
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
March 15, 2016

• 5379: Proposed by Kenneth Korbin, New York, NY

Solve:
(x+ 1)4

(x− 1)2
= 17x.

• 5380: Proposed by Arkady Alt, San Jose, CA

Let ∆(x, y, z) = 2(xy + yz + xz)− (x2 + y2 + z2) and a, b, c be the side-lengths of a
triangle ABC. Prove that

F 2 ≥ 3

16
· ∆(a3, b3, c3)

∆(a, b, c)
,

where F is the area of 4ABC.

• 5381: Proposed by D.M. Batinetu-Giurgiu,“Matei Basarab” National College,
Bucharest, and Neculai Stanciu “George Emil Palade” School, Buzău, Romania

Prove: In any acute triangle ABC, with the usual notations, holds:

∑
cyclic

(
cosA cosB

cosC

)m+1

≥ 3

2m+1
,

where m ≥ 0 is an integer number.

• 5382: Proposed by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain

Prove that if a, b, c are positive real numbers, then∑
cyclic

a

b
+ 8

∑
cyclic

b

a

∑
cyclic

b

a
+ 8

∑
cyclic

a

b

 ≥ 93.

• 5383: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain
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Let n be a positive integer. Find gcd(an, bn), where an and bn are the positive integers
for which (1−

√
5)n = an − bn

√
5.

• 5384: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Find all differentiable functions f : < → < which verify the functional equation

xf ′(x) + f(−x) = x2, for all x ∈ <.

Solutions

• 5361: Proposed by Kenneth Korbin, New York, NY

Convex quadrilateral ABCD has perimeter P = 75 + 61
√

15 and has 6 B = 6 D = 90◦.
The lengths of the diagonals are 112 and 128. Find the lengths of the sides.

Solution by Ercole Suppa, Teramo, Italy

Observe that ABCD is a cyclic quadrilateral because 6 B = 6 D = 90◦.

A B

D

C

Denote AB = a, BC = b, CD = c, DA = d. By the Pythagorean theorem applied to
triangles ABC, ACD and Ptolemy’s theorem applied to the quadrilateral ABCD we
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have

a2 + b2 = c2 + d2 = 1282 (1)

ac+ bd = 112 · 128 (2)

Taking into account of (1) and (2) we obtain

(a+ b+ c+ d)2 =
(

75 + 61
√

15
)2

⇔

a2 + b2 + c2 + d2 + 2(ab+ ac+ ad+ bc+ bd+ cd) = 61440 + 9150
√

15 ⇔
2 · 1282 + 2(ab+ ac+ ad+ bc+ bd+ cd) = 61440 + 9150

√
15 ⇔

ac+ bd+ (a+ c)(b+ d) = 14336 + 4575
√

15 ⇔
(a+ c)(b+ d) = 4575

√
15

Putting a+ c = x, b+ d = y we have{
x+ y = 75 + 61

√
15

xy = 4575
√

15

from which, after some algebra, we find (x, y) =
(
75, 61

√
15
)

or (x, y) =
(
61
√

15, 75
)
.

Finally, solving the system 
a+ c = 75

b+ d = 61
√

15

a2 + b2 = 1282

c2 + d2 = 1282

we get (a, b, c, d) =
(
7, 33
√

15, 68, 28
√

15
)
,
(
33
√

15, 7, 28
√

15, 68
)
,
(
68, 28

√
15, 7, 33

√
15,
)

or
(
28
√

15, 68, 33
√

15, 7
)
, and the proof is completed.

Also solved by Hatef I. Arshagi, Guilford Technical Community College,
Jamestown, NC; Ed Gray, Highland Beach, FL; Kee-Wai Lau, Hong Kong,
China; Gail Nord, Gonzaga University, Spokane, WA; Prishtina Math
Gymnasium Problem Solving Group, Republic of Kosova; Toshihiro
Shimizu, Kawasaki, Japan; Neculai Stanciu, “George Emil Palade” General
School, Buzău, Romania and Titu Zvonaru, Comănesti, Romania; David
Stone and John Hawkins, Georgia Southern University, Statesboro, GA.

• 5362: Proposed by Michael Brozinsky, Central Islip, NY

Two thousand forty seven death row prisoners were arranged from left to right with the
numbers 1 through 2047 on their backs in this left to right order. Prisoner 1 was given a
gun and shoots prisoner number 2 dead, and then gives the gun to prisoner number 3
who shoots prisoner number 4 and then gives the gun to number 5 and so on, so that
every second originally numbered prisoner is shot dead.

