
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
March 15, 2014

• 5283: Proposed by Kenneth Korbin, New York, NY

Find the sides of two different isosceles triangles that both have perimeter 162 and area
1008.

• 5284: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

Prove:

a) 33
n

+ 1 ≡ 0 mod 28, ∀n ≥ 1,

b) 33
n

+ 1 ≡ 0 mod 532, ∀n ≥ 2,

c) 33
n

+ 1 ≡ 0 mod 19684, ∀n ≥ 3,

d) 33
n

+ 1 ≡ 0 mod 3208492, ∀n ≥ 4.

• 5285: Proposed by D.M. Bătinetu−Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “Geroge Emil Palade” General School,
Buzău, Romania

Let {an}n≥1, and {bn}n ≥ 1 be positive sequences of real numbers with

lim
n→∞

(an+1 − an) = a ∈ <+ and lim
n→∞

bn+1

nbn
= b ∈ <+.

For x ∈ <, calculate

lim
n→∞

(
asin

2 x
n

((
n+1

√
bn+1

)cos2 x

−
(

n
√
bn
)cos2 x))

.

• 5286: Proposed by Michael Brozinsky, Central Islip, NY

In Cartesianland, where immortal ants live, an ant is assigned a specific equilateral
triangle EFG and three distinct positive numbers 0 < a < b < c. The ant’s job is to find
a unique point P (x, y) such that the distances from P to the vertices E,F and G of his
triangle are proportionate to a : b : c respectively. Some ants are eternally doomed to an
impossible search. Find a relationship between a, b and c that guarantees eventual
success; i.e., that such a unique point P actually exists.
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• 5287: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let u, v, w, x, y, z be complex numbers. Prove that

2Re(ux + vy + zw) ≤ 3
(
|u|2 + |v |2 + |w |2

)
+

1

3

(
|x |2 + |y |2 + |z |2

)
.

• 5288: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let a, b, c ≥ 0 be real numbers. Find the value of

lim
n→∞

1

n

n∑
i=1

n∑
j=1

1√
i2 + j2 + ai+ bj + c

.

Solutions

• 5265: Proposed by Kenneth Korbin, New York, NY

Find positive integers x and y such that

2x− y −
√

3x2 − 3xy + y2 = 2014,

with (x, y) = 1.

Solution 1 by G. C. Greubel, Newport News, VA

The process to be considered, for a slightly general class of values, can be seen as
follows. Consider the equation

2x− y −
√

3x2 − 3xy + y2 = a (1)

for which rearranging terms and squaring both sides leads to

3x2 − 3xy + y2 = (2x− y − a)2

3x2 − 3xy + y2 = 4x2 + y2 + a2 + 2(−2xy − 2ax+ ay)

or

y =
x2 − 4ax+ a2

x− 2a

=
(x2 − 4ax+ 4a2)− 3a2

x− 2a

=
(x− 2a)2 − 3a2

x− 2a

y = x− 2a− 3a2

x− 2a
.
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This equation provides y in terms of x for a given x. The relations for x and y can be
put into a “parametric” form by making the substitution

u =
3a2

x− 2a
and v =

3a2

u
.

From this it can now be seen that

x = v + 2a
y = v − u
uv = 3a2.

It is readily seen that the possible factors of a are the primary values used in u and v. This is
to say that if a is a product of four integers, say {ai}1≤i≤4, rasied to powers bi then

uv = 3a1
2b1a2b22 a2b33 a2b44

and leads to the forms of u and v being of the form

u = 3α1aα2
1 aα3

2 aα4
3 aα5

4 and v = 3β1aβ21 aβ32 aβ43 aβ54 , (2)

where α1 + β1 = 1 and αi + βi = 2bi−1 for 2 ≤ i ≤ 5.

Now, returning to equation (1) it can also be seen in the form

(2x− y)−
√

(2x− y)2 − x(x− y) = a.

Invoking the conditions x and y be positive integers leads to the following conditions. If
x− y = 0 then this reduces to 0 = a which is invalid for all a 6= 0. In the case x− y < 0 the
reduction is seen to be

x− |x− y| −
√

(x− |x− y|)2 + x|x− y| = a.

This equation is also invalid for a > 0. The remaining condition x > y is the only option for
a > 0, x > 0 and y > 0. In order to be completely valid the statement should be x > y > 0 for
a > 0.

Also by rearranging the equation into the form√
3x2 − 3xy + y2 = 2x− y − a

which, for positive integer values x and y, leads to the square root being positive and the
condition 2x− y − a ≥ 0 or 2x− y ≥ 0. The conditions x > y > 0 and 2x− y ≥ 0 can also be
stated as v > u and u+ v + 3a ≥ 0.

Introducing the additional condition (x, y) = p then p|a, p|x and p|y, or p is the divisor of a, x
and y. This condition leads to only relatively prime solutions are considered as solutions of
this particular problem.

a = 2014.

