
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
March 15, 2012

• 5188: Proposed by Kenneth Korbin, New York, NY

Given 4ABC with coordinates A(−5, 0), B(0, 12) and C(9, 0). The triangle has an
interior point P such that 6 APB = 6 APC = 120◦. Find the coordinates of point P .

• 5189: Proposed by Kenneth Korbin, New York, NY

Given triangle ABC with integer length sides and with 6 A = 60◦ and with (a, b, c) = 1.

Find the lengths of b and c if

i) a = 13, and if

ii) a = 132 = 169, and if

iii) a = 134 = 28561.

• 5190: Proposed by Neculai Stanciu, Buzău, Romania

Prove: If x, y and z are positive integers such that
x(y + 1)

x− 1
∈ N,

y(z + 1)

y − 1
∈ N, and

z(x+ 1)

z − 1
∈ N, then xyz ≤ 693.

• 5191: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let a, b, c be positive real numbers such that ab+ bc+ ca = 3. Prove that

a
√
bc+ b

√
ca+ c

√
ab

a4 + b4 + c4
≤ 1.

• 5192: Proposed by G. C. Greubel, Newport News, VA

Let [n] = [n]q =
1− qn

1− q
be a q number and lnq(x) =

∞∑
n=1

xn

[n]
be a q-logarithm. Evaluate

the following series:

i)
∞∑
k=0

qmk

[mk + 1][mk +m+ 1]
and
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ii)
∞∑
k=1

xk

[k][k +m]
.

• 5193: Proposed by Ovidiu Furdui, Cluj-Napoca, Romania

Let f be a function which has a power series expansion at 0 with radius of convergence
R.

a) Prove that
∞∑
n=1

nf (n)(0)

(
ex − 1− x

1!
− x2

2!
· · · − xn

n!

)
=

∫ x

0
ex−ttf ′(t)dt, |x| < R.

b) Let α be a non-zero real number. Calculate
∞∑
n=1

nαn

(
ex − 1− x

1!
− x2

2!
· · · − xn

n!

)
.

Solutions

• 5170: Proposed by Kenneth Korbin, New York, NY

Convex quadrilateral DEFG has coordinates D(−6,−3) and E(2, 12). The midpoints of
the diagonals are on line l.

Find the area of the quadrilateral if line l intersects line FG at point P

(
672

33
,
−9

11

)
.

Solution 1 by Kee-Wai Lau, Hong Kong, China

We show that the area of the quadrilateral is 378

Let H and I be respectively the midpoints of the diagonals DF and EG. Let

F = (p, q) and G = (r , s) so that

H =

(
p− 6

2
,
q − 3

2

)
and I =

(
r + 2

2
,

s + 12

2

)
.

Using the facts that the points H, I, and P lie on l and that P lies on FG, we obtain
respectively the relations

(150 + 11s)p+ (426− 11r) q = 7590− 15r + 514s (1)

(9 + 11s) p+ (224− 11r) q = 9r + 224s. (2)

By the standard formula, we find the area of the quadrilateral to be

(12− s)p+ (r − 2)q + 3r − 6s+ 66

2
,

which can be written as(
(150 + 11s)p+ (426− 11r)q

)
− 2

(
(9 + 11s)p+ (224− 11r)q

)
+ 33r − 66s+ 726

22
.
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By (1) and (2), the last expression equals

(7590− 15r + 514s)− 2(9r + 224s) + 33r − 66s+ 726

22
= 378,

and this completes the solution.

Solution 2 by the proposer

Area of Quadrilateral DEFG

= 2

[
Area 4DEP

]

=

∣∣∣∣∣∣∣∣∣∣∣

x1 y1 1

x2 y2 1

x3 y3 1

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

2 12 1

−6 −3 1

224

11
− 9

11
1

∣∣∣∣∣∣∣∣∣∣∣
= 378.

Reference, problem number 5033.

Comment by editor: David Stone and John Hawkins of Statesboro, GA showed
in their solution that there are infinitely many quadrilaterals satisfying the given
conditions of the problem, and that each has an area of 378. Their solution started off
by showing that the simplest configuration occurs when the quadrilateral is a
parallelogram so that the diagonals coincide. They then exhibited all such
parallelograms and showed that each one has the stated area. Their solution of nine
pages is too lengthy to reproduce here, but if you would like to see it, please contact me
and I will send their solution to you in pdf format.

