
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
March 15, 2009

• 5044: Proposed by Kenneth Korbin, New York, NY.

Let N be a positive integer and let{
x = 9N2 + 24N + 14 and
y = 9(N + 1)2 + 24(N + 1) + 14.

Express the value of y in terms of x, and express the value of x in terms of y.

• 5045: Proposed by Kenneth Korbin, New York, NY.

Given convex cyclic hexagon ABCDEF with sides

AB = BC = 85
CD = DE = 104, and
EF = FA = 140.

Find the area of 4BDF and the perimeter of 4ACE.

• 5046: Proposed by R.M. Welukar of Nashik, India and K.S. Bhanu, and M.N. Deshpande
of Nagpur, India.

Let 4n successive Lucas numbers Lk, Lk+1, · · · , Lk+4n−1 be arranged in a 2× 2n matrix
as shown below: 

1 2 3 4 · · · 2n

Lk Lk+3 Lk+4 Lk+7 · · · Lk+4n−1

Lk+1 Lk+2 Lk+5 Lk+6 · · · Lk+4n−2


Show that the sum of the elements of the first and second row denoted by R1 and R2

respectively can be expressed as

R1 = 2F2nL2n+k

R2 = F2nL2n+k+1

where {Ln, n ≥ 1} denotes the Lucas sequence with L1 = 1, L2 = 3 and Li+2 = Li + Li+1

for i ≥ 1 and {Fn, n ≥ 1} denotes the Fibonacci sequence,
F1 = 1, F2 = 1, Fn+2 = Fn + Fn+1.
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• 5047: Proposed by David C. Wilson, Winston-Salem, N.C.

Find a procedure for continuing the following pattern:

S(n, 0) =
n∑

k=0

(
n

k

)
= 2n

S(n, 1) =
n∑

k=0

(
n

k

)
k = 2n−1n

S(n, 2) =
n∑

k=0

(
n

k

)
k2 = 2n−2n(n + 1)

S(n, 3) =
n∑

k=0

(
n

k

)
k3 = 2n−3n2(n + 3)

...

• 5048: Proposed by Paolo Perfetti, Mathematics Department, University “Tor Vergata,”
Rome, Italy.

Let a, b, c, be positive real numbers. Prove that

√
c2(a2 + b2)2 + b2(c2 + a2)2 + a2(b2 + c2)2 ≥ 54

(a + b + c)2
(abc)3√

(ab)4 + (bc)4 + (ca)4
.

• 5049: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Find a function f : < → < such that

2f(x) + f(−x) =
{
−x3 − 3, x ≤ 1,
3− 7x3, x > 1.

Solutions

• 5026: Proposed by Kenneth Korbin, New York, NY.

Given quadrilateral ABCD with coordinates A(−3, 0), B(12, 0), C(4, 15), and D(0, 4).
Point P has coordinates (x, 3). Find the value of x if

area 4PAD + area 4PBC = area 4PAB + area 4PCD. (1)

Solution by Bruno Salgueiro Fanego, Viveiro, Spain.

(1) ⇔ 1
2

∣∣∣∣det

 x 3 1
−3 0 1
0 4 1

 ∣∣∣∣+ 1
2

∣∣∣∣det

 x 3 1
12 0 1
4 15 1

 ∣∣∣∣
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+
1
2

∣∣∣∣det

 x 3 1
−3 0 1
12 0 1

 ∣∣∣∣+ 1
2

∣∣∣∣det

x 3 1
4 15 1
0 4 1

 ∣∣∣∣
⇔ | − 4x− 3| + |156− 15x| = 45 + |11x + 4|. (2)

If x ≤ −3
4

, then (2) ⇔ −4x− 3− 15x + 156 = 45− 11x− 4 ⇔ x = 14, impossible.

If
−3
4

< x ≤ −4
11

, then (2) ⇔ 4x + 3− 15x + 156 = 45− 11x− 4 ⇔ x = 159 = 41,

impossible.

If
−4
11

< x ≤ 52
5

, then (2) ⇔ 4x + 3− 15x + 156 = 45 + 11x + 4 ⇔ x = 5.

If x >
52
5

, then (2) ⇔ 4x + 3 + 15x− 156 = 45 + 11x + 4 ⇔ x =
101
4

.

Thus, there are two possible values of x : x = 5 and
101
4

.

