
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
March 15, 2011

• 5140: Proposed by Kenneth Korbin, New York, NY

Given equilateral triangle ABC with an interior point P such that

AP = 22 + 16
√

2
BP = 13 + 9

√
2

CP = 23 + 16
√

2.

Find AB.

• 5141: Proposed by Kenneth Korbin, New York, NY

A quadrilateral with sides 259, 765, 285, 925 is constructed so that its area is maximum.
Find the size of the angles formed by the intersection of the diagonals.

• 5142: Proposed by Michael Brozinsky, Central Islip, NY

Let CD be an arbitrary diameter of a circle with center O. Show that for each point A
distinct from O,C, and D on the line containing CD, there is a point B such that the
line from D to any point P on the circle distinct from C and D bisects angle APB.

• 5143: Proposed by Valmir Krasniqi (student), Republic of Kosova

Show that

∞∑
n=1

Cos−1 1 +
√

n2 + 2n ·
√

n2 − 1
n (n + 1)

=
π

2
.

(Cos−1 = Arccos)

• 5144: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Compute

lim
n→∞

n∏
k=1

1 + ln

(
k +

√
n2 + k2

n

)1/n
 .

• 5145: Proposed by Ovidiu Furdui, Cluj, Romania
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Let k ≥ 1 be a natural number. Find the sum of

∞∑
n=1

(
1

1− x
− 1− x− x2 − · · · − xn

)k

, for |x| < 1.

Solutions

• 5122: Proposed by Kenneth Korbin, New York, NY

Partition the first 32 non-negative integers from 0 to 31 into two sets A and B so that
the sum of any two distinct integers from set A is equal to the sum of two distinct
integers from set B and vice versa.

Solution 1 by Michael N. Fried, Kibbutz Revivim, Israel

Suppose A contains 0. This means that any other number in A must be the sum of two
numbers in B. The next number in A, therefore, must be at least 3 since 3 is the
smallest number that is the sum of two positive integers. On the other hand, the next
number in A cannot be greater than 3, for 1 and 2 must still be in B. This group of four
numbers forms a kind of unit, which we can represent graphically as follows:

0
1
t3

2
or

1
0
u2

3

The symmetry of the unit reflects the fact that a + b = c + d if and only if b− d = a− c,
that is if and only if there is some number k such that c = a + k and d = b− k. Thus
any four consecutive integers forming such a figure will have the property that the sum
of the top pair of numbers equals the sum of the bottom pair.

(This makes the problem almost a geometrical one, for arranging the numbers in set A
and B in parallel lines as in the figure above, the condition of the problem becomes that
every pair of numbers in the first line corresponds to a pair of numbers in the second
line.)

So our strategy for the problem will be to assemble units such as those above to produce
larger units satisfying in each case the condition of the problem.

Let us then start with two. The first, as before is:

0
1
t3

2

And as we have already argued, the first two numbers of A and B must be arranged in
this way. The second unit, then, will be either

4
5
t7

6
or

5
4
u6

7
The symmetrical combination,

0
1
t3

2
4
5
t7

6
fails, because the pair (0, 4) in the upper row has no matching pair in the second row.
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However, the non-symmetrical combination works:

0
1
t3

2
5
4
u6

7
Again, these two form a new kind of unit, and, as before, any eight consecutive integers
forming a unit such as the above, will have the property that any pair of numbers in the
top row will have the same sum as some pair in the bottom row.

So, let us try and fit together two units of this type, and let us call them R and S. As
before, there are two possibilities, one symmetric and one anti-symmetric.
Since the anti-symmetric option worked before, let us try it again and call the top row
A and the bottom row B.

R︷ ︸︸ ︷
0
1
t3

2
5
4
u6

7

S︷ ︸︸ ︷
8
9
u11

10
13
12
t14

15

A = {0, 3, 5, 6, 8, 11, 13, 14}
B = {1, 2, 4, 7, 9, 10, 12, 15}

Now, to check whether this combination works we do not have to check

(
8
2

)
= 28 pairs

of numbers.

All of the subunits will satisfy the condition of the problem. Indeed, we do not have to
check pairs contained in the first and second, second and third and third and fourth
terms, because they represent eight consecutive integers as discussed above. And we do
not have to check pairs from the first and fourth terms because these also behave like a
single unit R (where for example the pair (0,13) corresponds to (1,12) just as (0,5)
corresponded to (1,4). So we only have to check pairs of numbers coming from the first
and third elements and the second and fourth. But here we find a problem, for (2,10) in
B cannot have a corresponding pair in A.