This process is then repeated from right to left, starting with the person (in this case
number 2047) who last received the gun and then continues to proceed from right to
left, and then the direction switches again, and then again until only one prisoner
remains standing. What is the number of the prisoner who survives the left to right,
right to left shootout? Note that if there had been 2048 prisoners, number 2047 would
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have no one to whom to hand the gun in the left to right direction after shooting
number 2048, and so he would then start the gun in its opposite direction shooting the
living prisoner to his immediate left i.e.,number 2045. In this case, number 2047 gets to
shoot two prisoners before he hands the gun off to another prisoner.

Solution 1 by Ashland University Undergraduate Problem Solving Group,
Ashland, OH

Let a(n) = the number of the prisoner who survives when n prisoners are in line. It is
given in the problem that a(2048) = a(2047), and from the explanation given, we can
similarly conclude that a(2k) = a(2k− 1). We can also see that the prisoner left standing
for a(2k+ 1) is the a(k+ 1)st odd-numbered prisoner from the right end of the line since
only odd numbers survived the first gun pass through the line. this gives the relation

a(2k + 1) = 2k + 1− 2 [a(k + 1)− 1] = 2k + 3− 2a(k + 1).

From this we can see that

a(2m) = a(2m − 1) = (2m − 1)− 2
[
a(2m−1 − 1 + 1)− 1

]
= 2m + 1− 2a(2m−1).

We can then solve for an explicit formula using iteration.

a(2m) = a(2m − 1) = 2m + 1− 2a(2m−1)

= 2m + 1− 2
(
2m−1 + 1− 2a(2m−2)

)
= 2m + 1− 2

(
2m−1 + 1− 2

[
2m−2 + 1− 2a(2m−3)

])
= 2m + 1− 2

(
2m−1 + 1− 2

[
2m−2 + 1− 2

(
2m−3 + 1− 2a

(
2m−4

))])
.

So if we regroup these equations,

a(2m) = (a2m − 1) = 2m + 1− 2a(2m−1)

= (2m − 2m) + (1− 2) + 22a(2m−2)a

= (2m − 2m + 2m) + (1− 2 + 22)− 23a(2m−3)

= (2m − 2m + 2m − 2 m) + (1− 2 + 22 − 23) + 24a(2m−4).

We can see that

a(22k) = 1

(
1− (−2)2k

1− (−2)

)
+ 22ka(a2k−2k)

=

(
1− (−2)2k

3

)
+ 22ka(1)

= 22k +

(
1− 22k

3

)
4



=
3(22k) + (1− 22k)

3

=
22k + 1

3

=
22k+1 + 1

3

And

a(22k+1) = 22k+1 + 1 + 1

(
1− (−2)2k+1

1− (−2)

)
− 22k+1a

(
2[2k+1]−[2k+1]

)

= 22k+1 +

(
1 + 22k+1

3

)
− 22k+1a(1)

= 22k+1 − 22k+1 +
1 + 22k+1

3

=
22k+1 + 1

3

So a
(
22k
)

= a
(
22k+1

)
=

22k+1 + 1

3
, and a(2047) = a(2048) = a

(
211
)

=
211 + 1

3
= 683.

Solution 2 by Toshihiro Shimizu, Kawasaki, Japan

We consider the case of 2n prisoner. Let f(n) be the index of the prisoner who remains
alive. It’s obvious that f(0) = 1. In the first left-to-right shootout, 2n−1 prisoners who
were originally indexed as 1, 3, 5, . . . , 2n − 1 are alive. Then, we reindex these prisoner as
2n−1, 2n−1 − 1, . . . , 2, 1. So the prisoner with new-index f(n− 1) is alive. This prisoner
is also the prisoner of original-index f(n). Since the prisoner of new-index i corresponds
to original index 2n + 1− 2i, it follows that f(n) = 2n + 1− 2f(n− 1). This relation is
equivalent to

f(n)− 2n−1 − 1

3
= −2

(
f(n− 1)− 2n−2 − 1

3

)
.

Therefore, f(n)− 2n−1 − 1/3 = (−2)n(f(0)− 2−1 − 1/3) = (−2)n/6 or
f(n) = (−2)n/6 + 2n−1 + 1/3.

We consider the cases with 2047 prisoners and with 2048 prisoners. In the first
left-to-right of the later case, the prisoner 2047 shoots 2048, while in the former case,
the prisoner 2048 does not initially exist. Thus, in the both two cases, the original index
of living prisoners are identical after first left-to-right movement. Thus, the prisoner
who, in the end, remains alive, is also same. This prisoner is indexed f(11) = 683.

Solution 3 by David E. Manes, SUNY College at Oneonta, NY
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At the end of the bloodbath, number 683 is the only prisoner standing and it takes ten
stages to produce him.

Stage 1: Procedure goes from left to right. The odd numbered prisoners are alive and
the even numbered ones are not. Therefore 1023 prisoners have been eliminated and
1024 prisoners are still alive.

