
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
March 15, 2018

• 5475: Proposed by Kenneth Korbin, New York, NY

Given positive integers a, b, c and d such that


a+ b = 14

√
ab− 48,

b+ c = 14
√
bc− 48,

c+ d = 14
√
cd− 48,

with a < b < c < d. Express the values of b, c, and d in terms of a.

• 5476: Proposed by Ed Gray, Highland Beach, FL

Find all triangles with integer area and perimeter that are numerically equal.

• 5477: Proposed by Daniel Sitaru, “Theodor Costescu” National Economic College,
Drobeta Turnu-Sevrin, Meredinti, Romania

Compute:

L = lim
n→∞

(
lnn+ lim

x→0

1−
√

1 + x2 3
√

1 + x2 · . . . · n
√

1 + x2

x2

)
.

• 5478: Proposed by D. M. Btinetu-Giurgiu, “Matei Basarab” National Collge, Bucharest,
Romania and Neculai Stanciu, “George Emil Palade” Secondary School, Buzu, Romania

Compute: ∫ π/2

0
cos2 x

(
sinx sin2

(π
2

cosx
)

+ cosx sin2
(π

2
sinx

))
dx.

• 5479: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let f : [0, 1]→ < be a continuous convex function. Prove that

2

5

∫ 1/3

0
f(t)dt+

3

10

∫ 2/3

0
f(t)dt ≥ 5

8

∫ 8/15

0
f(t)dt.
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• 5480: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let n ≥ 1 be a nonnegative integer. Prove that in C[0, 2π]

span{1, sinx, sin(2x), . . . , sin(nx)} = span{1, sinx, sin2 x, . . . , sinn x}

if and only if n = 1.

We mention that span{v1, v2, . . . , vk} =
k∑
j=1

ajvj , aj ∈ <, j = 1, . . . , k, denotes the set of

all linear combinations with v1, v2, . . . , vk.

Solutions

• 5457: Proposed by Kenneth Korbin, New York, NY

Given angle A with sinA =
12

13
. A circle with radius 1 and a circle with radius x are each

tangent to both sides of the angle. The circles are also tangent to each other. Find x.

Solution by Anthony J. Bevelacqua, University of North Dakota, Grand
Forks, ND

The angle bisector passes through the centers C and D of the two circles, and the radii
from the centers to the points of tangency P and Q of the circles with a side of the angle
make right angles 6 CPO and 6 DQO. Thus we have a pair of similar right triangles as
follows.

O
P Q

C

D

Here 6 DOQ = A/2 and |CD| = 1 + x.

Suppose x > 1. Then |CP | = 1 and |DQ| = x. We have

sin(A/2) =
|CP |
|CO|

=
1

|CO|
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so |CO| sin(A/2) = 1. And

sin(A/2) =
|DQ|
|DO|

=
|DQ|

|DC|+ |CO|
=

x

1 + x+ |CO|
so

sin(A/2) + x sin(A/2) + |CO| sin(A/2) = x.

Thus

x =
1 + sin(A/2)

1− sin(A/2)
.

Now sinA = 12/13 so cosA = ±
√

1− sin2A = ±5/13, and thus

sin(A/2) =

√
1− cos(A)

2
= 2
√

13/13 or 3
√

13/13.

Therefore

x =
13 + 2

√
13

13− 2
√

13
≈ 3.491 or x =

13 + 3
√

13

13− 3
√

13
≈ 10.908.

If x < 1 then scale the plane by 1/x and appeal to the last paragraph. This gives two
more values of x:

x =
13− 2

√
13

13 + 2
√

13
≈ 0.286 or x =

13− 3
√

13

13 + 3
√

13
≈ 0.092.

Editor′s Comment : David Stone and John Hawkins of Georgia Southern
University, Statesboro, GA generalized the problem. First, they proved the
following lemma:

Let A be an angle, 0 < A < π. Suppose a circle C1 of radius r = 1 is inscribed in A and
a larger circle C2 of radius R = x is also inscribed in A, with C2 tangent to C1. Then

x =
1 + sinα

1− sinα
, α =

1

2
A.

They proved this lemma by showing that it held when angle A is acute and also obtuse.
Then they magnified the entire figure by a factor of r, so that the smaller circle C1 has a
radius of r and the larger circle C2 has a radius of R = rx, and this allowed them to
generalize the lemma: Let A be an angle, 0 < A < π. Suppose that two circles, circle C1

of radius r and C2 of radius R are also inscribed in A, with C2 tangent to C1. Then

R =
1 + sinα

1− sinα
r, α =

1

2
A.

They went on to say that “with the result stated in this way, we see the co-dependency
between r and R − if we know one we know the other.” Applying the lemma they went
on to solve the problem.