Let us then check the symmetrical arrangement:

R︷ ︸︸ ︷
0
1
t3

2
5
4
u6

7

S︷ ︸︸ ︷
9
8
t10

11
12
13
u15

14

A = {0, 3, 5, 6, 9, 10, 12, 15}
B = {1, 2, 4, 7, 8, 11, 13, 14}

As in the anti-symmetrical arrangement, we need not check pairs of numbers in R or S,
or, in this case, pairs if the first and third elements or second and fourth, which behave
exactly as R and S individually. We need only check non-symmetrical pairs in the first
and fourth elements and in the second and third. For the former this means (3,15) and
(0,12) in A and (1,13) and (2,14) in B. For these we have corresponding pairs (3,15) to
(7,8), (0,12) to (4,8), (1,13) to (5,9) and (2,14) to (6,10). Similarly, corresponding pairs
exist for each non-smmetric pair in A and B in the second and third elements.

The above arrangement is then a new unit of 16 consecutive numbers satisfying the
condition that every pair in the upper row A, has a correspnding pair of numbers in the
second row B, with the same sum.
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Finally, then, we want to join together two units, each of 16 consecutive integers as
above, to partition the set of 32 consecutive integers {0, 1, 2, . . . , 31}.
Reasoning as above, and checking only the critical elements in the unit for
corresponding sums, we see that the symmetric case works.

The symmetric case :︷ ︸︸ ︷
0
1
t 3

2
5
4
u 6

7
9
8
u 10

11
12
13

t 15
14

and

︷ ︸︸ ︷
16
17

t 19
18

21
20

u 22
23

25
24

u 26
27

28
29

t 31
30

Thus,

A = {0, 3, 5, 6, 9, 10, 12, 15, 16, 19, 21, 22, 25, 26, 28, 31}
B = {1, 2, 4, 7, 8, 11, 13, 14, 17, 18, 20, 23, 24, 27, 29, 30}

Editor’s comment: In Michael’s solution each element in the set of four consecutive
integers was written as being the vetex of an isosceles trapezoid. (The trapezoids were
oriented with the bases being parallel to the top and bottom edges of page; Michael then
manitpulated the trapezoids by flipping their bases.)

Adoración Mart́ınez Ruiz of the Mathematics Club of the Institute of
Secondary Education (No. 1) in Requena-Valencia, Spain also approached the
problem geometrically in an almost identical manner as Michael. I adopted Adoración
Mart́ınez’ notation of “cups” t and “caps” u instead of Michael’s isosceles trapezoids in
writing-up Michael’s solution. (If the shorter base of the trapezoid was closer to the
bottom edge of the page than the longer base, then that trapezoid became a cup, t;
whereas if the shorter base of the trapezoid was closer to the top edge of the page than
the longer base, then that trapezoid became a cap, u.

Michael’s solution and Adoración Mart́ınez’ solution were identical to one another up
until the last step. At that point Michael took the symmetric extension in moving from
the first 16 non-negative integers to the first 32 non-negative integers, whereas
Adoración Mart́ınez took the anti-symmetric extension, and surprisingly (at least to
me), each solution worked.

Adoración Mart́ınez′ anti− symmetric case :︷ ︸︸ ︷
0
1
t 3

2
5
4
u 6

7
9
8
u 10

11
12
13

t 15
14

and

︷ ︸︸ ︷
17
16

u 18
19

20
21

t 23
22

24
25

t 27
26

29
28

u 30
31

A = {0, 3, 5, 6, 9, 10, 12, 15, 17, 18, 20, 23, 24, 27, 29, 30}
B = {1, 2, 4, 7, 8, 11, 13, 14, 16, 19, 21, 22, 25, 26, 28, 31}

So now we have two solutions to the problem, each motivated by geometry, and it was
assumed (at least by me) that their were no other solutions. Michael challenged Mayer
Goldberg, a colleague in CS here at BGU, to find other solutions, and he did; many of
them! Following is his approach.

Solution 2 by Mayer Goldberg, Beer-Sheva, Israel

Notation: For any set S of integers, the set aS + b is the set {ak + b : k ∈ S}.
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Construction: We start with the set A0 = {0, 4}, b0 = {1, 2}. We define An, Bn

inductively as follows:

An+1 = (2An + 1) ∪ (2Bn)

Bn+1 = (2An) ∪ (2Bn + 1)

Claim: The sets An, Bn partition the set {0, . . . , 2n+2} according to the requirements of
the problem.

Proof: By Induction. The sets A0B0 satisfy the requirement trivially, since they each
contain one pair, and by inspection, we see that the sums are the same. Assume that
An, Bn satisfy the requirement. Pick x1, x2 ∈ An+1.