Stage 2: Procedure goes from right to left starting with prisoner 2047. The prisoners’
decreased are numbered 4k + 1, 0 ≤ k ≤ 511 while the prisoners alive are numbered
4k + 3, 0 ≤ k ≤ 511. There are now 512 prisoners alive.

Stage 3: Procedure goes from left to right starting with prisoner 3. Prisoners still alive
after this stage are numbered 8k + 7, 0 ≤ k ≤ 255. There are now 256 prisoners alive.

Stage 4: Procedure goes from right to left starting with prisoner 2043. The prisoners
dismissed after this stage have numbers 16k + 3, 0 ≤ k ≤ 127 and the prisoners still
standing have numbers 16k + 11, 0 ≤ k ≤ 127. There are now 128 prisoners alive.

Stage 5 : Procedure goes from left to right starting with prisoner 11. After this stage
the lifeless prisoners have numbers 32k + 27, 0 ≤ k ≤ 63 and the prisoners still alive have
numbers 32k + 11, 0 ≤ k ≤ 63.

Stage 6: Procedure goes from right to left starting with prisoner 2027. Prisoners no
longer playing are numbered 64k + 11, 0 ≤ k ≤ 31 and the prisoners still playing have
numbers 64k + 43, 0 ≤ k31.

Stage 7: Procedure goes from left to right starting with prisoner 43. After this stage the
prisoners asked to leave are numbered 128k + 107, 0 ≤ k ≤ 15 and the prisoners still
living have numbers 128k + 43, 0 ≤ k ≤ 15.

Stage 8: Procedure goes from right to left starting with prisoner 1963. After this stage
the prisoners not breathing have numbers 256k + 171, 0 ≤ k ≤ 7.

Stage 9: Procedure goes from left to right starting with prisoner 171. After this stage
the extinct prisoners have numbers 512k + 427, 0 ≤ k ≤ 3 and the prisoners still alive
have numbers 512k + 171, 0k ≤ 171. Prisoners no longer playing are numbered and the
prisoners still playing have numbers 64k + 43, 0 ≤ k ≤ 3, that is, prisoners numbered
171, 683, 1195, and 1707,

Stage 10: Procedure goes from right to left starting with prisoner 1707. The deceased
prisoners are numbered 1195 and 171. The only prisoners alive are 683 and 1707, but
prisoner 683 has the loaded gun, hence the result.

Solution 4 by Hatef I. Arshagi, Guilford Technical Community College,
Jamestown, NC
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Order of Direction Number of Difference Left− end, Right−
shootout of surviving between numbers end

shootout inmates of two surviving Surviving
inmates numbers

1 L→ R 1024 2 1− 2047
2 L← R 512 4 3− 2047
3 L→ R 256 8 3− 2043
4 L← R 128 16 11− 2043
5 L→ R 64 32 11− 2027
6 L← R 32 64 43− 2027
7 L→ R 16 128 43− 1963
8 L← R 8 256 171− 1963
9 L→ R 4 512 171− 1707
10 L← R 2 1024 683− 1707
11 L→ R 1 683

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

The last surviving inmate has the number 683.
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Solution 5 by Carl Libis and Roland Depratti, Eastern Connecticut State
University, Willimantic, CT

Let f(x) =number of the prisoner that survives when there are x prisoners. Observe that

f(2n + 1) =

{
1, if n = 2, 4, 6, · · ·

2n + 1, if n,= 1, 3, 5, · · ·

f(2n) =


2n+1

3
, if n = 2, 4, 6, · · ·

2n + 1

3
, if n = 1, 3, 5, · · ·

f(2n − 1) =


2n+1

3
, if n = 2, 4, 6, · · ·

2n + 1

3
, if n = 1, 3, 5, · · ·

Thus f(2047) = f(211 − 1) = 683, so when there are 2047 prisoners, then prisoner
number 683 will survive.

Editor’s comment: Ulrich Abel of Technische Hochschule Mittelhessen in
Freiberg, Germany, wrote that “this problem is a variant of the famous Josephus
Problem (see; e.g. http://en.wikpedia.org/wiki/Josephusproblem) or the book
Concrete Mathematics by Graham, Knuth and Patashnik.”

Also solved by Ed Gray, Highland Beach, FL; Prishtina Math Gymnasium
Problem Solving Group, Republic of Kosova; David Stone and John
Hawkins, Georgia Southern University, Statesboro, GA, and the proposer.

• 5363: Proposed by D.M. Bătinetu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” General School,
Buzaău, Romania

Let x ∈ < and A(x) =


x+ 1 1 1 1

1 x+ 1 1 1
1 1 x+ 1 1
1 1 1 x+ 1

 .