Also solved by Brian D. Beasley, Clinton, SC; Elsie M. Campbell, Dionne T.
Bailey, and Charles Diminnie (jointly), San Angelo, TX; Mark Cassell
(student, St. George’s School), Spokane, WA; Grant Evans (student, St.
George’s School), Spokane, WA; John Hawkins and David Stone (jointly),
Statesboro, GA; Peter E. Liley, Lafayette, IN; Paul M. Harms, North
Newton, KS; Charles, McCracken, Dayton, OH; John Nord, Spokane, WA;
Boris Rays, Chesapeake, VA; Britton Stamper, (student, St. George’s
School), Spokane, WA; Vu Tran (student, Texas A&M University), College
Station, TX, and the proposer.

• 5027: Proposed by Kenneth Korbin, New York, NY.

Find the x and y intercepts of

y = x7 + x6 + x4 + x3 + 1.

Solution by Paolo Perfetti, Mathematics Department, University “Tor
Vergata,” Rome, Italy.

The point (0, 1) is trivial. To find the x intercept we decompose
x7 + x6 + x4 + x3 + 1 = (x4 + x3 + x2 + x + 1)(x3 − x + 1) and the value we are looking
for is given by x3 − x + 1 = 0 since

x4 + x3 + x2 + x + 1 = (x2 − x
−1 +

√
5

2
+ 1)(x2 − x

−1−
√

5
2

+ 1) 6= 0.

Applying the formula for solving cubic equations, the only real root of x3 − x + 1 = 0 is(
−1

2
+
√

1
4
− 1

27

)1/3

+

(
−1

2
−
√

1
4
− 1

27

)1/3

=

(
−1

2
+
√

69
18

)1/3

+

(
−1

2
−
√

69
18

)1/3

whose approximate value is −1.3247 . . .

Also solved by Brian D. Beasley, Clinton, SC; Mark Cassell and Britton
Stamper (jointly, students at St. George’s School), Spokane, WA; Michael
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Fried, Kibbutz Revivim, Israel; Paul M. Harms, North Newton, KS; John
Hawkins and David Stone (jointly), Statesboro, GA; Charles McCracken,
Dayton, OH; John Nord, Spokane, WA; Boris Rays, Chesapeake, VA, and
the propser.

• 5028: Proposed by Michael Brozinsky, Central Islip, NY .

If the ratio of the area of the square inscribed in an isosceles triangle with one side on the
base to the area of the triangle uniquely determine the base angles, find the base angles.

Solution 1 by Brian D. Beasley, Clinton, SC.

Let θ be the measure of each base angle in the triangle, and let y be the length of each
side opposite a base angle. Let x be the side length of the inscribed square. We first
consider the right triangle formed with θ as an angle and x as a leg, denoting its
hypotenuse by z. Then x = z sin θ. Next, we consider the isosceles triangle formed with
the top of the inscribed square as its base; taking the right half of the top of the square
as a leg, we form another right triangle with angle θ and hypotenuse y − z. Then
1
2x = (y− z) cos θ, so y = x(csc θ + 1

2 sec θ). Denoting the area of the square by S and the
area of the original triangle by T , we have

T

S
=

1
2y2 sin(π − 2θ)

x2
=

1
2

sin(2θ)
(

csc θ +
1
2

sec θ

)2

=
1
4

tan θ + cot θ + 1.

Let f(θ) = 1
4 tan θ + cot θ + 1 for 0 < θ < π/2. Then it is straightforward to verify that

lim
θ→0+

f(θ) = lim
θ→π

2
−

f(θ) = ∞

and that f attains an absolute minimum value of 2 at θ = arctan(2). Hence the ratio
T/S (and thus S/T ) is uniquely determined when θ = arctan(2) ≈ 63.435◦.

Solution 2 by J. W. Wilson, Athens, GA.

With no loss of generality, let the base of the isosceles triangle b be a fixed value and
vary the height h of the triangle. Then if f(h) is a function giving the ratio for the
compared areas, in order for it to uniquely determine the base angles, there must be
either a minimum or maximum value of the function. Let f(h) represent the ratio of the
area of the triangle to the area of the square.

It is generally known (and easy to show) that side s of an inscribed square on base b of a
triangle is on-half of the harmonic mean of the base b and the altitude h to that base.
Thus

s =
hb

h + b
. So,

f(h) =
bh

2s2
. Substituting and simplifying this gives :

f(h) =
h2 + 2bh + b2

2bh
.