With a = 2014 it is quickly seen that the factors are 2, 19, and 53, i.e., a = 2 · 19 · 53 and
3a2 = 3 · 22 · 192 · 532. The possible factors from this factorable set, in view of equation (2), is
seen by:
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factors of uv = 3(2014)2

u v u v

30 · 20 · 190 · 530 31 · 22 · 192 · 532 31 · 20 · 190 · 530 30 · 22 · 192 · 532

30 · 22 · 190 · 530 31 · 20 · 192 · 532 31 · 22 · 190 · 530 30 · 20 · 192 · 532

30 · 20 · 192 · 530 31 · 22 · 190 · 532 31 · 20 · 192 · 530 30 · 22 · 190 · 532

30 · 20 · 190 · 532 31 · 22 · 192 · 530 31 · 20 · 190 · 532 30 · 22 · 192 · 530

30 · 22 · 192 · 530 31 · 20 · 190 · 532 31 · 22 · 192 · 530 30 · 20 · 190 · 532

30 · 22 · 190 · 532 31 · 20 · 192 · 530 31 · 22 · 190 · 532 30 · 20 · 192 · 530

30 · 22 · 192 · 532 31 · 20 · 190 · 530 31 · 22 · 192 · 532 30 · 20 · 190 · 530

Invoking the condition v > u then the possible values are preceded by an asterisk ∗:
factors of uv = 3(2014)2

u v u v

*30 · 20 · 190 · 530 *31 · 22 · 192 · 532 *31 · 20 · 190 · 530 *30 · 22 · 192 · 532

*30 · 22 · 190 · 530 *31 · 20 · 192 · 532 *31 · 22 · 190 · 530 *30 · 20 · 192 · 532

*30 · 20 · 192 · 530 *31 · 22 · 190 · 532 *31 · 20 · 192 · 530 *30 · 22 · 190 · 532

*30 · 20 · 190 · 532 *31 · 22 · 192 · 530 31 · 20 · 190 · 532 30 · 22 · 192 · 530

*30 · 22 · 192 · 530 *31 · 20 · 190 · 532 31 · 22 · 192 · 530 30 · 20 · 190 · 532

30 · 22 · 190 · 532 31 · 20 · 192 · 530 31 · 22 · 190 · 532 30 · 20 · 192 · 530

30 · 22 · 192 · 532 31 · 20 · 190 · 530 31 · 22 · 192 · 532 30 · 20 · 190 · 530

These eight value pairs for u and v lead to the eight value pairs of x and y, with (x, y) = 1,
being

x y

12,172,616 12,168,587
4,060,224 4,056,193
3,046,175 3,042,143
1,018,077 1,014,037

37,736 33,347
15,264 10,153
12,455 6,983
8,360 1,523.

a = 2015

With a = 2015 it is quickly seen that the factors are 5, 13, and 31, i.e., a = 5 · 13 · 31 and
3a2 = 3 · 52 · 132 · 312. The possible factors from this factorable set, in view of equation (2), is
seen by:

factors of uv = 3(2015)2

u v u v

30 · 50 · 130 · 310 31 · 52 · 132 · 312 31 · 50 · 130 · 310 30 · 52 · 132 · 312

30 · 52 · 130 · 310 31 · 50 · 132 · 312 31 · 52 · 130 · 310 30 · 50 · 132 · 312

30 · 50 · 132 · 310 31 · 52 · 130 · 312 31 · 50 · 132 · 310 30 · 52 · 130 · 312

30 · 50 · 130 · 312 31 · 52 · 132 · 310 31 · 50 · 130 · 312 30 · 52 · 132 · 310

30 · 52 · 132 · 310 31 · 50 · 130 · 312 31 · 52 · 132 · 310 30 · 50 · 130 · 312

30 · 52 · 130 · 312 31 · 50 · 132 · 310 31 · 52 · 130 · 312 30 · 50 · 132 · 310

30 · 52 · 132 · 312 31 · 50 · 130 · 310 31 · 52 · 132 · 312 30 · 50 · 130 · 310

Invoking the condition v > u then the possible values are preceded by an asterisk ∗:,
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factors of uv = 3(2015)2

u v u v

*30 · 50 · 130 · 310 *31 · 52 · 132 · 312 *31 · 50 · 130 · 310 *30 · 52 · 132 · 312

30 · 52 · 130 · 310 *31 · 50 · 132 · 312 *31 · 52 · 130 · 310 *30 · 50 · 132 · 312

30 · 50 · 132 · 310 *31 · 52 · 130 · 312 *31 · 50 · 132 · 310 *30 · 52 · 130 · 312

30 · 50 · 130 · 312 31 · 52 · 132 · 310 *31 · 50 · 130 · 312 *30 · 52 · 132 · 310

30 · 52 · 132 · 310 31 · 50 · 130 · 312 31 · 52 · 132 · 310 30 · 50 · 130 · 312

30 · 52 · 130 · 312 31 · 50 · 132 · 310 31 · 52 · 130 · 312 30 · 50 · 132 · 310

30 · 52 · 132 · 312 31 · 50 · 130 · 310 31 · 52 · 132 · 312 30 · 50 · 130 · 310

These eight value pairs for u and v lead to the eight value pairs of x and y, with (x, y) = 1,
being

x y

12,184,705 12,180,674
4,064,255 4,060,222
491,257 487,202
166,439 162,334
76,105 71,906
28,055 23,518
8,255 1,342

Solution 2 by Ercole Suppa, Teramo, Italy

The given equation is equivalent to

(2x− y − 2014)2 = 3x2 − 3xy + y2 ⇔
x2 − xy − 8056x+ 4028y + 20142 = 0 ⇔

y = x− 4028− 3 · 20142

x− 4028
(1)

where x, y are positive integers such that gcd(x, y) = 1 and 2x− y ≥ 2014.