• Case I: x1 = 2x3 + 1, x2 = 2x4 + 1, for x3, x4 ∈ An. Then by the induction hypothesis
(IH), there exists y3, y4 ∈ Bn, such that x3 + x4 = y3 + y4. Consequently,

x1 + x2 = 2(x3 + x4) + 2 = 2(y3 + y4) + 2 = (2y3 + 1) + (2y4 + 1).

So let y1 = 2y3 + 1, y2 = 2y4 + 1 ∈ Bn+1.

• Cases II & III: x1 = 2x3 + 1, x2 = 2y4, for x3 ∈ An, y4 ∈ Bn.

x1 + x2 = 2(x3 + 1) + 2y4 = 2x3 + (2y4 + 1).

So let y1 = 2x3, y2 = 2y4 + 1 ∈ Bn+1.

• Case IV: x1 = 2y3, x2 = 2y4, for y3, y4 ∈ Bn.Then by the IH, there exists x3, x4 ∈ An,
suc that y3 + y4 = x3 + x4. Consequently,

x1 + x2 = 2y3 + 2y4 = 2(y3 + y4) = 2(x3 + x4) = 2x3 + 2x4.

So let y1 = 2x3, y2 = 2y3 ∈ Bn+1

Editor: This leads to potentially thousands of such pairs of sets that satisfy the criteria
of the problem. Mayer listed about one hundred such examples, a few of which are
reproduced below:

A = {0, 3, 5, 6, 9, 10, 13, 15, 17, 18, 19, 23, 24, 27, 29, 30},
B = {1, 2, 4, 7, 8, 11, 12, 14, 16, 20, 21, 22, 25, 26, 28, 31}

A = {0, 3, 5, 6, 9, 10, 11, 15, 17, 18, 19, 23, 24, 27, 29, 30},
B = {1, 2, 4, 7, 8, 12, 13, 14, 16, 20, 21, 22, 25, 26, 28, 31}

A = {0, 3, 5, 6, 9, 10, 14, 15, 17, 18, 19, 23, 24, 27, 29, 30},
B = {1, 2, 4, 7, 8, 11, 12, 13, 16, 20, 21, 22, 25, 26, 28, 31}

A = {0, 3, 5, 6, 9, 10, 13, 15, 17, 18, 22, 23, 24, 27, 29, 30},
B = {1, 2, 4, 7, 8, 11, 12, 14, 16, 19, 20, 21, 25, 26, 28, 31}

A = {0, 3, 5, 6, 9, 10, 14, 15, 17, 18, 22, 23, 24, 27, 29, 30},
B = {1, 2, 4, 7, 8, 11, 12, 13, 16, 19, 20, 21, 25, 26, 28, 31}
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A = {0, 3, 5, 6, 9, 10, 15, 16, 17, 18, 19, 23, 24, 27, 29, 30},
B = {1, 2, 4, 7, 8, 11, 12, 13, 14, 20, 21, 22, 25, 26, 28, 31}

A = {0, 3, 5, 6, 9, 10, 15, 16, 17, 18, 22, 23, 24, 27, 29, 30},
B = {1, 2, 4, 7, 8, 11, 12, 13, 14, 19, 20, 21, 25, 26, 28, 31}

A = {0, 3, 5, 6, 8, 9, 13, 15, 17, 18, 20, 23, 24, 27, 29, 30},
B = {1, 2, 4, 7, 10, 11, 12, 14, 16, 19, 21, 22, 25, 26, 28, 31}

A = {0, 3, 5, 6, 8, 9, 11, 15, 17, 18, 20, 23, 24, 27, 29, 30},
B = {1, 2, 4, 7, 10, 12, 13, 14, 16, 19, 21, 22, 25, 26, 28, 31}

A = {0, 3, 5, 6, 8, 9, 15, 16, 17, 18, 20, 23, 24, 27, 29, 30},
B = {1, 2, 4, 7, 10, 11, 12, 13, 14, 19, 21, 22, 25, 26, 28, 31}

A = {0, 3, 5, 6, 9, 10, 13, 15, 17, 19, 20, 23, 24, 27, 29, 30},
B = {1, 2, 4, 7, 8, 11, 12, 14, 16, 18, 21, 22, 25, 26, 28, 31}

A = {0, 3, 5, 6, 9, 10, 11, 15, 17, 19, 20, 23, 24, 27, 29, 30},
B = {1, 2, 4, 7, 8, 12, 13, 14, 16, 18, 21, 22, 25, 26, 28, 31}