For h > 0 it can be shown, by using the arithmetic mean−geometric mean inequality,
that this function has a minimum value of 2 when h = b.

f(h) =
h2 + 2bh + b2

2bh
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=
h + 2b +

b2

h
2b

.

Since b is fixed, and using the arithmetic mean−geometric mean inequaltiy, we may write:

h +
b2

h
≥ 2

√
h

b2

h
= 2b, with equality holding if, and only if,

h =
b2

h
.

Therefore f(h) reaches a maximum if, and only if, h = b. This means the base angles can
be uniquely determined when the altitude and the base are the same length. Thus, by
considering the right triangle formed by the altitude and the base, the base angle would
be arctan 2.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; John Hawkins and
David Stone (jointly; two solutions), Statesboro, GA; Peter E. Liley,
Lafayette, IN; Kenneth Korbin, New York, NY; John Nord, Spokane, WA;
Boris Rays, Chesapeake, VA, and the proposer.

• 5029: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let x > 1 be a non-integer number. Prove that(
x + {x}

[x]
− [x]

x + {x}

)
+
(

x + [x]
{x}

− {x}
x + [x]

)
>

9
2
,

where [x] and {x} represents the entire and fractional part of x.

Solution by John Hawkins and David Stone, Statesboro, GA.

We improve the lower bound by verifying the more accurate inequality

#
(

x + {x}
[x]

− [x]
x + {x}

)
+
(

x + [x]
{x}

− {x}
x + [x]

)
>

16
3

.

In fact,
16
3

is a sharp lower bound for
(

x + {x}
[x]

− [x]
x + {x}

)
+
(

x + [x]
{x}

− {x}
x + [x]

)
for x

in the interval (1, 2), while this expression becomes much larger for larger x.

For convenience, we let

f(x) =
(

x + {x}
[x]

− [x]
x + {x}

)
+
(

x + [x]
{x}

− {x}
x + [x]

)
.

The function f , defined for x > 1, x not an integer, has a“repetitive” behavior. Its graph
has a vertical asymptote at each positive integer. On each interval (n, n + 1), f(x)
decreases(strictly) from infinity to a specific limit, hn (which we will specify), then
repeats the behavior on the next interval, but does not drop down as far, because
hn < hn+1 (so f(x) never comes close to h1 = 16

3 again.)
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We verify these statements by fixing n and examining the behavior on f(x) on the
interval (n, n + 1). In this case, we let x = n + t, where 0 < t < 1; therefore, [x] = n and
|x| = t. Thus

f(x) =
(

n + t + t

n
− n

n + t + t

)
+
(

n + t + n

t
− t

n + t + n

)
=

n + 2t

n
− n

n + 2t
+

2n + t

t
− t

2n + t
.

We handle the above claims in order:

(1) lim
t→0+

f(x) = lim
t→0+

n + 2t

n
− n

n + 2t
+

2n + t

t
− t

2n + t
= +∞.

(2) Because f(x) has been expressed in terms of t, say

g(t) =
n + 2t

n
− n

n + 2t
+

2n + t

t
− t

2n + t
,

we can show that g(t) is decreasing by showing its derivative is negative.

We compute the derivative with respect to t:

g′(t) =
2
n

+
2n

(2t + n)2
− 2n

t2
− 2n

(t + 2n)2
.

Basically, this is negative because of the dominant term
−2n

t2
, but we can make this more

precise:

g′(t) < 0

⇔ 2
n

+
2n

(2t + n)2
− 2n

t2
− 2n

(t + 2n)2
< 0

⇔ 1
n

+
n

(2t + n)2
<

n

t2
+

n

(t + 2n)2

⇔ (2t + n)2 + n2

n(2t + n)2
<

n(t + 2n)2 + nt2

t2(t + 2n)2

⇔ t2(t + 2n)2
[
(2t + n)2 + n2

]
< n(2t + n)2

[
n(t + 2n)2 + nt2

]
⇔ t2(t + 2n)2

[
(2t2 + 2tn + n2

]
< n2(2t + n)2

[
t2 + 2tn + 2n2

]
⇔ 2t6 + 10t5n + 17t4n2 + 12t3n3 + 4t2n4 < 2n6 + 10n5t + 17n4t2 + 12n3t3 + 4n2t4

⇔ 0 < 2
(
n6 − t6

)
+ 10nt

(
n4 − t4

)
+ 17n2t2

(
n2 − t2

)
− 4n2t2

(
n2 − t2

)
⇔ 0 < 2

(
n6 − t6

)
+ 10nt

(
n4 − t4

)
+ 13n2t2

(
n2 − t2

)
,

and this last inequality is true because 0 < t < 1 < n.