Since y is integer, we have that x = 4028 + d where d is a divisor of 3 · 20142

Furthermore, since y > 0 we have

(x− 4028)2 > 3 · 20142 ⇔ x > 4028 + 2014
√

3.

Therefore d > 2014
√

3 and the possible values of x are:

x ∈ {8056, 8360, 9646, 10070, 12455, 15264, 16112, 20882, 23161, 37736,
42294, 57399, 61427, 80560, 110770, 118826, 164141, 217512, 233624, 324254,
644480, 1018077, 2032126, 3046175, 4060224, 6088322, 12172616}. (2)

By using (1) and (2), a simple check shows that the only pairs (x, y) such that 2x− y ≥ 2014
and gcd(x, y) = 1 are:

{(8360, 1523), (12455, 6983), (15264, 10153),
(37736, 33347), (1018077, 1014037), (3046175, 3042143)
(4060224, 4056193), (12172616, 12168587)}.
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Solution 3 by Brian D. Beasley Presbyterian College, Clinton, SC

We seek to solve the equation 2x− y −
√

3x2 − 3xy + y2 = c for any positive integer c.
Examining this equation for various values of c, we note the following two patterns of
solutions:

(1) Let x = 3c2 + 2c and y = 3c2 − 1. It is then straightforward to verify that

2x− y −
√

3x2 − 3xy + y2 = 3c2 + 4c+ 1−
√

(3c2 + 3c+ 1)2 = c.

Next, let d = gcd(x, y). If d > 1, then there is a prime p such that p divides d. Thus p divides
c(3c+ 2), so either p divides c or p divides 3c+ 2. But p also divides 3c2 − 1, so p cannot
divide c. Hence p divides 3c+ 2, but p also divides x− y = 2c+ 1 and thus divides
2(3c+ 2)− 3(2c+ 1) = 1, a contradiction. We therefore conclude that gcd(x, y) = 1.

(2) Let x = c2 + 2c and y = c2 − 3. (To keep y > 0, we assume c > 1 here.) It is then
straightforward to verify that

2x− y −
√

3x2 − 3xy + y2 = c2 + 4c+ 3−
√

(c2 + 3c+ 3)2 = c.

Next, we note that if 3 divides c, then gcd(x, y) ≥ 3, so we assume that 3 does not divide c in
this case. Let d = gcd(x, y). If d > 1, then there is a prime p such that p divides d. Thus p
divides c(c+ 2), so either p divides c or p divides c+ 2. But p also divides c2 − 3, so p cannot
divide c, since p 6= 3 in this case. Hence p divides c+ 2, but p also divides x− y = 2c+ 3 and
thus divides 2(c+ 2)− (2c+ 3) = 1, a contradiction. We therefore conclude that gcd(x, y) = 1.

Since c = 2014 for the given equation and 3 does not divide 2014, this approach produces two
solutions:

x = 12, 172, 616 and y = 12, 168, 587;

x = 4, 060, 224 and y = 4, 056, 193.

Addendum. This approach generates at least one solution for each value of c, with at least two
solutions when 3 does not divide c (and when c > 1). However, it does not find all solutions,
and it does not necessarily find the smallest solution.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX; Bruno Salgueiro Fanego, Viveiro, Lugo, Spain;
Ed Gray, Highland Beach, FL; Paul M. Harms, North Newton, KS; Kee-Wai Lau,
Hong Kong, China; David E. Manes, SUNY College at Oneonta, NY; David
Stone and John Hawkins, Southern Georgia University, Statesborogh,GA, and
the proposer.

• 5266: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

The pentagonal numbers begin 1, 5, 12, 22, · · · and in general satisfy Pn =
n(3n− 1)

2
, ∀n ≥ 1.

The positive Jacobsthal numbers, which have applications in tiling and graph matching

problems, begin 1, 1, 3, 5, 11, 21, · · · with general term Jn =
2n − (−1)n

3
, ∀n ≥ 1. Prove that

there exists infinitely many pentagonal numbers that are the sum of three Jacobsthal numbers.

Solution 1 by Solution by Dionne Bailey, Elsie Campbell, and Charles Diminnie,
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Angelo State University, San Angelo, TX

For n ≥ 1, let kn =
2

3

(
22n−1 + 1

)
= 2J2n−1. Then,

Pkn =
kn (3kn − 1)

2

=
1

2
· 2

3

(
22n−1 + 1

) [
2
(
22n−1 + 1

)
− 1

]
=

(
22n−1 + 1

) (
22n + 1

)
3

, while

J2n−1 + J2n + J4n−1 =
1

3

[(
22n−1 + 1

)
+
(
22n − 1

)
+
(
24n−1 + 1

)]
=

22n−1 + 1 + 24n−1 + 22n

3

=

(
22n−1 + 1

)
+ 22n

(
22n−1 + 1

)

=

(
22n−1 + 1

) (
22n + 1

)
3

.