A = {0, 3, 5, 6, 9, 10, 13, 15, 17, 20, 22, 23, 24, 27, 29, 30},
B = {1, 2, 4, 7, 8, 11, 12, 14, 16, 18, 19, 21, 25, 26, 28, 31}

A = {0, 3, 5, 6, 9, 10, 11, 15, 17, 20, 22, 23, 24, 27, 29, 30},
B = {1, 2, 4, 7, 8, 12, 13, 14, 16, 18, 19, 21, 25, 26, 28, 31}

A = {0, 3, 5, 6, 9, 10, 14, 15, 17, 20, 22, 23, 24, 27, 29, 30},
B = 1, 2, 4, 7, 8, 11, 12, 13, 16, 18, 19, 21, 25, 26, 28, 31}

Editor (again): Edwin Gray of Highland Beach, FL working together with John
Kiltinen of Marquette, MI claimed and proved by induction the following more
general theorem:

Let S = {0, 1, 2, 3, . . . , 2n − 1}, n > 1. Then there is a partition of S, say A, B such that

1) A ∪B = S, A ∩B = ∅, and

2) For all x, y ∈ A, there is an r, s ∈ B, such that x + y = r + s, and vice versa.

That is, the sum of any two elements in B has two elements in A equal to their sum.

David Stone and John Hawkins both of Statesboro, GA also claimed and
proved a more general statement: They showed that: for n ≥ 2, the set
Sn = {0, 1, 2, . . . , 2n − 1} consists of the non-negaitve integers which can be written with
n or fewer binary digits. E.g.,

S2 = {0, 1, 2, 3} = {00, 01, 10, 11} and
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S3 = {0, 1, 2, 3, 4, 5, 6, 7} = {000, 001, 010, 011, 100, 101, 110, 111}

Their proof consisted of partitioning Sn into two subsets: En: those elements of Sn

whose binary representation uses an even number of ones, and On: those numbers in Sn

whose binary reprsentation uses an odd number of ones. Hence, for any x 6= y in
En, x + y can be written as x + y = w + z for some w 6= z in On, and vice versa. This
lead them to Adoración Mart́ınez’ solution, and they speculated on its uniqueness.

All of this seemed to be getting out-of-hand for me; at first I thought the solution is
unique; then I thought that there are only two solutions, and then I thought that there
are many solutions to the problem. Shai Covo’s
solutio/Users/admin/Desktop/SSM/For Jan 11/For Jan 11; Jerry.texn however, shows
that the answer can be unique if one uses a notion of sum multiplicity.

Solution 3 by Shai Covo, Kiryat-Ono, Israel

We give two solutions, the first simple and original, the second sophisticated and more
interesting, thanks to the Online Encyclopedia of Integer sequences(OEIS).

Assuming that 0 ∈ A, one checks that we must have either

{0, 3, 5, 6} ∪ {25, 26, 28, 31} ⊂ A and {1, 2, 4, 7} ∪ {24, 27, 29, 30} ⊂ B
or

{0, 3, 5, 6} ∪ {24, 27, 29, 30} ⊂ A and {1, 2, 4, 7} ∪ {25, 26, 28, 31} ⊂ B.

In view of the first possibility, it is natural to examine the following sets:

A = {0, 3, 5, 6, 9, 10, 13, 14, 17, 18, 21, 22, 25, 26, 28, 31}

B = {1, 2, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23, 24, 27, 29, 30}.

To see why this is natural, connect the numbers with arrows, in increasing order,
starting with a vertical arrow pointing down to 1. Now, define

C = {a1 + a2 | a1, a2 ∈ A, a1 6= a2} ⊂ {3, 4, 5, . . . , 59} and

D = {b1 + b2 | b1, b2 ∈ B, b1 6= b2} ⊂ {3, 4, 5, . . . , 59}.

We want to show that C = D, or equivalently, for every x ∈ {3, 4, 5, . . . , 59} either
x ∈ C ∩D or x 6∈ C ∪D. Checking each x value, we find that

C ∩D = {3, 4, 5, . . . , 59} \ {4, 7, 55, 58} and {4, 7, 55, 58} ∩ (C ∪D) = ∅.

Thus, C = D, and so the problem is solved with A and B as above.