• 5171: Proposed by Kenneth Korbin, New York, NY

A triangle has integer length sides x, x+ y, and x+ 2y.

Part I: Find x and y if the inradius r = 2011.

Part II: Find x and y if r =
√

2011.

Solution by Dionne Bailey, Elsie Campbell, and Charles Diminnie, San
Angelo, TX

For convenience, let a = x, b = x+ y, c = x+ 2y be the sides of the triangle. Then, since
a, b, c are positive integers, it follows that x is a positive integer and y is an integer
(which is not necessarily positive). The semiperimeter s is given by

s =
a+ b+ c

2
=

3

2
(x+ y)
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and we have

s− a = s− x =
x+ 3y

2

s− b = s− (x+ y) =
x+ y

2
(1)

s− c = s− (x+ 2y) =
x− y

2
.

If K is the area of the triangle, then

sr = K =
√
s (s− a) (s− b) (s− c)

which reduces to

3

2
(x+ y) r2 = sr2 = (s− a) (s− b) (s− c) =

x+ 3y

2

x+ y

2

x− y
2

,

i.e.,
(x+ 3y) (x− y) = 12r2.

Note also that (1) implies that x+ 3y and x− y are positive integers since x and y are
integers and s− a and s− c are positive. Further, if

x+ 3y = k1

x− y = k2

for positive integers k1 and k2 such that k1k2 = 12r2, then at least one of k1, k2 is even.
Finally, since 4y = k1 − k2, it follows that k1 and k2 must both be even.

Part I: If r = 2011, then 12r2 = 12 (2011)2 and the possibilities for k1 and k2 are

(k1, k2) ∈ {
(
2, 6 · 20112

)
,
(
6 · 20112, 2

)
, (4022, 12066) , (12066, 4022) ,(

6, 2 · 20112
)
,
(
2 · 20112, 6

)
}.

If

x− y = 2

x+ 3y = 6 · 20112

then x = 6, 066, 183, y = 6, 066, 181, while if

x− y = 6 · 20112

x+ 3y = 2

then x = 18, 198, 545, y = −6, 066, 181. The steps in the remaining cases are similar and
the results are summarized in the following table:

x y a b c
6, 066, 183 6, 066, 181 6, 066, 183 12, 132, 364 18, 198, 545
18, 198, 545 −6, 066, 181 18, 198, 545 12, 132, 364 6, 066, 183
2, 022, 065 2, 022, 059 2, 022, 065 4, 044, 124 6, 066, 183
6, 066, 183 −2, 022, 059 6, 066, 183 4, 044, 124 2, 022, 065

6, 033 2, 011 6, 033 8, 044 10, 055
10, 055 −2, 011 10, 055 8, 044 6, 033

.
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Part II: If r =
√

2011, then 12r2 = 12 · 2011 and the possibilities for k1, k2 are

(k1, k2) ∈ {(2, 12066) , (12066, 2) , (6, 4022) , (4022, 6)}.

If we solve the system

x− y = k1

x+ 3y = k2

for each of these possibilities, the results are:

x y a b c
3, 018 3, 016 3, 018 6, 034 9, 050
9, 050 −3, 016 9, 050 6, 034 3, 018
1, 010 1, 004 1, 010 2, 014 3, 018
3, 018 −1, 004 3, 018 2, 014 1, 010

.

Remark: In each situation where the assignments for k1 and k2 were reversed, we
obtained different values for x and y but the triangle was essentially the same (with the
values of a and c reversed).

Comment by editor: David Stone and John Hawkins of Statesboro, GA solved
the more general problem for a triangle having its sides in the arithmetic progression of
x, x+ y, and x+ 2y by finding x and y if the inradius r = pm/2 where p is an odd prime
and m ≥ 1. For p ≥ 5 they showed that there are m+ 1 solutions and they described
them. For p = 3 they showed that there are bm+2

2 c and also described them.

Also solved by Brian D. Beasley, Clinton, SC; Valmir Bucaj (student, Texas
Lutheran University), Seguin, TX; Bruno Salgueiro Fanego, Viveiro, Spain;
Paul M. Harms, North Newton, KS; Enkel Hysnelaj, University of
Technology, Sydney, Australia jointly with Elton Bojaxhiu, Kriftel,
Germany; Kee-Wai Lau, Hong Kong, China; David E. Manes, Oneonta, NY;
Boris Rays, Brooklyn, NY; David Stone and John Hawkins (jointly),
Statesboro, GA; Titu Zvonaru, Comănesti, Romania jointly with Neculai
Stanciu, Buzău, Romania, and the proposer.