Compute A(0) ·A(x) ·A(y) ·A(z),∀x, y, z ∈ <.

Solution 1 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX

If

I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

then I4 ·M = M · I4 = M for all 4× 4 matrices M . Also, for all t ∈ R, it is easily seen
that

A (t) = A (0) + tI4
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and

[A (0)]2 =


4 4 4 4
4 4 4 4
4 4 4 4
4 4 4 4

 = 4A (0) .

As a result, we have

A (0) ·A (x) = A (0) · [A (0) + xI4]

= [A (0)]2 + xA (0)

= (x+ 4)A (0)

and

A (y) ·A (z) = [A (0) + yI4] · [A (0) + zI4]

= [A (0)]2 + (y + z)A (0) + yzI4

= (y + z + 4)A (0) + yzI4.

Therefore,

A (0) ·A (x) ·A (y) ·A (z) = (x+ 4)A (0) · [(y + z + 4)A (0) + yzI4]

= (x+ 4) [4 (y + z + 4)A (0) + yzA (0)]

= (x+ 4) (yz + 4y + 4z + 16)A (0)

= (x+ 4) (y + 4) (z + 4)A (0) .

Solution 2 by Moti Levy, Rehovot, Israel

A (x) = xI4 + E4,

where I4 :=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 and E4 :=


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 .

A(0)·A(x)·A(y)·A(z) = E4 (E4 + xI4) (E4 + yI4) (E4 + zI4)

= E4
4 + (x+ y + z)E3

4 + (xy + xz + yz)E2
4 + xyzE4

E2
4 = 4E4,

E3
4 = 16E4

E3
4 = 64E4

A(0)·A(x)·A(y)·A(z) = E4
4 + (x+ y + z)E3

4 + (xy + xz + yz)E2
4 + xyzE4

= (64 + 16 (x+ y + z) + 4 (xy + xz + yz) + xyz)E4

= (z + 4) (y + 4) (x+ 4)E4.

Solution 3 by Paul M. Harms, North Newton, KS
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Computing A(0), A(x), we obtain the value of (x− 4) for each element in the product.
On the main diagonal of the product A(x)A(z) we have
(y + 1)(z + 1) + 3 = yz + y + z + 4. The other elements have the value
(y + 1) + (z + 1) + 2 = y + z + 4. Then the product A(0) [A(y)A(z)] has the value
yz + y + z + 4 + 3(y + z + 4) for each element. This value is equal to
yz + 4y + 4z + 16 = (y + 4)(z + 4). The result of the computation requested in the
problem is (x+ 4)(y + 4)(z + 4)A(0) or a 4 by 4 matrix all of whose elements are
(x+ 4)(y + 4)(z + 4).

Solution 4 by David Stone and John Hawkins of Georgia Southern
University in Statesboro, GA

Editor′s comment : The authors of this solution generalized the problem as follows:

Let A(x) be m instead of 4× 4 and we shall compute
A(0) ·A(x1) ·A(x2) ·A(x3) · · ·A(xn), for xi ∈ <.

Let A be the m×m matrix A = A(0) A(x) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . 1
1 1 1 . . 1
. . . . . .
. . . . . .
. . . . . .
1 1 1 . . 1

∣∣∣∣∣∣∣∣∣∣∣∣
.

ThenA(x) = A+ xI (where I is the m×m identity matrix).

Lemma 1: Ak = mk−1A, k ≥ 1.
Proof: Certainly A1 = m1−1A and an easy computation shows that A2 = mA = m2−1A.

Upon the obvious induction hypothesis,

Ak+1 = AAk = A
(
mk−1A

)
= mk−1A2 = mk−1 (mA) = mkA, as desired.

Lemma 2: For any real x, A ·A(x) = (m+ x)A.
Proof:

A ·A(x) = A · (A+ xI) = A2 + xA

= mA+ xA, by Lemma 1

= (m+ x)A.

Theorem: For x1, x2, x3, . . . , xn,∈ < we have
A(0) ·A(x1) ·A(x2) ·A(x3)(xn) = (m+ x1) (m+ x2) (m+ x3) · · · (m+ xn)A.

Proof: We proceed by induction on n.
For n = 1, A(0) ·A(x1) = A ·A(x1) = (m+ x1)A by Lemma 2.

Making the obvious induction hypothesis,

A(0) ·A(x1) ·A(x2) ·A(x3) · · ·A(xn+1)

= {A(0) ·A(x1) ·A(x2) ·A(x3) · · ·A(xn)} ·A (xn+1)

= {(m+ x1)(m+ x2)(m+ x3) · · · (m+ xn)A} ·A (xn+1)

= {(m+ x1)(m+ x2)(m+ x3) · · · (m+ xn)} · {A ·A (xn+1)}
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= {(m+ x1)(m+ x2)(m+ x3) · · · (m+ xn)} · {(m+ xn+1)A} by Lemma 2

= (m+ x1) (m+ x2)(m+ x3) · · · (m+ xn) · (m+ xn+1)A, as desired.