We now turn to the second solution. OEIS sequences A001969 (numbers with an even
number of 1’s in their binary expansion) and A000069 (numbers with an odd number of
1’s in their binary expansion) “give the unique solution to the problem of splitting the
nonnegative integers into two classes in such a way that sums of pairs of distinct
elements from either class occur with the same multiplicities. [Lambek and Moser].” We
have verified (by computer) that, in the case at hand, the sets

A = {A001969(n) : A001969(n) ≤ 30}
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= {0, 3, 5, 6, 9, 10, 12, 15, 17, 18, 20, 23, 24, 27, 29, 30} and

B = {A000069(n) : A000069(n) ≤ 31}
= {1, 2, 4, 7, 8, 11, 13, 14, 16, 19, 21, 22, 25, 26, 28, 31}

split the first 32 nonnegative integers from 0 to 31 in the manner stated for splitting the
nonnegative integers. (The number 32 plays an important role here.) However, this is
not the case for the sets A and B from the previous solution (consider, for
example,12=3+9 versus 12=1+11, 12=4+8; there are seven more such examples.)

Editor (still again): I did not understand the notion about sums having the same
multiplicity, but this is the key for having a unique solution to the problem, as it states
in the OEIS. So I asked Shai to elaborate on this notion. Here is what he wrote:

—————–
The point is that “given the unique solution to the problem of splitting the nonnegative
integers...” refers to the infinite set {0, 1, 2, 3, ...} and not the finite set {0, 1, 2, ..., 31}. I
should have stressed this point in my solution. As far as I can recall, I considered doing
so, but decided not to, based on the following: “... the manner stated for splitting the
nonnegative integers” only refers to “splitting the nonnegative integers into two classes
in such a way that sums of pairs of distinct elements from either class occur with the
same multiplicities,” and not to “give the unique solution to the problem of splitting the
nonnegative integers...”.
—————–

In explaining the notion of itself, Shai wrote:

—————–
Consider Michael Fried’s sets:

A = {0, 3, 5, 6, 9, 10, 12, 15, 16, 19, 21, 22, 25, 26, 28, 31}

B = {1, 2, 4, 7, 8, 11, 13, 14, 17, 18, 20, 23, 24, 27, 29, 30}.

For set A, the number 16 can be decomposed as 0+16 and 6+10; hence the multiplicity
is 2. For set B, on the other hand, 16 can only be decomposed as 2+14 (8+8 does not
count, since we consider distinct elements only); hence the multiplicity is 1.

——————

Also solved by Brian D. Beasley, Clinton, SC; Edwin Gray, Highland Beach,
FL; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong, China;
John Kiltinen, Marquette, MI; Charles McCracken, Dayton, OH; Adoración
Mart́ınez Ruiz, Requena-Valencia, Spain; R. P. Sealy, Sackville, New
Brunswick, Canada; David Stone and John Hawkins (jointly), Statesboro,
GA, and the proposer.

• 5123: Proposed by Kenneth Korbin, New York, NY

Given isosceles triangle ABC with AB = BC = 2011 and with cevian BD. Each of the
line segments AD, BD, and CD have positive integer length with AD < CD.
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Find the lengths of those three segments when the area of the triangle is minimum.

Solution by Shai Covo, Kiryat-Ono, Israel

We begin by observing that AC ∈ {3, 4, . . . , 4021}. This follows from
AC < AB + BC = 4022 and the assumption that AC = AD + CD is the sum of the
distinct positive integers. The area S of triangle ABC can be expressed in terms of AC
as

S = S
(
AC

)
=

AC

2

√√√√20112 −
(

AC

2

)2

.

Define f(x) = x2(20112 − x2), x ∈ [0, 2011]. Then S
(
AC

)
=
√

f
(
AC/2

)
. It is readily

verified that the function f (and hence
√

f) is unimodal with mode m = 2011/
√

2; that
is, it is increasing for x ≤ m and decreasing for x ≥ m. If thus follows from
f(4021/2) < f(127/2) that S(4021) < S(k) for any integer 127 ≤ k ≤ 4020. Next by the
law of cosines, we find that

BD
2 = 20112 + AD

2 − 2 · 2011 ·AD · AC/2
2011

.

Hence,
AD

2 −AC ·AD +
(
20112 −BD

2
)

= 0.

The roots of this quadratic equation are given by the standard formula as

AD1,2 =
AC ±

√
AC

2 − 4
(
20112 −BD

2
)

2
.

However, we are given that AD < CD; hence AD = AD2 and CD = AD1, and we must
have AC

2
> 4

(
20112 −BD

2
)
. Since, obviously, BD ≤ 2010, we must have

AC2 > 4
(
20112 − 20102

)
= 4 · 4021; hence, 127 ≤ AC ≤ 4021.

Thus, under the condition that S is minimum, we wish to find an integer value of
BD(≤ 2010) that makes AD1,2 (that is, CD and AD) distinct integers when AC is set
to 4021.

