent
to (a1 − a2)2 ≥ 0 (resp. (a1 − a2)2 + (a2 − a3)2 + (a3 − a1)2 ≥ 0, resp.
(a1 − a2 + a3 − a4)2 ≥ 0) and so I1(a1, . . . , an) holds for all a1, . . . , an > 0 when n = 2, 3
or 4.
In conclusion, Im(a1, a2, . . . , an) holds for any positive integer m and all positive real
numbers a1, . . . , an if and only if n ≤ 4.

Solution 2 by Albert Stadler, Herrliberg, Switzerland

The statement is wrong in general. It is true for n = 2 and for any real m ≥ 1, since by
Hölder’s inequality,

(xmy + xym)m = xmym(xm−1 + ym−1)m ≤ xmym
(

(1m + 1m)
1
m (xm + ym)

m−1
m

)m
=

= xmym2(xm + ym)m−1 ≤ 1

2
(xm + ym)m+1,

and the last inequality is equivalent to xmym ≤ 1
4 (xm + ym)2, which is clearly true.

The statement is true as well for n = 3 and any real m ≥ 1, since by Hölder’s inequality,

(xmy + ymz + zmx)m = xmymzm
(
xm−1

z
+
ym−1

x
+
xm−1

z
+
zm−1

y

)m
≤

≤ xmymzm
((

1

zm
+

1

xm
+

1

ym

) 1
m

(xm + ym + zm)
m−1
m

)m
=

= (xmym + ymzm + zmxm)(xm + ym + zm)m−1 ≤ 1

3
(xm + ym + zm)m+1,

and the last inequality is equivalent to ab+ bc+ ca ≤ 1
3(a+ b+ c)2, with

a = xm, b = ym, c = zm, which is clearly true, since it is equivalent to
ab+ bc+ ca ≤ a2 + b2 + c2 (which is true because of Cauchy-Schwarz).

The problem statement is not true in general, We construct counterexamples as follows:

Let a = 1 for 1 ≤ i ≤ k, ai = 0 for k + 1 ≤ i ≤ n. Then
(am1 a2 + am2 a)3 + · · ·+ amn a1 = k − 1 and am+1

1 + am+1
2 + · · ·+ am+1

n = k. The stated
inequality then reads as

(k − 1)m ≤ 1

n
km+1, (2)

which fails for an infinity of triples (k,m, n). For instance (2) is wrong for (n− 2, 1, n), if
n ≥ 5, it is wrong for (n− 3, 2, n), if n ≥ 8 and it is wrong for (n− 4, 3, n) if n ≥ 12.

Purists may argue that these are not real counter-examples, since ai = 0, for
k + 1 ≤ i ≤ n, so that not all ai are strictly positive. However we may replace 0 by ε > 0
and make ε sufficiently small to reach the same conclusion.
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Also solved by Arkady Alt; San Jose, CA; Ed Gray, Highland Beach, FL;
Perfetti Paolo, Department of Mathematics, Tor Vergata University Rome,
Italy; Ángel Plaza, University of Las Palmas de Gran Canaria, Spain;
Ioannis D. Sfikas (two solutions), National and Kapodistrain University of
Athens, Greece, and the proposer.

5504: Proposed by Ovidiu Furdui and Alina Ŝıntămărian bothat the Technical University
of Cluj-Napoca, Cluj-Napoca, Romania

Let n ≥ 0 be an integer. Calculate ∫ 1

0

xn⌊
1
x

⌋dx,

where bxc denotes the integer part of x.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

We have∫ 1

0

xn⌊
1
x

⌋dx = lim
K→∞

K∑
k=1

k

∫ 1
k

1
k+1

xndx = lim
K→∞

K∑
k=1

k

∫ 1
k

1
k+1

xndx = lim
K→∞

K∑
k=1

k

n+ 1

(
1

kn+1
− 1

(k + 1)n+1

)

=
1

n+ 1
lim
K→∞

K∑
k=1

(
1

kn
− k + 1− 1

(k + 1)n+1

)
=

1

n+ 1
lim
K→∞

K∑
k=1

(
1

kn
− 1

(k + 1)n
+

1

(k + 1)n+1

)

=
1

n+ 1
lim
K→∞

(
1− 1

(K + 1)n
+

K∑
k=1

1

(k + 1)n+1

)
=
ζ(n+ 1)

n+ 1
.

Solution 2 by Stanley Rabinowitz, Chelmsford, MA

We start by breaking the interval (0, 1) up into subintervals over which the function
⌊
1
x

⌋
is constant. ∫ 1

0

xn⌊
1
x

⌋ dx =
∞∑
k=1

∫ 1
k

1
k+1

xn⌊
1
x

⌋ dx
=

∞∑
k=1

∫ 1
k

1
k+1

xn

k
dx

=
∞∑
k=1

[
xn+1

k(n+ 1)

] 1
k

1
k+1

=
1

n+ 1

∞∑
k=1

( 1k)n+1

k
−

(
1

k+1

)n+1

k


=

1

n+ 1

∞∑
k=1

[
1

kn+2
− 1

k(k + 1)n+1

]
12



=
1

n+ 1

∞∑
k=1

[A−B]

where

A =
∞∑
k=1

1

kn+2
= ζ(n+ 2) and B =

∞∑
k=1

1

k

[
1

(k + 1)n+1

]

and where ζ(n) =
∞∑
k=1

1

kn
is the Riemann zeta function.