• 5172: Proposed by Neculai Stanciu, Buzău, Romania

If a, b and c are positive real numbers, then prove that,

a (b− c)
c (a+ b)

+
b (c− a)

a (b+ c)
+
c (a− b)
b (c+ a)

≥ 0.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

We have

a(b− c)
c(a+ b)

+
b(c− a)

a(b+ c)
+
c(a− b)
b(c+ a)

=
a3b3 + b3c3 + c3a3 − a3b2c− b3c2a− c3a2b

abc(a+ b)(b+ c)(c+ a)
. (1)

By the weighted AM-GM inequality,

2

3
a3b3 +

1

3
c3a3 ≥ a3b2c,
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2

3
b3c3 +

1

3
a3b3 ≥ b3c2a,

2

3
c3a3 +

1

3
b3c3 ≥ c3a2b.

If we these inequalities up we that the numerator of (1) is nonnegative, and the problem
statement follows.

Solution 2 by Kee-Wai Lau, Hong Kong, China

Since

a(b− c)
c(a+ b)

+
b(c− a)

a(b+ c)
+
c(a− b)
b(c+ a)

=
a3b3 + b3c3 + c3a3 − a3b3c− b3c2a− c3a2b

abc(a+ b)(b+ c)(c+ a)

=
a3(b− c)2(2b+ c) + b3(c− a)2(2c+ a) + c3(a− b)2(2a+ b)

3abc(a+ b)(b+ c)(c+ a)
,

the inequality of the problem follows.

Also solved by Arkady Alt, San Jose, CA; Michael Brozinsky, Central Islip,
NY; Enkel Hysnelaj, University of Technology, Sydney, Australia jointly
with Elton Bojaxhiu, Kriftel, Germany; Paul M. Harms, North Newton, KS;
David E. Manes, Oneonta, NY; Paolo Perfetti, Department of Mathematics,
“Tor Vergatta” University, Rome, Italy, and the proposer.

• 5173: Proposed by Pedro H. O. Pantoja, UFRN, Brazil

Find all triples x, y, z of non-negative real numbers that satisfy the system of equations,
x2(2x2 + x+ 2) = xy(3x+ 3y − z)
y2(2y2 + y + 2) = yz(3y + 3z − x)
z2(2z2 + z + 2) = xz(3z + 3x− y)

Solution by Enkel Hysnelaj, University of Technology, Sydney, Australia and
Elton Bojaxhiu, Kriftel, Germany

Assume for the moment that x 6= 0, y 6= 0, z 6= 0.
Without loss of generality, we may assume that x ≥ y. Looking at equations (1) and (2)
in the statement of the problem and using the fact that x, y, z are non-negative real
numbers, we observe

x2(2x2 + x+ 2) ≥ y2(2y2 + y + 2) ⇒ xy(3x+ 3y − z) ≥ yz(3y + 3z − x)

⇒ x(3x+ 3y − z) ≥ z(3y + 3z − x)
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⇒ 3x2 + 3xy − xz ≥ 3yz + 3z2 − xz
⇒ 3(x− z)(x+ y + z) ≥ 0

⇒ x ≥ z

Looking at equations (1) and (3) and using the fact that x, y, z are non-negative real
numbers, we observe

x2(2x2 + x+ 2) ≥ z2(2z2 + z + 2) ⇒ xy(3x+ 3y − z) ≥ zx(3z + 3x− y)

⇒ y(3x+ 3y − z) ≥ z(3z + 3x− y)

⇒ 3xy + 3y2 − yz ≥ 3z2 + 3xz − yz
⇒ 3(y − z)(x+ y + z) ≥ 0

⇒ y ≥ z

Similarly, focusing on equations (2) and (3) and using the fact that x, y, z are
non-negative real numbers, we observe

y2(2y2 + y + 2) ≥ z2(2z2 + z + 2) ⇒ yz(3y + 3z − x) ≥ zx(3z + 3x− y)

⇒ y(3y + 3z − x) ≥ x(3z + 3x− y)

⇒ 3y2 + 3yz − xy ≥ 3xz + 3x2 − xy
⇒ 3(y − x)(x+ y + z) ≥ 0

⇒ y ≥ x.