That is, A (0) ·A (x1) ·A (x2) ·A (x3) · · ·A (xn) equals the m×m matrix

(m+ x1)(m+ x2)(m+ x3) · · · (m+ xn)

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . 1
1 1 1 . . 1
. . . . . .
. . . . . .
. . . . . .
1 1 1 . . 1

∣∣∣∣∣∣∣∣∣∣∣∣
.

Norte. There are no concerns about non-commutativity in our algebra of matrices,
because A commutes with powers of itself and with any scalar matrix c.

Note also that everything above remains true if we let all scalars come from an arbitrary
ring with identity (instead of the reals).

Also solved by Brian D. Beasley, Presbyterian College, Clinton, SC; David
Diminnie and Michael Taylor, Texas Instruments Inc., Dallas, TX; Bruno
Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland Beach, FL; Connor
Greenhalgh (student, Eastern Kentucky University), Richmond, KY; G. C.
Greubel, Newport News, VA; Carl Libis, Columbia Southern University,
Orange Beach, AL; David E, Manes, SUNY College at Oneonta, NY; Gail
Nord, Gonzaga University, Spokane, WA; Toshihiro Shimizu, Kawasaki,
Japan; Morgan Wood (student, Eastern Kentucky University), Richmond,
KY, and the proposer.

• 5364: Proposed by Angel Plaza, Universidad de Las Palmas de Gran Canaria, Spain

Prove that
n∑
k=0

(
2n− 2k

n− k

)(
2k

k

)
4−n = 1.

Solution 1 by Henry Ricardo, New York Math Circle, NY

The generating function of the central binomial coefficient is well known:

f(x) =
1√

1− 4x
=

∞∑
k=0

(
2k

k

)
xk.

Applying a standard theorem on the Cauchy product of two power series,( ∞∑
i=0

aix
i

)
·

 ∞∑
j=0

bjx
j

 =

∞∑
n=0

(
n∑
k=0

an−kbk

)
xn,
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to f2(x) yields

n∑
k=0

(
2n− 2k

n− k

)(
2k

k

)
= the coefficient of xn in

(
1√

1− 4x

)2

= the coefficient of xn in
1

1− 4x
= 4n,

which proves the given identity.

Comment: The identity in the problem has been known since at least the 1930s. In her
article “Counting and Recounting: The Aftermath” (The Mathematical Intelligencer,
Vol. 6, No. 2, 1984), Marta Sved provides some references and describes a number of
purely combinatorial proofs of the identity, all based in some way on the count of lattice
paths.

Solution 2 by Arkady Alt, San Jose ,CA

First note that (
−1/2

n

)
=
−1/2 (−1/2− 1) .... (−1/2− n+ 1)

n!

= (−1)n · 1 · 3 · ... · (2n− 1)

2nn!

= (−1)n · (2n)!

22n (n!)2

=
(−1)n

4n

(
2n

n

)
and therefore,(

2n

n

)
= (−4)n

(
−1/2

n

)
.

Since,

(
2k

k

)(
2n− 2k

n− k

)
= (−4)k

(
−1/2

k

)
(−4)n−k

(
−1/2

n− k

)
= (−4)n

(
−1/2

k

)(
−1/2

n− k

)
,

we have

n∑
k=0

(
2n− 2k

n− k

)(
2k

k

)
4−n = 1 ⇐⇒

n∑
k=0

(
−1/2

k

)(
−1/2

n− k

)
= (−1)n .

Since
1√

1 + x
= (1 + x)−1/2 =

∞∑
n=0

(
−1/2

n

)
xn and

∞∑
n=0

(−1)n xn =
1

1 + x
,

we obtain(
1√

1 + x

)2

=
1

1 + x
⇐⇒

( ∞∑
n=0

(
−1/2

n

)
xn
)2

=
∞∑
n=0

(−1)n xn
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⇐⇒
∞∑
n=0

xn
n∑
k=0

(
−1/2

k

)(
−1/2

n− k

)
=
∞∑
n=0

n (−1)n xn.

Hence,
n∑
k=0

(
−1/2

k

)(
−1/2

n− k

)
= (−1)n.

Solution 3 by Nicusor Zlota, “Traian Vuia” Technical College, Focsani,
Romania

We have
1√

1− x2
=
∑
n≥0

(
2n

n

)
2−2nx2n.

On the other hand, we have
1

1− x2
=
∑
n≥0

x2n. Squaring the first power series and

comparing terms give us
n∑
k=0

(
2n− 2k

n− k

)(
2k

k

)
2−2n = 1, q.e.d.