We thus look for BD ∈ {1, 2, . . . , 2010} for which the discriminant
∆ = 40212 − 4(20112 −BD2) is a positive perfect square, say ∆ = j2 with j ∈ N
(actually, j =CD −AD). This leads straightforwardly to the following equation:(

2BD + j
) (

2BD − j
)

= 3 · 7 · 383.

Since 3,7, and 383 are primes, we have to consider the following four cases:

•
(
2BD − j

)
= 1 and

(
2BD + j

)
= 3 · 7 · 383. This leads to BD = 2011; however, BD

must be less than 2011.

•
(
2BD − j

)
= 3 and

(
2BD + j

)
= 7 · 383. This leads to BD = 671 and j = 1339, and

hence to our first solution:

AD = 1341, BD = 671, CD = 2680.
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•
(
2BD − j

)
= 7 and

(
2BD + j

)
= 3 · 383. This leads to BD = 289 and j = 571, and

hence to our second solution:

AD = 1725, BD = 289, CD = 2296.

•
(
2BD − j

)
= 3 · 7 and

(
2BD + j

)
= 383. This leads to BD = 101 and j = 181, and

hence to our third solution:

AD = 1920, BD = 101, CD = 2101.

Editor: David Stone and John Hawkins made two comments in their solution. They
started off their solution by letting r = AC, the length of the triangle’s base. By Heron’s
formula, they obtained the triangle’s area: K =

r

4

√
40222 − r2 and then they made the

following observations.

• a) BD = 1 and CD = 2011 gives us a triangle ABC with

area

(
1
2
− 1

4 (2011)2

)√
4 (20112)− 1 ≈ 2010.999689 which is the smallest value that can

be obtained not requiring AD to be an integer.

• b) Letting m = AD,n = CD, k = BD, (where 1 ≤ m < n and AC = m + n ≤ 4021),
and letting α be the base angle at vertex A (and at C), and dropping an altitude from B
to side AC, we obtain a right triangle and see that

cos α =
AC/2
2011

=
m + n

2 · 2011
.

Using the Law of Cosines in triangle BDC, we have

k2 = n2 + 20112 − 2 · 2011 · n cos α = 20112 + n2 − n(m + n),

so we have a condition which the integers m,n and k must satisfy

k2 = 20112 −mn (1)

There are many triangles satisfying condition (1), some with interesting characteristics.
There are no permissible triangles with base 4020, five with base 4019 and six with base
4018. All have larger areas than the champions listed above.

The altitude of each triangle in our winners group is 44.8 so the “shape ratio”,
altitude/base, is very small: 0.011. A wide flat triangle indeed!

One triangle with base 187 has a relatively small area: 187,825.16. This is as close as we
can come to a tall, skinny triangle with small area. Its altitude/base ratio is 10.7.

In general, the largest isosceles triangle is an isosceles right triangle. With side lengths
2011, this would require a hypotenuse (our base) of 2011

√
2 ≈ 2843.98. There are no

permissible triangles with r = 2844. Letting r = 2843, we find the two largest
permissible triangles:

m = 291, n = 2552, cevian = 1817 and area 2, 022, 060.02

m = 883, n = 1960, cevian = 1521 and area 2, 022, 060.02

10



The triangle with m = 3, n = 2680 (hence base =2683) has a large area: 2,009,788,52.
The cevian has length 2009; it is very close to the side AB.

The triangle with m = 1524, n = 1560 and cevian=1291, comes closer than any other we
found to having the cevian bisect the base. Its area is 1,990,528.49

Also solved by Kee-Wai Lau, Hong Kong, China; David Stone and John
Hawkins (jointly), Statesboro, GA, and the proposer.

• 5124: Proposed by Michael Brozinsky, Central Islip, NY

If n > 2 show that
n∑

i=1

sin2
(

2πi

n

)
=

n

2
.

Solution 1 by Piriyathumwong P. (student, Patumwan Demonstration
School), Bangkok, Thailand

Since cos 2θ = 1− 2 sin2 θ, we have

n∑
i=1

sin2
(

2πi

n

)
=

1
2

n∑
i=1

(
1− cos

(
4πi

n

))
=

n

2
− 1

2

n∑
i=1

cos
(

4πi

n

)

We now have to show that S =
n∑

i=1

cos
(

4πi

n

)
= 0.

Multiplying both sides of S by 2 sin
(

2π

n

)
, gives

2 sin
(

2π

n

)
· S = 2 sin

(
2π

n

)
cos

(
4π

n

)
+ 2 sin

(
2π

n

)
cos

(
8π

n

)
+ . . . + 2 sin

(
2π

n

)
cos

(
4nπ

n

)
=

(
sin
(

6π

n

)
− sin

(
2π

n

))
+
(

sin
(

10π

n

)
− sin

(
6π

n

))
+ . . .