This implies that x = y. In a similar manner we can prove that y = z and substituting
this into equation (1) we obtain

x2(2x2 + x+ 2) = x2(3x+ 3x− x) = 0⇒ 2(x− 1)2 = 0⇒ x = 1.

So a solution will be (x, y, z) = (1, 1, 1).

Substituting x = 0 into equation (3) implies that z2(2z2 + z + 2) = 0, so either z = 0 or
2z2 + z + 2 = 0. It is easy to see that 2z2 + z + 2 = 0 does not have real roots, so we are
left with the option that z = 0. Similarly, substituting z = 0 into equation (2) gives
y = 0.

Therefore the set of real valued solutions for the given system is
(x, y, z) = {(0, 0, 0), (1, 1, 1)}.

Also solved by Arkady Alt, San Jose, CA; Kee-Wai Lau, Hong Kong, China;
David E. Manes, Oneonta, NY; Paolo Perfetti, Department of Mathematics,
“Tor Vergatta” University, Rome, Italy; Albert Stadler, Herrliberg,
Switzerland; Neculai Stanciu with Titu Zvonaru (jointly), from Buzău and
Comănesti, Romania respectively, and the proposer.

• 5174: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let n be a positive integer. Compute:

lim
n→∞

n2

2n

n∑
k=0

k + 4

(k + 1)(k + 2)(k + 3)

(
n

k

)
.

Solution 1 by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain
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(1 + x)n =
n∑

k=0

(
n

k

)
xk, and by integration

(1 + x)n+1 − 1

n+ 1
=

n∑
k=0

(
n

k

)
xk+1

k + 1
.

Iterating the same technique, it is obtained:

(1 + x)n+2 − (n+ 2)x− 1

(n+ 1)(n+ 2)
=

n∑
k=0

(
n

k

)
xk+2

(k + 1)(k + 2)
.

(1 + x)n+3 − (n+ 2)(n+ 3)x2/2− (n+ 3)x− 1

(n+ 1)(n+ 2)(n+ 3)
=

n∑
k=0

(
n

k

)
xk+3

(k + 1)(k + 2)(k + 3)
.

Now, multiplying each term of the preceding equation by x, differentiating with respect
to x and letting x = 1, we obtain

(n+ 5)2n+2 − 3(n+ 2)(n+ 3)/2− 2(n+ 3)− 1

(n+ 1)(n+ 2)(n+ 3)
=

n∑
k=0

(
n

k

)
(k + 4)

(k + 1)(k + 2)(k + 3)
.

And therefore, the proposed limit becomes

L = lim
n→∞

n2

2n
(n+ 5)2n+2 − 3(n+ 2)(n+ 3)/2− 2(n+ 3)− 1

(n+ 1)(n+ 2)(n+ 3)

= lim
n→∞

n2

2n
(n+ 5)2n+2

n3
= 4.

Solution 2 by Anastasios Kotronis, Athens, Greece

For n ∈ N and and x ∈ < we have (1 + x)n =
n∑

k=0

(
n

k

)
xk so x4(1 + x)n =

n∑
k=0

(
n

k

)
xk+4.

Now differentiate to obtain

4x3(1 + x)n + nx4(1 + x)n−1 =
n∑

k=0

(k + 4)

(
n

k

)
xk+3, so

4(1 + x)n + nx(1 + x)n−1 =
n∑

k=0

(k + 4)

(
n

k

)
xk.

Now integrate on [0, x] to obtain

3(1 + x)n+1

n+ 1
+ x(1 + x)n − 3

n+ 1
=

n∑
k=0

(k + 4)

k + 1

(
n

k

)
xk+1.

Integrating once again gives us

2(1 + x)n+2

(n+ 1)(n+ 2)
+
x(1 + x)n+1

n+ 1
− 3x

n+ 1
− 2

(n+ 1)(n+ 2)
=

n∑
k=0

(k + 4)

(k + 1)(k + 2)

(
n

k

)
xk+2.

And by integrating still again gives us

n∑
k=0

(k + 4)

(k + 1)(k + 2)(k + 3)

(
n

k

)
xk+3 =
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(1 + x)n+3

(n+ 1)(n+ 2)(n+ 3)
+

x(1 + x)n+2

(n+ 1)(n+ 2)
− 3x2

2(n+ 1)
− 2x

(n+ 1)(n+ 2)
− 1

(n+ 1)(n+ 2)(n+ 3)
.