Editor′s comment : Several of those who solved this problem also commented on where
variations and generalizations of it can be found. E.g., Ulrich Abel of the
Technische Hochschule Mittelhessen in Friedberg, Germany cited the paper:

Chang, G., Xu, C., “Generalization and probabilistic proof of a combinatorial identity.”
American Mathematical Monthly 118, 175-177, (2011), and also a paper of his
which was published in 2015 that further generalizes notions used in the Chang and Xu
paper.

Ulrich Abel, Vijay Gupta, and Mircea Ivan, “A generalization of a combinatorial
identity by Change and Xu,” Bulletin of Mathematical Sciences, published by
Springer, ISSN 1664-3607. This paper can also be seen at Springer’s open line access
site < SpringerLink.com > .

Another citation was given by Moti Levy, of Rehovot Israel. He mentioned that in
Concrete Mathematics, by Graham, Knuth, and Patashnik (second edition) the problem
is solved in Section 5.3, “Tricks of the trade,” pages 186-187 . And Carl Libis of
Columbia Southern University, Orange Beach, AL cited
http://math.stackexchange.com/questions/687221/proving-sum-k-0n2k-choose-k2n-2k-
choose-n-k-4n/688370688370

In addition, Bruno Salgueirio Fanego of Viveiro, Spain stated that a probabilistic
interpretation of the problem can be found in
<http://mathes.pugetsound.edu/∼mspivey/AltConvRepring.pdf>. He went on to say
that: more generally, it can be demonstrated that, for any real l,
n∑
k=0

(
2n− 2k − l
n− k

)(
2k + l

k

)
4−n = 1 (see: http://arxiv.org/pdf/1307.6693.pdf) and that

for any integer m ≥ 2,

∑
k1·k2···km=n

(
2k1
k1

)(
2k2
k2

)
· · ·
(

2km
km

)
4−n =

Γ
(m

2
+ n

)
n!Γ

(m
2

) ,
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as can be found in <http://129.81.170.14/∼vhm/papers html/prob-bin.pdf>.

Also solved by Ed Gray, Highland Beach, FL; G. C. Greubel, Newport
News, VA; Gail Nord, Gonzaga University, Spokane, WA; Toshihiro
Shimizu, Kawasaki, Japan, and the proposer.

5365: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let n ≥ 3 be a positive integer. Find all real solutions of the system

a32(a
2
2 + a23 + . . .+ a2j+1) = a21

a33(a
2
3 + a24 + . . .+ a2j+2) = a22

. . . . . . . . .
a3n(a2n + a21 + . . .+ a2j−1) = a2n−1

a31(a
2
1 + a22 + ...+ a2j ) = a2n


for 1 < j < n.

Partial solution by the proposer

Since the RHS of all equations are nonnegative, then the system does not have solutions
(a1, a2, . . . , an) with negative components. Moreover, (0, 0, . . . , 0) is a trivial solution.
So, it remains to find the positive solutions of the system. To do it, let
m = min

1≤k≤n
{ak} = ap and M = max

1≤k≤n
{ak} = aq. Then, using the (q− 1)th equation yields

jM3m2 ≤ a3q(a2q + a2q+1 + . . .+ a2q+j−1) = a2q−1 ≤M2

and from the (p− 1)th equation we get

jm3M2 ≥ a3p(a2p + a2p+1 + . . .+ a2p+j−1) = a2p−1 ≥ m2

Therefore,

jM3m2 ≤M2 ⇔M ≤ 1

jm2

and

jm3M2 ≥ m2 ⇔ m ≥ 1

jM2

Since M ≤ 1

jm2
, then j2m4 ≤ 1

M2
and from m ≥ 1

jM2
follows that

m ≥ jm4 ⇒ m ≤ 3
√

1/j

Likewise, from M ≤ 1

jm2
and m ≥ 1

jM2
immediately follows

M ≤ jM4 ⇒M ≥ 3
√

1/j

So, m = M = 3
√

1/j and a positive solution of the given system is(
3
√

1/j, 3
√

1/j, . . . , 3
√

1/j
)

(*) It remains to prove if there exist or not other positive solutions.
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Editor’s comment: When the statement of this problem was published the last line in
the system was not there. Toshihiro Shimizu of Kawasaki, Japan mentioned that
for the sake of symmetry it would be advantageous to add this last line to the system,
and the proposer agreed. But as we see, even with this additional condition, a definitive
set of solutions was not received.

5366: Proposed by Ovidiu Furdui and Alina Sintămărian, Technical University of
Cluj-Napoca, Cluj-Napoca, Romania

Find all nonconstant, differentiable functions f : < → < which verify the functional
equation f(x+ y)− f(x− y) = 2f ′(x)f(y), for all x, y ∈ <.