Now note that by the formula for the sum of a geometric progression,

n+1∑
i=2

1

(k + 1)i
=

1

k(k + 1)
− 1

k

[
1

(k + 1)n+1

]
.

So

B =
∞∑
k=1

1

k

[
1

(k + 1)n+1

]
=

∞∑
k=1

[
1

k(k + 1)
−
n+1∑
i=2

1

(k + 1)i

]

=

∞∑
k=1

[
1

k(k + 1)

]
−
∞∑
k=1

[
n+1∑
i=2

1

(k + 1)i

]

=

∞∑
k=1

[
1

k
− 1

k + 1

]
−
n+1∑
i=2

[ ∞∑
k=1

1

(k + 1)i

]

= 1−
n+1∑
i=2

(ζ(i)− 1)

= n+ 1−
n+1∑
i=2

ζ(i)

Hence ∫ 1

0

xn⌊
1
x

⌋ dx =
1

n+ 1
[A−B]

=
1

n+ 1

[
ζ(n+ 2)−

(
n+ 1−

n+1∑
i=2

ζ(i)

)]

=
1

n+ 1

[
n+2∑
i=2

ζ(i)− (n+ 1)

]

=
1

n+ 1

[
n+2∑
i=2

ζ(i)

]
− 1.

Solution 3 by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain
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For x ∈ (0, 1] if
1

k + 1
< x ≤ 1

k
, then k ≤

⌊
1

x

⌋
< k + 1. That is for x,

⌊
1

x

⌋
= k.

Therefore,

∫ 1

0

xn⌊
1
x

⌋ =
∞∑
k=1

∫ 1/k

1/k+1

xn

k
dx

=

∞∑
k=1

1

k(n+ 1)

(
1

kn+1
− 1

(k + 1)n+1

)

=
1

n+ 1

∞∑
k=1

(
1

kn+2
− 1

k(k + 1)n+1

)

=
1

n+ 1

∞∑
k=1

(
1

kn+2
+

1

(k + 1)n+1
+ · · ·+ 1

k + 1
− 1

k

)
,

from where

∫ 1

0

xn⌊
1

x

⌋dx = −1 +

n+2∑
j=2

ζ(j)

n+ 1
.

Solution 4 by Moti Levy, Rehovot, Israel

The first step is to substitute y = 1
x and then to split the integration range into intervals

[k, k + 1] , k ≥ 1.∫ 1

0

xn⌊
1
x

⌋dx =

∫ ∞
1

y−n−2

byc
dy =

∞∑
k=1

∫ k+1

k

y−n−2

k
dy

=
1

(n+ 1)

∞∑
k=1

(
1

kn+2
− 1

k (k + 1)n+1

)

=
1

(n+ 1)

(
ζ (n+ 2)−

∞∑
k=1

1

k (k + 1)n+1

)
.

Let Sn :=
∑∞

k=1
1

k(k+1)n
.

Sn+1 − Sn =

∞∑
k=1

(
1

k (k + 1)n+1 −
1

k (k + 1)n

)

=
∞∑
k=1

1

(k + 1)n

(
1

k (k + 1)
− 1

k

)

= −
∞∑
k=1

1

(k + 1)n+1 = 1− ζ (n+ 1) . (10)
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It is easy to see that

S1 :=
∞∑
k=1

1

k (k + 1)
= 1. (11)

It follows from (10) and (11) that

Sn = n−
n−1∑
k=1

ζ (k + 1) .

∫ 1

0

xn⌊
1
x

⌋dx =
1

n+ 1
(ζ (n+ 2)− Sn+1)

=
1

n+ 1

(
ζ (n+ 2)− (n+ 1) +

n∑
k=1

ζ (k + 1)

)

=
1

n+ 1

(
n+2∑
k=2

ζ (k)

)
− 1.

Solution 5 by David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA

We shall show that the value of the integral is (the average of the“first” n+ 1 values of

the Riemann zeta function) minus 1; that is,
ζ(2) + ζ(3) + . . .+ ζ(n+ 2)

n+ 1
− 1.

We shall need the following result, which seems interesting in its own right.
Lemma 1: For
m ≥ 1, 1 + x+ x(x+ 1) + x(x+ 1)2 + x(x+ 1)3 + . . .+ x(x+ 1)m−1 = (x+ 1)m.

Proof by induction. The identity is clearly true for m = 1. Upon the induction
hypothesis,

1 + x+ x(x+ 1) + x(x+ 1)2 + x(x+ 1)3 + . . .+ x(x+ 1)m−1 = x(x+ 1)m

= (x+ 1)m + x(x+ 1)m

= (x+ 1)m(1 + x)

= (x+ 1)m+1.