Therefore, for all n ≥ 1,

J2n−1 + J2n + J4n−1 = P2J2n−1 .

Solution 2 by Ed Gray, Highland Beach, FL

The sum of two consecutive Jacobsthal numbers is a power of two since

2x − (−1)x

3
+

2x+1 − (−1)x+1

3
=

1

3

(
2x + 2x+1

)
=

1

3
(2x) (1 + 2) = 2x.

Therefore we need to prove that

(1) 2x +
(2a − (−1)a)

3
=
n(3n− 1)

2

has infinitely many solutions.

Let a be odd so that a+ 1 = 2L
Multiplying (1) by 6 gives us

(2) 6(2x) + 2a+1 + 2 = 3n(3n− 1), or

(3) 9n2 − 3n− 2a+1 − 2− 6(2x) = 0.

This is a quadratic in n whose solution is by the quadratic formula :

(4) 18n = 3 +
√

9 + 36 (6(2x) + 2a+1 + 2)

The discriminate D is given by
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(5) D2 = 81 + 36(2a+1) + 216(2x))

(6) ConsiderD = 9 + 6(2L). Recall that a + 1 = 2L

(7) D2 = 81 + 108(2L) + 36(22L)

(8) Let 108(2L) = 216(2x )

(9) 2L = 2(x+1)

(10) L = x + 1, 2L = 2x + 2 = a + 1

Then (4) becomes :

(11) 18n = 3 + 9 + 6(2L) = 12 + 6(2L)

Dividing by 6,

(12) 3n = 2 + 2L

Since 2 ≡ −1 (mod 3)

2L ≡ −1L ≡ 1 if L is even.

Letting L = 2y we obtain n =
1

3
(2 + 22y).

Solution 3 by David E. Manes, SUNY at Oneonta, Oneonta, NY

We will show if k ≥ 0 and n
2
(
22k+1 + 1

)
3

, then

Pn = J4k+3 + J2k+2 + J2k+1,

from which the result follows.

Observe that if k is a nonnegative integer, the modulo 3

2
(
22k+1 + 1

)
≡ 2

(
(−1)2k+1 + 1

)
≡ 0 (mod 3) .

Therefore, n =
2
(
22k+1 + 1

)
3

is a positive integer for each k ≥ 0. Moreover,

Pn =

2(22k+1+1)
3

[
2(22k+1 + 1)− 1

]
2

=

(
22k+1 + 1

3

)(
22k+2 + 1

)
.
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If k ≥ 0, then

J4k+3 + J2k+2 + J2k+1 =

[
(24k+3 + 1) + (22k+2 − 1)

]
+ (22k+1 + 1)

3

=
22k+2(22k+1 + 1) + (22k+1 + 1)

3

=

(
22k+1 + 1

3

)(
22k+2 + 1

)

= P
2(22k+1 + 1)

3

= Pn.

Hence, there exists infinitely many pentagonal numbers P
2(22k+1 + 1)

3

(k≥ 0), that are the

sum of three Jacobsthal numbers; namely

J4k+3 + J2k+2 + J2k+1.

Also solved by Brian D. Beasley Presbyterian College, Clinton, SC; Kee-Wai Lau,
Hong Kong, China; David Stone and John Hawkins, Southern Georgia
University, Statesborogh, GA, and the proposer.

• 5267: Proposed by D. M. Bătinetu-Giurgiu,“Matei Basarab” National College, Bucharest,
Romania, and Neculai Stanciu, “Geroge Emil Palade” General School, Buzău, Romania

Let n be a positive integer. Prove that

FnL
2
n+2

Fn+3
+
Fn+1L

2
n+3

Fn + Fn+2
+ (Ln + Ln+2)

2 ≥ 2
√

6
(√

LnLn+1

)
Ln+2,

where Fn and Ln represents the nth Fibonacci and Lucas Numbers defined by F0 = 0, F1 = 1,
and for all n ≥ 0, Fn+2 = Fn+1 + Fn; and L0 = 2, L1 = 1, and for all
n ≥ 0, Ln+2 = Ln+1 + Ln, respectively.