+
(

sin
(

(4n + 2)π
n

)
− sin

(
(4n− 2)π

n

))
= sin

(
(4n + 2)π

n

)
− sin

(
2π

n

)
= 0

Hence, S = 0, and we are done.

Solution 2 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, San
Angelo, TX

To avoid confusion with the complex number i =
√
−1, we will consider

n∑
k=1

sin2
(

2πk

n

)
.
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If R = e
(
4πi/n

)
, with n > 2, then R 6= 1 and Rn = e4πi = 1. Then, using the formula

for a geometric sum, we get

n∑
k=1

Rk = R
Rn − 1
R− 1

= 0,

and hence,

n∑
k=1

cos
(

4πk

n

)
=

n∑
k=1

Re
(
Rk
)

= Re

(
n∑

k=1

Rk

)
= 0.

Therefore, by the half-angle formula,

n∑
k=1

sin2
(

2πk

n

)
=

1
2

n∑
k=1

[
1− cos

(
4πk

n

)]
=

n

2
.

Also solved by Daniel Lopez Aguayo (student, Institute of Mathematics,
UNAM), Morelia, Mexico; Valmir Bucaj (student, Texas Lutheran
University), Seguin, TX; Shai Covo, Kiryat-Ono, Israel; Bruno Salgueiro
Fanego, Viveiro, Spain; Michael N. Fried, Kibbutz Revivim, Israel; G.C.
Greubel, Newport News, VA; Paul M. Harms, North Newton, KS; Kee-Wai
Lau, Hong Kong, China; Pedro H. O. Pantoja, Natal-RN, Brazil; Paolo
Perfetti, Department of Mathematics, University of Rome, Italy; Boris Rays,
Brooklyn, NY; Raúl A. Simón, Santiago, Chile; David Stone and John
Hawkins (jointly), Statesboro, GA, and the proposer.

• 5125: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let a, b, c be positive real numbers such that a2 + b2 + c2 = 3. Prove that

ab

2(c + a) + 5b
+

bc

2(a + b) + 5c
+

ca

2(b + c) + 5a
<

11
32

.

Solution by Kee-Wai Lau, Hong Kong, China

We prove the sharp inequality

ab

2(c + a) + 5b
+

bc

2(a + b) + 5c
+

ca

2(b + c) + 5a
<

1
3
. (1)

Let x =
a

a + b + c
, y =

b

a + b + c
, z =

c

a + b + c
so that (1) can be written as

(a + b + c)
(

xy

3y + 2
+

yz

3z + 2
+

zx

3x + 2

)
≤ 1

3
. (2)

Since

a + b + c =
√

3 (a2 + b2 + c2)− (a− b)2 − (b− c)2 − (c− a)2 ≤
√

3 (a2 + b2 + c2) = 3

so to prove (2), we need only prove that

12



xy

3y + 2
+

yz

3z + 2
+

zx

3x + 2
≤ 1

9
. (3)

whenever x, y, z are positive and x + y + z = 1. It is easy to check that (3) is equivalent
to

x

3y + 2
+

y

3z + 2
+

z

3x + 2
≥ 1

3
. (4)

By the convexity of the function
1
t
, for t > 0 and Jensen’s inequality, we have

x

3y + 2
+

y

3z + 2
+

z

3x + 2
≥ 1

x(3y + 2) + y(3z + 2) + z(3x + 2)
=

1
3 (xy + yz + zx) + 2

.

Now

xy + yz + zx =
2 (x + y + z)2 − (x− y)2 − (y − z)2 − (z − x)2

6
≤ 1

3
and so (4) holds. This proves (1) and equality holds when a = b = c = 1.

Also solved by Shai Covo, Kiryat-Ono, Israel; Paolo Perfetti, Department of
Mathematics, University of Rome, Italy, and the proposer.

• 5126: Proposed by Pantelimon George Popescu, Bucharest, Romania and José Luis
Dı́az-Barrero, Barcelona, Spain

Let a, b, c, d be positive real numbers and f : [a, b] → [c, d] be a function such that
|f(x)− f(y)| ≥ |g(x)− g(y)|, for all x, y ∈ [a, b], where g : R → R is a given injective
function, with g(a), g(b) ∈ {c, d}.
Prove

(i) f (a) = c and f (b) = d , or f (a) = d and f (b) = c.

(ii) If f (a) = g(a) and f (b) = g(b), then f (x ) = g(x ) for a ≤ x ≤ b.