This leads to the following result about a partial fractions decomposition.

Lemma 2:
1

k(k + 1)m
=

1

k
− 1

(k + 1)m
− 1

(k + 1)m−1
− 1

(k + 1)m−2
− · · · − 1

(k + 1)2
− 1

k + 1
.

Proof: After clearing fractions, we see that this identity is equivalent to
1 = (k + 1)n − k − k(k + 1)− k(k + 1)2 − . . .− k(k + 1)n−2 − k(k + 1)n−1, which is true
by Lemma 1.

Now we are in position to calculate the given integral. Note that⌊
1

x

⌋
= k ⇐⇒ k ≤ 1

x
< k + 1 ⇐⇒ 1

k + 1
x ≤ 1

k
.
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Thus∫ 1
k

1
k+1

xn⌊
1
x

⌋dx =

∫ 1
k

1
k+1

xn

k
dx =

1

k

1

n+ 1

[(
1

k

)n+1

−
(

1

k + 1

)n+1
]

=
1

k

1

n+ 1

[
1

kn+1
− 1

(k + 1)n+1

]
.

Therefore, ∫ 1

0

xn⌊
1
x

⌋dx =

∞∑
k=1

∫ 1
k

1
k+1

xn⌊
1
x

⌋dx =

∞∑
k=1

1

k

1

n+ 1

[
1

kn+1
− 1

(k + 1)n+1

]

=
1

n+ 1

∞∑
k=1

[
1

kn+2
− 1

k(k + 1)n+1

]

=
1

n+ 1

∞∑
k=1

[
1

kn+2
−
{

1

k
− 1

(k + 1)n+1
− 1

(k + 1)n
− 1

(k + 1)n−1
− · · · − 1

(k + 1)2
− 1

k + 1

}]

=
by Lemma 2

1

n+ 1

∞∑
k=1

[
1

kn+2
− 1

k
+

1

(k + 1)n+1
+

1

(k + 1)n
+

1

(k + 1)n−1
+ · · ·+ 1

(k + 1)2
+

1

k + 1

]

=
1

n

{ ∞∑
k=1

1

kn+2
+
∞∑
k=1

1

(k + 1)n+1
+
∞∑
k=1

1

(k + 1)n
+ · · ·+

∞∑
k=1

1

(k + 1)2
−
∞∑
k=1

(
1

k
− 1

k + 1

)}
.

The final sum in this expression telescopes, and its sum is 1.

Each of the other sums is a shifted version of the zeta function:

∞∑
i=1

1

(k + 1)m
=

1

2m
+

1

3m
+

1

4m
+ · · · =

(
−1 +

1

1m

)
+

1

2m
+

1

3m
+

1

4m
+ · · · = −1 = ζ(m).

Therefore,

∫ 1

0

xn⌊
1
x

⌋dx =
1

n+ 1

{ ∞∑
k=1

1

kn+2
+
∞∑
k=1

1

(k + 1)n+1
+
∞∑
k=1

1

(k + 1)n
+ · · ·+

∞∑
k=1

1

(k + 1)2
−
∞∑
k=1

(
1

k
− 1

k + 1

)}

=
1

n+ 1
{[−1 + ζ(n+ 2)] + [−1 + ζ(n+ 1)] + [−1 + ζ(n)] + [−1 + ζ(n− 1)] + · · ·+ [−1 + ζ(2)]− 1}

=
1

n+ 1
{ζ(2) + ζ(3) + · · ·+ ζ(n) + ζ(n+ 1) + ζ(n+ 2)− n · 1− 1 }

=
1

n+ 1
{ζ(2) + ζ(3) + · · ·+ ζ(n) + ζ(n+ 1) + ζ(n+ 2)} − 1.
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There are n+ 1 terms inside the braces, so we have our promised result:

∫ 1

0

xn⌊
1
x

⌋dx =

(the average of the first n + 1 values of the Riemann zeta function) minus 1.

Comment: There are other variants of this answer, because the values of the zeta
function for even n can be expressed in terms of the Bernoulli numbers. That would not
make the answer any nicer though.

Also solved by Michel Bataille, Rouen, France; Ed Gray, Highland Beach,
FL; Kee-Wai Lau, Hong Kong, China; Ioannis D. Sfikas (two solutions),
National and Kapodistrian University of Athens, Greece; Perfetti Paolo,
Department of Mathematics, Tor Vergata University Rome, Italy; Daniel
Văcaru, Pitesti, Romania, and the proposers.

Mea Culpa

Ioannis D. Sfikas of National and Kapodistrian in University of Athens,
Greece should have been credited with having solved 5495 and 5496.

Carl Libis of Columbia Southern University in Orange Beach, AL should have
been credited with having solved 5497.

Correction: Problem 5514 in the November 2018 issue of this column should have
been stated as:

If a ∈ (0, 1) and b = arcsin a, then calculate lim
n→∞

n
√
n!

(
sin

(
b · n+1

√
(2n+ 1)!!

n
√

(2n− 1)!!

)
− a

)
.
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