Solution by G. C. Greubel, Newport News, VA

The inequality to be shown valid is that of

FnL
2
n+2

Fn+3
+
Fn+1L

2
n+3

Fn + Fn+2
+ (Ln + Ln+2)

2 ≥ 2
√

6
(√

LnLn+1

)
Ln+2. (1)

Using the AM-GM inequality then it can be seen that

FnL
2
n+2

Fn+3
+
Fn+1L

2
n+3

Fn + Fn+2
≥ 2

[
FnFn+1

Fn+3Ln+1

]1/2
Ln+2Ln+3. (2)
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It can be shown that
1

3
≥
[
FnFn+1

Fn+3Ln+1

]1/2
≥ 1

4
, (3)

which is valid for n ≥ 1, for which its use in equation (2) leads to

FnL
2
n+2

Fn+3
+
Fn+1L

2
n+3

Fn + Fn+2
≥ 1

2
Ln+2Ln+3. (4)

By making use of this on the left-hand side of (1) it is now left to show that

1

2
Ln+2Ln+3 + (Ln + Ln+2)

2 ≥ 2
√

6LnLn+2Ln+2. (5)

Multiplying both sides by 2 yields

Ln+2Ln+3 + 2 (Ln + Ln+2)
2 ≥ 4

√
6LnLn+2Ln+2. (6)

It is with little difficulty to show that

Ln+2Ln+3 + 2 (Ln + Ln+2)
2 = 2L2

n+3 − 11Ln+2Ln+3 + 18L2
n+2 (7)

which, when used in (6), leads to

2L2
n+3 − 11Ln+2Ln+3 + 18L2

n+2 ≥ 4
√

6LnLn+2Ln+2. (8)

Now consider
2L2

n+3 − 11Ln+2Ln+3 + 8L2
n+2

which, when use of the AM-GM inequality is made,1 namely Ln+2 ≥ 2
√
LnLn+1, becomes

2L2
n+3 − 11Ln+2Ln+3 + 8L2

n+2 ≥ 8Ln+1Ln+2 − 11Ln+2Ln+3 + 32LnLn+1

≥ 32LnLn+1 − 22LnLn+1 − 3Ln+1Ln+2

≥ 10LnLn+1 − 3Ln+1Ln+2

≥ Ln+1 (7Ln − 3Ln+1)

≥ 7L2
n + LnLn−1

≥ Ln (Ln+2 + 5Ln) ≥ 0. (9)

From this it is then seen that, when (9) is used in (8),

2L2
n+3 − 11Ln+2Ln+3 + 18L2

n+2 =
(
2L2

n+3 − 11Ln+2Ln+3 + 8L2
n+2

)
+ 10L2

n+2

≥ 10L2
n+2

≥ 20
√
LnLn+1Ln+2. (10)
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Since this represents the left-hand side of the inequality (8) then it is seen that

20
√
LnLn+1Ln+2 ≥ 4

√
6LnLn+1Ln+2 (11)

and leads to the result 20 ≥ 4
√

6 which reduces to 5 ≥
√

6. Since this is a valid inequality the
original statement holds. For the case n = 0 equation (3) can be stated as

1

3
≥
[
FnFn+1

Fn+3Ln+1

]1/2
≥ 0. (12)

Then by following a similar pattern the statement leads to the same result.
Thus, for n ≥ 0,

FnL
2
n+2

Fn+3
+
Fn+1L

2
n+3

Fn + Fn+2
+ (Ln + Ln+2)

2 ≥ 2
√

6
(√

LnLn+1

)
Ln+2. (13)

1 It is seen that Ln+2 = Ln+1 + Ln ≥ 2
√
LnLn+1.

Also solved by Ed Gray, Highland Beach, FL, and the proposers.

• 5268: Proposed by Pedro H.O. Pantoja, IMPA, Rio de Janeiro, Brazil

Let N = 121a + a3 + 24. Determine all positive integers a for which

a) N is a perfect square.

b) N is a perfect cube.

Solution 1 by Ed Gray, Highland Beach, FL

(a) The answer to the first part of the question is that there are none, other than
the trivial solution of a = 0. We will now show why this is the case.

(1) Let 121a = (112)a = 112a = (11a)2, so

(2) N = (11a)2 + a3 + 24. Suppose N = m2, so,

(3) m2 = (11a)2 + a3 + 24. Clearly, m > (11)a. Let

(4) m = (11)a + b

(5) m2 = (11a)2 + 2b(11)a + b2. Equating (2) to (5)

(6) (11a)2 + a3 + 24 = (11a)2 + 2b(11a) + b2. Simplifying gives

(7) a3 + 24 = 2b(11)a + b2.

Note that for every positive integer a, (11)a > a3, since a(ln(11)) > 3 ln(a), dividing by 3a

gives
ln(11)

3
>

ln(a)

a
.

The maximum value of
ln(a)

a
is when its derivative equals zero, or

a · ( 1a)− ln(a)

a2
=

1− ln(a)

a2
= 0, which implies that a = e.

So the maximum value of
ln(a)

a
=

ln(e)

e
=

1

e
= 0.3678, and

ln(a)

a
is monotonically decreasing

for a > e.
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Now
ln(11)

3
= 0.7993, so (11)a > a3. We note for a = 2, the equation in (7) becomes:

32 = 242b+ b2, which is clearly impossible, and the situation only gets worse for a > 2. For
a = 1 the equation in (7) becomes:

(8) 25 = 22b+ b2 which clearly has no interger solution. So, the only solution is the trivial
one, i.e., when a = 0.