(3) Finally, we compute the lower bound at the right-hand endpoint:

lim
t→1−

f(x) = lim
t→1−

[
n + 2t

n
− n

n + 2
+

2n + t

t
− t

2n + t

]
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=
n + 2

n
− n

n + 2
+

2n + 1
1

− 1
2n + 1

= 2n + 1− 1
2n + 1

+
4(n + 1)
n(n + 2)

.

Thus, we see that hn = 2n + 1− 1
2n + 1

+
4(n + 1)
n(n + 2)

≈ 2n + 1, so the intervals’ lower

bounds increase linearly with n.

Note that h1 = 3 +
7
3

=
16
3

, so f(x) >
16
3

for 1 < x < 2. So inequality (#) has been
verified.

As stated above, the lower bound on x then grows, for instance,

h2 = 5 +
13
10

=
63
10

, so f(x) >
63
10

for 2 < x < 3,

and

h3 = 7 +
97
105

=
832
105

, so f(x) >
832
105

for 3 < x < 4.

Comment: The inequality # is sharp in the sense that no value larger than
16
3

can be

used. That is, by (3) above, we know that values of x very close to 2 produce values of

f(x) just above and arbitrarily close to
16
3

. We can see this precisely:

f

(
2− 1

m

)
= f

(
1 +

m− 1
m

)

=


2m− 1

m
+

m− 1
m

1
− 1

2m− 1
m

+
m− 1

m

+


2m− 1

m
+ 1

m− 1
m

−

m− 1
m

2m− 1
m

+ 1



=
3m− 2

m
− m

3m− 2
+

3m− 1
m− 1

− m− 1
3m− 1

=
16
3

+
2
3

[
3

m(m− 1)
− 1

3(m− 1)(3m− 2)

]
.

(John and David accompanied their above solution with a graph generated by Maple

showing how the lower bounds increase from
16
3

for various values of x.)

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Paul M. Harms,
North Newton, KS; Paolo Perfetti, Mathematics Department, University
“Tor Vergata,” Rome, Italy; Vu Tran (student, Texas A&M University),
College Station, TX; Boris Rays, Chesapeake, VA, and the proposer.

• 5030: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let A1, A2, · · · , An ∈ M2(C), (n ≥ 2 ), be the solutions of the equation Xn =
(

2 1
6 3

)
.
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Prove that
n∑

k=1

Tr(Ak) = 0.

Solution by John Hawkins and David Stone, Statesboro, GA.

The involvement of the Trace function is a red herring. Actually, for A1, A2, A3, . . . , An

as specified in the problem, we have
n∑

k=1

Ak = 0. Therefore, since Tr is linear,

n∑
k=1

Tr(Ak) = Tr

( n∑
k=1

(Ak

)
= Tr(0) = 0. In fact

n∑
k=1

Tr(Ak) = 0 for any linear

transformation T : M2(C) −→ W to any complex vector space W .

Here is our argument. For convenience, let B =
(

2 1
6 3

)
. Note that B2 = 5B. Thus

B3 = BB2 = B5B = 5B2 = 52B. Inductively, Bk = 5k−1B for k ≥ 1.

Therefore, B =
1

5n−1
Bn =

[
1

5(n−1)/n
B

]n
, so A1 =

1
5(n−1)/n

B is an nth root of B:

An
1 =

[
1

5(n−1)/n
B

]n
=

1
5n−1

Bn =
1

5n−1
5n−1B = B.

Now let ξ = e2πi/n be the primitive nth root of unity. Then

0 = ξn − 1 = (ξ − 1)(ξn−1 + ξn−2 + ξn−3 + · · ·+ ξ + 1),

so,
(#) (ξn−1 + ξn−2 + ξn−3 + · · ·+ ξ + 1) = 0.

With A1 =
1

5(n−1)/n
B as above, let Ak = ξk−1A1 for k = 2, 3, . . . , n. These n distinct

matrices are the nth roots of B, namely:

An
k = [ξk−1A1]n = ξ(k−1)nAn

1 = (ξn)k−1An
1 = 1k−1An

1 = An
1 = B.

Therefore,

n∑
k=1

Ak =
n∑

k=1

ξk−1A1 =
( n∑

k=1

ξk−1
)

A1

= 0 ·A1 by (#)

= 0.