Solution by Dionne Bailey, Elsie Campbell, and Charles Diminnie, San
Angelo, TX

To avoid trivial situations, we will assume that a < b. Then, since g (x) is injective and
g (a) , g (b) ∈ {c, d}, it follows that c < d also.

First of all, the fact that f (x) ∈ [c, d] for all x ∈ [a, b] implies that

|f (x)− f (y)| ≤ d− c

for all x, y ∈ [a, b].
(i) In particular, since g (a) , g (b) ∈ {c, d}, we have

d− c ≥ |f (a)− f (b)| ≥ |g (a)− g (b)| = d− c.

Hence, |f (a)− f (b)| = d− c with c ≤ f (a) , f (b) ≤ d, and we get f (a) = c and
f (b) = d, or f (a) = d and f (b) = c.
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(ii) Suppose f (a) = g (a) = c and f (b) = g (b) = d. The proof in the other case is
similar. Then, since c ≤ f (x) ≤ d for all x ∈ [a, b], we obtain

d− c = (d− f (x)) + (f (x)− c)
= |d− f (x)|+ |f (x)− c|
= |f (b)− f (x)|+ |f (x)− f (a)|
≥ |g (b)− g (x)|+ |g (x)− g (a)|
= |d− g (x)|+ |g (x)− c|
≥ |d− c|
= d− c.

Thus, for all x ∈ [a, b],

|d− f (x)| = |d− g (x)| and |f (x)− c| = |g (x)− c| .

If there is an x0 ∈ [a, b] such that f (x0) 6= g (x0), then

d− f (x0) = g (x0)− d and f (x0)− c = c− g (x0)

and hence,
2d = f (x0) + g (x0) = 2c.

This is impossible since c 6= d. Therefore, f (x) = g (x) for all x ∈ [a, b].

Remark. The condition that a, b, c, d > 0 seems unnecessary for the solution of this
problem.

Editor: Shai Covo suggested that the problem can be made more interesting by
adding a third condition. Namely:

iii) Iff(a) 6= g(a) (or equivalently, f(b) 6= g(b)), then f(x) + g(x) = c + d for all x ∈ [a, b]

and, hence, f(x)− f(y) = g(y)− g(x) for all x, y ∈ [a, b].

Also solved by Shai Covo, Kiryat-Ono, Israel; Paolo Perfetti, Department of
Mathematics, University of Rome, Italy; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposers.

• 5127: Proposed by Ovidiu Furdui, Cluj, Romania

Let n ≥ 1 be an integer and let Tn(x) =
n∑

k=1

(−1)k−1 x2k−1

(2k − 1)!
, denote the (2n− 1)th

Taylor polynomial of the sine function at 0. Calculate∫ ∞
0

Tn(x)− sinx

x2n+1
dx.

Solution by Paolo Perfetti, Department of Mathematics, University of
Rome, Italy

Answer:
π(−1)n−1

2(2n)!
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Proof: Integrating by parts:

∫ ∞
0

Tn(x)− sinx

x2n+1
dx = − 1

2n

∫ ∞
0

(Tn(x)− sinx)(x−2n)′dx

=
Tn(x)− sinx

−2nx2n

∣∣∣∞
0

+
1
2n

∫ ∞
0

T ′n(x)− cos x

x2n
dx

=
1
2n

∫ ∞
0

T ′n(x)− cos x

x2n
dx

using Tn(x)− sinx = −
∞∑

k=n+1

(−1)k−1 x2k−1

(2k − 1)!
in the last equality.

After writing T ′n(x)− cos x = −
∞∑

k=n+1

(−1)k−1 x2k−2

(2k − 2)!
, we do the second step.

∫ ∞
0

T ′n(x)− cos x

(2n)x2n
dx =

−1
2n(2n− 1)

∫ ∞
0

(T ′n(x)− cos x)(x−2n+1)′dx

=
T ′n(x)− cos x

−2n(2n− 1)x2n−1

∣∣∣∞
0

+
1

2n(2n− 1)

∫ ∞
0

T ′′n (x) + sin x

x2n−1
dx

=
1

2n(2n− 1)

∫ ∞
0

T ′′n (x) + sin x

x2n−1
dx.

After 2n steps we obtain

(−1)n−1

(2n)!

∫ ∞
0

sin
x

dx =
π(−1)n−1

2(2n)!

Also solved by Shai Covo, Kiryat-Ono, Israel; Kee-Wai Lau, Hong Kong,
China; David Stone and John Hawkins (jointly), Statesboro, GA, and the
proposer.
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