Setting x = 1 above, we easily see that

n2

2n

n∑
k=0

(k + 4)

(k + 1)(k + 2)(k + 3)

(
n

k

)
n→+∞−→ 4.

Also solved by Arkady Alt, San Jose, CA; Dionne Bailey, Elsie Campbell,
and Charles Diminnie (jointly), San Angelo, TX; Enkel Hysnelaj, University
of Technology, Sydney, Australia jointly with Elton Bojaxhiu, Kriftel,
Germany; Kee-Wai Lau, Hong Kong, China; David E. Manes, Oneonta, NY;
Paolo Perfetti, Department of Mathematics, “Tor Vergatta” University,
Rome, Italy; Albert Stadler, Herrliberg, Switzerland; David Stone and John
Hawkins (jointly), Statesboro, GA, and the proposer.

• 5175: Proposed by Ovidiu Furdui, Cluj-Napoca, Romania

Find the value of,

lim
n→∞

1

n

n∑
i,j=1

i+ j

i2 + j2
.

Solution 1 by Kee-Wai Lau, Hong Kong, China

We first note by symmetry that

n∑
i=1

n∑
j=1

i+ j

i2 + j2
= 2

n∑
i=1

n∑
j=1

i+ j

i2 + j2
−

n∑
i=1

1

i
. (1)

It is well known that for a sequence {an} such that lim
n→∞

an = l then lim
n→∞

n∑
i=1

ai

n
= l as

well. Hence, it follows from (1) that

lim
n→∞

1

n

n∑
i=1

n∑
j=1

i+ j

i2 + j2

= 2 lim
n→∞

n∑
j=1

n+ j

n2 + j2
− lim

n→∞
1

n

= 2 lim
n→∞

n∑
j=1

1 +
j

n

n

(
1 +

(
j

n

)2
)

= 2

∫ 1

0

1 + x

1 + x2
dx
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=

[
2 arctan(x) + ln(1 + x2)

]∣∣∣∣1
0

=
π

2
+ ln 2.

Solution 2 by Paolo Perfetti, Department of Mathematics, “Tor Vergatta”
University, Rome, Italy

Answer:
π

2
+ ln 2

Proof: The limit is actually

lim
n→∞

1

n2

n∑
i,j=1

i

n
+
j

n
i2

n2
+
j2

n2

which is the Riemann–sum of∫ ∫
[0,1]2

x+ y

x2 + y2
dxdy = 2

∫ ∫
[0,1]2

x

x2 + y2
dxdy = I

I =

∫ 1

0

[(
ln(x2 + y2)

) ∣∣∣1
0

]
dy =

∫ 1

0

(
ln(1 + y2)− 2 ln y

)
dy.

Integrating by parts,

∫ 1

0
ln(1 + y2)dy = y ln(1 + y2)

∣∣∣∣1
0
− 2

∫ 1

0

y2

1 + y2
dy

= ln 2− 2

∫ 1

0

(
1− 1

1 + y2

)
dy

= ln 2− 2 + 2 arctan y

∣∣∣∣1
0

= ln 2− 2 + 2

(
π

4

)
.

Moreover,

−2

∫ 1

0
ln ydy = −2(y ln y − y)

∣∣∣∣1
0

= 2

from which the result follows by summing the two integrals.

Comment by editor: Many of the solvers approached the problem in a similar manner as
Paolo, by showing that

1

n2

n∑
i,j=1

i

n
+
j

n(
i

n

)2

+

(
j

n

)2 =⇒
∫ 1

0

∫ 1

0

x+ y

x2 + y2
dxdy as n →∞,
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but they raised the caveat that we must be careful in applying the limit because the

function φ(x, y) =
x+ y

x2 + y2
is not continuous at (x, y) = (0, 0). They then showed that in

this case, the limit does indeed hold.

Also solved by Arkady Alt, San Jose, CA; Anastasios Kotronis, Athens,
Greece; Enkel Hysnelaj, University of Technology, Sydney, Australia jointly
with Elton Bojaxhiu, Kriftel, German; David E. Manes, Oneonta, NY;
Albert Stadler, Herrliberg, Switzerland; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposer.
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