(b) The answer to the second part of the question is no; N can never be a perfect
cube. By (2) we have:

(9) N = (11)2a + a3 + 24. First, suppose that a is of the form 3y and N = m3. Then,

(10) m3 = (11)6y + 27y3 + 24, or

(11) m3 = (112y)3 + 27y3 + 24. Then,

(12) m > (11)2y. Letting m = 112y + b

(13) m3 = (11)6y + 3(11)4yb+ 3(11)2yb2 + b3. Equating (11) and (13),

(14) (11)6y + 27y3 + 24 = (11)6y + 3b(11)4y + 3b2(11)2y + b3. Canceling the term (11)6y,

(15) 27y3 + 24 = 3b(11)4y + 3b2(11)2y + b3.

As before, we show that (11)4y > 27y3 since 4y(ln(11)) > ln(27) + 3 ln(y) or

9.591y > 3.2958 + 3 ln(y) or 1 >
0.3436

y
+

0.3128 ln(y)

y
.

We have seen the maximum value of
ln y

y
= 0.3678 when y = e.

If y = e,
0.3436

2.71828
+ (0.3128)(0.3678) = 0.1264 + 0.115 = 0.241.

For y = 1, 1 > 0.3436 and the right hand side is monotonically decreasing. Notice that we
have not used the coefficient 3b, the additional term 3b2(11)2y, or b3. The smallest we can
make the right hand side is for y = b = 1, and the value is
(3)(1)(14641) + (3)(10)(121) + 1 = 132133, while the right hand side has the value of 51.

There was nothing special about the parameter y and we would get these wildly different
values on different sides of the equation for a = 3y, 3(y + 1), 3(y + 2) · · ·. By continuity any
value of a sandwiched between any of the above numbers will suffer the same fate. In
summary, there can never be an integer cube.

Solution 2 by Kee Wai Lau, Hong Kong, China

We show that for all positive integers a,N is neither a perfect square nor a perfect cube.

a) We first show that for a = 2, 3, 4, · · ·,

a3 + 24 < 11a. (1)

Clearly (1) hold for a = 2. Suppose (12) hold for a ≥ 2. Then

(k + 1)3 + 24 < 8k3 + 24 < 8(k3 + 24) < 8(11k) < 11k+1.

so (1) is true for a = k + 1 an so for a = 2, 3, 4 · · ·. Now suppose, on the contrary, that
N = n2, where n is a positive integer. Then

a3 + 24 = (n+ 11a)(n− 11a > 11a.

12



By (1), a = 1, so that n =
√

146, which is a contradiction. Thus N is never a perfect square.

b) It can be proved readily by induction that for positive integers m
N ≡ 2(mod 9), a = 3m − 2
N ≡ 3(mod 9), a = 3m − 1
N ≡ 7(mod 9), a = 3

However, the cube of a positive integer is aways congruent either to 0 or 1 or 8(mod 9). It
follows that N is never a perfect cube.

Solution 3 by David Stone and John Hawkins of Georgia Southern University,
Statesboro, GA and Chuck Garner, Rockdale Magnet School, Conyers, GA.

There are no such integers a in either (a) or (b).

When a = 1, N = 146, which is neither a square nor a cube. Now assume a ≥ 2.

For part (a), we can show that N is trapped between consecutive squares, so cannot itself be
a square.

212a < N = 112a + a3 + 24 < (11a + 1)2 = 112a + 2 · 11a + 1.

The first inequality is clear.

The second, N = 112a + a3 + 24 < (11a + 1)2 = 112a + 2 · 11a + 1 is equivalent to
a3 + 23 < 2 · 11a, which can be verified by a straightforward induction argument.

For part (b), we take advantage of the fact that a cube cannot take on many values 9.
Namely, only 0, 1 and 8. note,

mod 9, 112a ≡


1, if a ≡ 0 mod 3
4, if a ≡ 1 mod 3
7, if a ≡ 2 mod 3, and

mod 9, a3 ≡


0, if a ≡ 0 mod 3
1, if a ≡ 1 mod 3
8, if a ≡ 2 mod 3.

Thus mod 9, N = 112a + a3 + 24 ≡


1 + 0 + 6 ≡ 7, if a ≡ 0 mod 3
4 + 1 + 6 ≡ 2, if a ≡ 1 mod 3
7 + 8 + 6 ≡ 3, if a ≡ 2 mod 3

.

That is, N is congruent to 2, 3 or 7, and never congruent to 0, 1, or 8, N cannot be a cube.

Comment : Numerical evidence suggests that the power of 11 is so dominant that N also lies

between identifiable consecutive cubes m3 < N < (m+ 1)3, where m=
[
112a/3

]
.

Also solved by David E. Manes, SUNY College at Oneonta, NY, and the
proposer.

• 5269: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let {an}n≥1 be the sequence defined by

a1 = 1, a2 = 5, a2n−1 − anan−2 + 4 = 0.

13



Show that all of the terms of the sequence are integers.