Solution 1 by Moti Levy, Rehovot, Israel

We will show that all the solutions of the functional equation (1) must satisfy the
differential equation (2):

f(x+ y)− f(x− y) = 2f
′
(x)f(y), for all x, y ∈ R, (1)

f
′′
(x)f(x)−

(
f

′
(x)
)2

+ 1 = 0, f (0) = 0, f
′
(0) = 1. (2)

We divide both sides of (1) by y and take the limit y → 0.

f(x+ y)− f(x− y)

y
= 2f

′
(x)

f(y)

y
(3)

The left hand side approaches the derivative f
′
(x)

lim
y→0

f(x+ y)− f(x− y)

2y
= f

′
(x),

and the right hand side is equal to f
′
(x) limy→0

f(y)
y .

It follows that

lim
y→0

f(y)

y
= 1 =⇒ f(0) = 0. (4)

By Taylor’s theorem,

f (y) = f (0) + f
′
(θ) y, 0 ≤ θ ≤ y.

lim
y→0

f (y)

y
= 1 = lim

y→0

f
′
(θ) y

y
=⇒ f

′
(0) = 1.

Thus we have derived the initial conditions,

f(0) = 0, f
′
(0) = 1. (5)

Differentiation of (1) with respect to the variable y, gives

f
′
(x+ y) + f

′
(x− y) = 2f

′
(x)f

′
(y) . (6)

Setting x = y in (1) and in (6), we obtain

f(2x) = 2f
′
(x)f (x) , (7)

f
′
(2x) + 1 = 2

(
f

′
(x)
)2
. (8)

15



Now, f
′
(x) = f(2x)

2f(x) from (7), implies that f
′
(x) it is differentiable function (for

f (x) 6= 0) , (actually, by this argument f (x) is infinitely differentiable). Differentiating
(7) gives

f
′
(2x) = f

′′
(x)f (x) +

(
f

′
(x)
)2
. (9)

By equating f
′
(2x) in (8) and (9), we obtain the differential equation,

f
′′
(x)f(x)−

(
f

′
(x)
)2

+ 1 = 0 (10)

Now we differentiate (10),

f (3)(x)f(x) + f
′′
(x)f

′
(x)− 2f

′
(x)f

′′
(x) = 0

or
f (3)(x)

f
′′
(x)

=
f

′
(x)

f(x)
(11)

ln f
′′
(x) = ln f(x) + c

f
′′
(x) = k2f(x)

f(x) = αekx + βe−kx

f (0) = 0, =⇒ α+ β = 0

f
′
(0) = 1, =⇒ kα− kβ = 1

f (x) =
ekx − e−kx

2k
, k ∈ C.

Let k = σ + iτ, σ, τ ∈ R, then

f (x) =
eσx (cos τx+ i sin τx)− e−σx (cos τx− i sin τx)

2 (σ + iτ)

=
(σ − iτ) (eσx (cos τx+ i sin τx)− e−σx (cos τx− i sin τx))

2 (σ2 + τ2)

=
eσx (σ cos (τx) + τ sin (τx))− e−σx (σ cos (τx)− τ sin (τx))

2 (σ2 + τ2)

+ i
eσx (σ sin τx− τ cos τx)− e−σx (σ sin τx− τ cos τx)

2 (σ2 + τ2)
.

Since we are requested to find only the real functions, then σ must be equal to 0 or τ
must be equal to 0.
When σ = 0 then

f (x) =
sin (τx)

τ
, τ ∈ R\ {0} .

When τ = 0 then

f (x) =
sin (iσx)

iσ
=

sinh (σx)

σ
, τ ∈ R\ {0} .
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One can check that f (x) = limτ→0
sin(τx)
τ = x is also a solution of the differential

equation (2).

It is easy to check that f (x) =


sin(τx)
τ , τ ∈ R\ {0}

sinh(σx)
σ , σ ∈ R\ {0}

x

, the family of solution of (2),

are indeed solution of (1).

Solution 2 by Toshihiro Shimizu, Kawasaki, Japan

Let (F ) be the functional equation in the problem statement.

There exists y1 such that f ′(y1) 6= 0, otherwise f would be constant. Taking
x = y1, y 6= 0 to (F ) we get

f(y1 + y)− f(y1 − y)

2y
= f ′(y1)

f(y)

y
.

Taking the limit y → 0, we get f ′(y1) = f ′(y1)f
′(0) or f ′(0) = 1. Taking x = 0 to (F ),

we get f(y)− f(−y) = 2f(y) or f(−y) = −f(y). Especially, f(0) = 0.