Comment 1: Implicit in the problem statement is that the given matrix equation has
exactly n solutions. This is true for this particular matrix B. But it is not true in
general. Gantmacher (“Matrix Theory”, page 233) gives an example of a 3× 3 matrix

with infinitely many square roots:

 0 1 0
0 0 0
0 0 0

.
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Comment 2: The result would be true for B any 2× 2 matrix having determinant zero
but trace non-zero. In that case, we would have B2 = Tr(B)B and we use

A1 =
1

Tr(B)(n−1)/n
B.

Comment 3: More generally, let V be a vector space over C and c1, c2, . . . , cn be complex
scalars whose sum is zero. Also let A be any vector in V and let Ak = ckA for
k = 1, 2, · · · , n. Then

n∑
k=1

Ak =
n∑

k=1

ckA =
( n∑

k=1

ck

)
A = 0 ·A = 0.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain, and the proposer.

• 5031: Ovidiu Furdui, Toledo, OH.

Let x be a real number. Find the sum
∞∑

n=1

(−1)n−1n

(
ex − 1− x− x2

2!
− · · · − xn

n!

)
.

Solution 1 by Paul M. Harms, North Newton, KS.

We know that ex = 1 + x +
x2

2!
+

x3

3!
+ · · ·+ xn

n!
+ · · · .

The expression

(−1)n−1n

(
ex − 1− x− x2

2!
− · · · − xn

n!

)
= (−1)n−1n

(
xn+1

(n + 1)!
+

xn+2

(n + 2)!
+ · · ·

)
.

So the sum
∞∑

n=1

(−1)n−1n

(
xn+1

(n + 1)!
+

xn+2

(n + 2)!
+ · · ·

)
equals

(
x2

2!
+

x3

3!
+ · · ·

)
− 2

(
x3

3!
+

x4

4!
+ · · ·

)
+ 3

(
x4

4!
+

x5

5!
+ · · ·

)
− 4

(
x5

5!
+ · · ·

)
+ · · ·

=
(1)x2

2!
+

(1− 2)x3

2!
+

(1− 2 + 3)x4

4!
+

(1− 2 + 3− 4)x5

5!
+ · · ·

=
x2

2!
− x3

3!
+

2x4

4!
− 2x5

5!
+

3x6

6!
− 3x7

7!
+

4x8

8!
− 4x9

9!
· · ·

We need to find the sum of this alternating series..

We have

sinhx = x +
x3

3!
+

x5

5!
+ · · · · · ·

x

2
sinhx =

1
2
x2 +

2
4x4

3!
+

3
6x6

5!
+

4
8x8

7!
+ · · ·

=
x

2!
+

2x4

4!
+

3x6

6!
+

4x8

8!
+ · · · .

The positive terms of the alternating series sum to
x

2
sinhx. Each negative term of the

alternating series is an antiderivative of the previous term except for the minus sign. The
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general anitderivative of
x

2
sinhx is

1
2

[
x coshx− sinhx

]
+ C. Using Taylor series we can

show that
−1
2

[
x coshx− sinhx

]
equals the sum of the negative terms of the alternating

series. The sum in the problem is

x

2
sinhx− 1

2

[
x coshx− sinhx

]
=

x + 1
2

sinhx− x

2
coshx.

Solution 2 by N. J. Kuenzi, Oshkosh, WI.

Let

F (x) =
∞∑

n=1

(−1)n−1n

(
ex − 1− x− x2

2!
− · · · − xn

n!

)
.

Differentiation yields

F ′(x) =
∞∑

n=1

(
(−1)n−1n(ex − 1− x− · · · − xn−1

(n− 1)!

)

=
∞∑

n=1

(
(−1)n−1n(ex − 1− x− · · · − xn−1

(n− 1)!
− xn

n!
+

xn

n!

)

= F (x) +
∞∑

n=1

(−1)n−1n
xn

n!

= F (x) + x

(
1− x +

x2

2!
− x3

3!
+ · · ·+ (−1)m xm

m!
+ · · ·

)
= F (x) + xe−x.

Solving the differential equation

F ′(x) = F (x) + xe−x with initial conditions F(0) = 0 yields

F (x) =
ex − (1 + 2x)e−x

4
.

Also solved by Charles Diminnie and Andrew Siefker (jointly), San Angelo,
TX; Bruno Salgueiro Fanego, Viveiro, Spain; Paolo Perfetti, Mathematics
Department, University “Tor Vergata,” Rome, Italy, and the proposer.
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