Solution 1 by Ercole Suppa, Teramo, Italy

From the given recurrence we get

anan−2 = a2n−1 + 4 (1)

an+1an−1 = a2n + 4 (2)

Now subtracting (1) and (2) from each other, we find that for every n ∈ N :

anan−2 − an+1an−1 = (an−1 − an) (an−1 + an) ⇔

anan−2 − an+1an−1 = a2n−1 − a2n ⇔

an (an−2 + an) = an−1 (an+1 + an−1) ⇔

an−2 + an
an−1

=
an+1 + an−1

an
(3)

Therefore the expression
an−2 + an
an−1

is constant. From the initial conditions we obtain

an−2 + an
an−1

=
a3 + a1
a2

=
29 + 1

5
= 6⇒

an = 6an−1 − an−2, ∀n ≥ 3. (4)

By using (4) a simple induction on n show that all the terms of the sequence are integers.

Solution 2 Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State
University, San Angelo, TX

Since
a2n−1 − anan−2 + 4 = 0

for n ≥ 3, we have
anan−2 = a2n−1 + 4 ≥ 4.

Therefore, an−2 6= 0 for all n ≥ 3 and we may write the recursive formula for {an} in the form

an =
a2n−1 + 4

an−2

for all n ≥ 3, or equivalently

an+2 =
a2n+1 + 4

an
(1)

for all n ≥ 1.

When we evaluate the first six terms using (1) and the initial values a1 = 1 and a2 = 5, we
obtain

a1 = 1, a2 = 5, a3 = 29, a4 = 169, a5 = 985, and a6 = 5741.

14



These entries suggest the following alternative recursive definition for {an}:

a1 = 1, a2 = 5, and an+2 = 6an+1 − an for n ≥ 1. 2 (2)

We will establish (2) by Mathematical Induction. Let P (n) be the statement

an+2 = 6an+1 − an.

Then, the conditions

a3 =
a22 + 4

a1
= 29 = 6a2 − a1

and

a4 =
a23 + 4

a2
= 169 = 6a3 − a2

imply that P (1) and P (2) are true. If we assume that P (1) , P (2) , . . . , P (n) are true for
some n ≥ 2, then in particular, an+2 = 6an+1 − an and
an+1 = 6an − an−1. It follows that

an+3 =
a2n+2 + 4

an+1

=
(6an+1 − an)2 + 4

an+1

= 36an+1 − 12an +
a2n + 4

an+1

= 6 (6an+1 − an)− 6an +
an+1an−1
an+1

= 6an+2 − (6an − an−1)
= 6an+2 − an+1

and hence, P (n+ 1) is true also. By Mathematical Induction, P (n) is true for all n ≥ 1, i.e.,
an+2 = 6an+1 − an for all n ≥ 1.

As a result, the conditions

a1 = 1, a2 = 5, and an+2 = 6an+1 − an for n ≥ 1

and a trivial Mathematical Induction argument imply that an is an integer for all n ≥ 1.

Additionally, this new description affords us a method for finding a formula for the sequence
{an}. Using the customary technique for solving homogeneous linear difference equations, we
look for solutions of the form an = λn, with λ 6= 0. Then, the formula

an+2 = 6an+1 − an

simplifies to
λ2 = 6λ− 1

whose solutions are λ = 3± 2
√

2. The general solution is of the form

an = c1
(
3 + 2

√
2
)n

+ c2
(
3− 2

√
2
)n

for some constants c1 and c2. Further, the initial values a1 = 1 and a2 = 5 yield

c1 =
2−
√

2

4
and c2 =

2 +
√

2

4
.
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Finally, since

3± 2
√

2 =

(
2±
√

2
)2

2
,

we get

an = 2−
√

24
(
3 + 2

√
2
)n

+
2 +
√

2

4

(
3− 2

√
2
)n

=
1

4

(2−
√

2
) (2 +

√
2
)2n

2n
+
(
2 +
√

2
) (2−

√
2
)2n

2n


=

(2)
(
2 +
√

2
)2n−1

+ (2)
(
2−
√

2
)2n−1

2n+2

=

(
2 +
√

2
)2n−1

+
(
2−
√

2
)2n−1

2n+1

for all n ≥ 1.

Solution 3 by Kee-Wai Lau, Hong Kong, China

For positive integers n, let bn =
(2−

√
2)(3 + 2

√
2)n + (2 +

√
2)(3− 2

√
2)n

4
> 0. It is easy to

check that b1 = 1, b2 = 54 and for n ≥ 3, bn = bn−1 − bn−2. Hence bn are always positive
integers.

Using the equation anan−2 = a2n−1 + 4, we prove readily by induction that

an =
(2−

√
2)(3 + 2

√
2)n + (2 +

√
2)(3− 2

√
2)n

4
as well.

Thus, an = bn are positive integers.

Editor’s comment: David Stone and John Hawkins of Georgia Southern University in
Statesboro, GA also solved the problem by generating a few terms of the given sequence, and
then finding a recursive definition for these initial terms that was different from the given
recursion in the statement of the problem. Then, using induction, they showed that the new
recursive definition satisfied the recursion in the statement of the problem. Essentially, their
solution path was that used in Solution 1 above.
They also commented that the problem can also be solved as it is in Solution 3 above, where
one finds an explicit formula for the Fibonacci sequence. They continued on the following way:

Comment 1: Other Fibonacci-like properties can be derived. For instance, the ratio of

consecutive terms,
an+1

an
approaches α = 3 + 2

√
2 ≈ 5.8284.