Then, we get
2f ′(−x)f(y) = f(−x+ y)− f(−x− y) = −f(y − x) + f(x+ y) = 2f ′(x)f(y). We take
y = y0 such that f(y0) 6= 0, where such y0 exists since f is not constant. Then, we get
f ′(−x) = f ′(x) for all x ∈ R.

We show that f ′is differentiable. Taking y = y0 to (F ),
f ′(x) =

(
f(x+ y0)− f(x− y0)

)
/
(
2f(y0)

)
for all x ∈ R.

Thus, it follows that

f ′(x+ h)− f ′(x)

h
=
f(x+ h+ y0)− f(x+ h− y0)− f(x+ y0) + f(x− y0)

2f(y0)h

=
1

2f(y0)

(
f(x+ h+ y0)− f(x+ y0)

h
− f(x+ h− y0)− f(x− y0)

h

)
→ 1

2f(y0)

(
f ′(x+ y0)− f ′(x− y0)

)
(h→ 0)

Thus f ′ is differentiable.

Differentiating with respect to x, we get

f ′(x+ y)− f ′(x− y) = 2f ′′(x)f(y)

Exchanging x and y, (l.h.s) is not changed. Thus f ′′(x)f(y) = f(x)f ′′(y) for any
x, y ∈ R. Especially for y = y0, we get the result that f ′′(x) = cf(x) for some constant
c ∈ R. It’s known functional equation and we omit the detail.

If c > 0, we can write as f(x) = C1 exp(Cx) + C2 exp(−Cx). From the fact that
f(0) = 0 and f ′(0) = 1, we get C1 + C2 = 0 and C(C1 − C2) = 1. Thus, we can write as
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f(x) =
(

exp(Cx)− exp(−Cx)
)
/(2C) = sinh(Cx)/(2C). It is easy to check that this

function satisfies (F ).

If c < 0, we can write as f(x) = C1 cos(Cx) + C2 sin(Cx). From the fact that f(0) = 0
and f ′(0) = 1, we get C1 = 0, CC2 = 1. Thus, we can write as f(x) = sin(Cx)/C.
Again, it is easy to check that this function satisfies (F ).

If c = 0, we can write as f(x) = Cx+D. From the fact that f(0) = 0 and f ′(0) = 1. We
get f(x) = x. It also satisfies (F ).

Finally, we get f(x) = sinh(Cx)/(2C) or f(x) = sin(Cx)/C or f(x) = x where C 6= 0 is
constant.

Solution 3 by Kee-Wai Lau, Hong Kong, China

We show that f(x) = x,
eax − e−ax

2a
or

sin(bx)

b
, where a and b are nonzero numbers.

By putting y = 0 into the into the given functional equation

f(x+ y)− f(x− y) = 2f ′(x)f(y) (1)

we obtain we obtain f ′(x)(0) = 0. Since f is non-constant, so there exists a ∈ < such
that f ′(a) 6= 0. Hence f(0) = 0. Differentiate (1) with respect to y, we obtain

f ′(x+ y) + f ′(x− y) = 2f ′(x)f ′(y). (2)

By putting y = 0 and x = a into (2), we obtain f ′(0) = 1. By putting x = 0 into (1), we
obtain f(−y) = −f(y). Hence by interchanging x and y in (1), we obtain

f(x+ y) + f(x− y) = 2f ′(y)f(x), (3)

Adding up (1) and (3), ) we obtain

f(x+ y) = f ′(x)f(y) + f ′(y)f(x). (4)

Differentiating (4) with respect to x, we obtain

f ′(x+ y) = f ′′(x)f(y) + f ′(y)f ′(x). (5)

Differentiating (4) with respect to y, we obtain

f ′(x+ y) = f ′(x)f ′(y) + f ′′(y)f(x) (6)

From (5) and (6), we obtain f ′′(x)f(y) = f ′′(y)f(x) for all x, y ∈ <.

It follows that f ′′(x) = kf(x), where k is a constant.

If k = 0 then f ′′(x) = 0, so that f is a linear function. Since f(0) = f ′(0)− 1 = 0, so
f(x). If k = a2, then f ′′(x)− a2f(x) = 0.

By standard methods, we obtain (x) =
eax − e−ax

2a
. If k = −b2, then f ′′(x) + b2f(x) = 0.

By standard methods, we obtain f(x) =
sin(bx)

b
.

This completes the solution.
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Also solved by Arkady Alt, San Jose, CA; Hatef I. Arshagi, Guilford
Technical Community College, Jamestown, NC, and the proposers.

Mea− Culpa

The names of Bruno Salgueiro Fanego of Viveiro, Spain and David E. Manes
of SUNY College at Oneonta, NY should have been listed as having solved
problem 5358; their names were inadvertently omitted from the list.
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