Comment 2: In the proposed problem the true nature of the {an}n≥1| was cleverly disguised

by an unfamiliar recurrence relation: an =
a2n−1 + 4

an−2
. Perhaps there is a similar relation fot he

Fibonacci numbers.

Comment 3: The sequence {an}n≥1| is A001653 at the Online Encyclopedia of Integer
Sequences. Several interesting properties and applications are given: the recurrence relation
an = 6an−1]−an−2

is given. We do not see (in this encyclopedia) the recurrence relation that
was given in the problem statement (so perhaps it is heretofore unknown).
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Also solved by Arkady Alt, San Jose, CA; Bruno Salgueiro Fanego, Viveiro, Lugo,
Spain; Ed Gray, Highland Beach, FL; G. C. Greubel, Newport News, VA;
Kenneth Korbin, New York, NY; Carl Libis and Junhua Wu, Lane College,
Jackson, TN; Carl Libis (a second solution), Lane College, Jackson, TN; David E.
Manes, SUNY College at Oneonta, NY; Angel Plaza, Universidad de Las Palmas
de Gran Canaria, Spain, and the proposer.

• 5270: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

Let k ≥ 1 be an integer. Calculate∫ 1

0

∫ 1

0
(x+ y)k (−1)

⌊
1
x
− 1

y

⌋
dxdy,

wherebxc denotes the floor of x.

Solution 1 by Angel Plaza, Universidad de Las Palmas de Gran Canaria, Spain.

For any point (x, y) ∈ [0, 1], also (y, x) ∈ [0, 1]. Note that for (x, y) such that
1

x
− 1

y
∈ (m,m+ 1) with m ∈, then

⌊
1

x
− 1

y

⌋
= m, but for the corresponding point (y, x) also

in the domain [0, 1] we have that
1

y
− 1

x
∈ (−(m+ 1),−m) and therefore

⌊
1

y
− 1

x

⌋
= −(m+ 1).

Since (−1)m = −(−1)−(m+1) and (x+ y)k = (y + x)k the proposed integral is 0.

Solution 2 by Perfetti Paolo, Department of Mathematics, “Tor Vergata”
University, Rome, Italy

Let A = {(x, y): 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, y ≥ x} and B = {(x, y): 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, y ≤ x}.
By doing (x, y)→ (y, x) we get∫ ∫

A
(x+ y)k(−1)

b 1
x
− 1

y
c
dxdy =

∫ ∫
B

(y + x)k(−1)
b 1
y
− 1

x
c
dxdy.

Moreover because of bxc+ b−xc = −1 we get∫ ∫
B

(x+ y)k(−1)
−1−b 1

x
− 1

y
c
dxdy = −

∫ ∫
B

(x+ y)k(−1)
b 1
x
− 1

y
c
,

and then

∫ 1

0

∫ 1

0
(x+ y)k(−1)

b 1
x
− 1

y
c
dxdy =

∫ ∫
A

(x+ y)k(−1)
b 1
x
− 1

y
c
dxdy +

∫ ∫
B

(x+ y)k(−1)
b 1
x
− 1

y
c
dxdy

= −
∫ ∫

B
(x+ y)k(−1)

b 1
x
− 1

y
c
dxdy +

∫ ∫
B

(x+ y)k(−1)
b 1
x
− 1

y
c
dxdy = 0.

Solution 3 by the proposer

The integral equals 0. We have, based on symmetry reasons, that∫ 1

0

∫ 1

0
x (x+ y)k−1 (−1)

⌊
1
x
− 1

y

⌋
dxdy =

∫ 1

0

∫ 1

0
y(x+ y)k−1 (−1)

⌊
1
y
− 1

x

⌋
dxdy.

On the other hand, for all real numbers x that are not integers, one has

bxc+ b−xc = −1.
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It follows that,∫ 1

0

∫ 1

0
x (x+ y)k−1 (−1)

⌊
1
x
− 1

y

⌋
dxdy =

∫ 1

0

∫ 1

0
y(x+ y)k−1 (−1)

⌊
1
y
− 1

x

⌋
dxdy

= −
∫ 1

0

∫ 1

0
y(x+ y)k−1 (−1)

−
⌊

1
x
− 1

y

⌋
dxdy

= −
∫ 1

0

∫ 1

0
y(x+ y)k−1 (−1)

⌊
1
x
− 1

y

⌋
dxdy,

and the result follows.

Also solved by Paul M. Harms, North Newton, KS, and by Ed Gray, Highland
Beach, FL.

Mea Culpa; once again

My sincerest apologies to David Stone and to John Hawkins of Georgia Southern
University, for inadvertently forgetting to mention that they had correctly solved
problems 5260, 5261, and 5262; and also to Brian D. Beasley, of Presbyterian
College in Clinton, South Carolina for his solution to 5262.
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