In conclusion they stated the following:

We can apply this result in several interesting ways. For example, as a Corollary, if

A = 60◦, then sinα = sin 30◦ =
1

2
. Let circle C0 of radius 1 be inscribed in A. Then we

have a larger inscribed circle C1 tangent to C0 which has radius

R1 =
1 + sinα

1− sinα
· 1 =

1 + 1/2

1− 1/2
= 3.
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And in continuing on in this manner we have a larger inscribed circle C2 tangent to C1

which has radius

R2 =
1 + sinα

1− sinα
· 3 = 32.

There is an infinite sequence of expanding inscribed pairwise tangent circles having radii
Rn = 3n, n ≥ 0.

Not to be outdone, we have a smaller inscribed circle C−1, tangent to C0 which has

radius R−1 =
1− sinα

1 + sinα
· 1 =

1

3

Continuing, there is an infinite sequence of shrinking inscribed pairwise tangent circles of

radii R−n =
1

3n
, n ≥ 0.

We could carry out this construction for any angle A, (but the numbers won’t work out
so nicely.)

In summary they stated: Given values for R and r, we can solve the Corollary equation
for α and then find A. That is, given tangent circles of radii r and R, with r < R, we

can compute the angle A which will “circumscribe” the circles: A = 2 sin−1
(
R− r
R+ r

)
.

Also solved by Arkady Alt, San Jose, CA; Charles Burnette, Academia
Sinica, Taipei, Taiwan; Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray,
Highland Beach, FL; Paul M. Harms, North Newton, KS; David A. Huckaby,
Angelo State University, San Angelo TX; Kee-Wai, Lau, Hong Kong, China;
David E. Manes, Oneonta, NY; Charles McCracken, Dayton, OH; Vijaya
Prasad, Nalluri, India; Trey Smith, Angelo State University, San Angelo,
TX; Ioannis D. Sfikas, National and Kapodistrian University of Athens,
Greece; Albert Stadler, Herrliberg, Switzerland; David Stone and John
Hawkins, Georgia Southern University, Statesboro, GA, and the proposer.

• 5458: Proposed by Michal Kremzer, Gliwice, Silesia, Poland

Find two pairs of integers (a, b) from the set {1, 2, 3, 4, 5, 6, 7, 8, 9} such that for all
positive integers n, the number

c = 537aaa b . . . b︸ ︷︷ ︸ 18403

is composite, where there are 2n numbers b between a and 1 in the string above.

Solution 1 by Bruno Salgueiro Fanego, Viveiro, Spain

Note that

c = 18403 + b · 105 · 1...1︸︷︷︸
2n times

+a · 102n+5 · 111 + 537 · 102n+8

= 18403 + b00000 · 1...1︸︷︷︸
2n times

+102n+5 · 537aaa.

Thus, if (a, b) ∈ {(2, 7), (9, 7)}, since 18403 ≡7 0, 700000 ≡7 0, 537222 ≡7 0, and
537999 ≡7 0, where ≡7 denotes congruence modulo 7, then

c ≡7 0 + 0 · 1 1...1︸︷︷︸
2n times

+102n+5 · 0 ≡7 0,
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so c is divisible by 7 and, hence composite.

Solution 2 by Ed Gray, Highland Beach, FL

The two pairs which guarantee that c = 537aaa bbbbbb . . . bb︸ ︷︷ ︸
2n times

18403 is always composite

are: a = 2, b = 7 and a = 9, b = 7. We will show that with these integers, c is always
divisible by 7.

A test for divisibility by 7 is as follows: double the last digit and subtract it from the
remaining truncated number. If the result is divisible by 7, then so was the original
number. As a simple example, consider the number 826. Double the last digit which
gives 12, and subtract it from the leading truncated number, which is 82. Then
82− 12 = 70, which is divisible by 7, so 826 is divisible by 7.

Now consider our number. It’s last digit is 3, and we double it to get 6. Subtracting 6
from the “truncated” number, we have 537aaa bbbbbb . . . bb︸ ︷︷ ︸

2n times

1834.

We note that 1834 is divisible by 7; that if we let b = 7, every b will be divisible by 7. It
remains to find 2 values for a such that 537aaa is divisible by 7. If a = 2, we have the
number 537222 = 7 · 76746, and if a = 9, we have the number 537999 = 7 · 76857. This
concludes the proof.

Solution 3 by David E. Manes, Oneonta, NY

Two pairs of integers (a, b) that satisfy the problem are (2, 7) and (9, b) where b is any
nonnegative integer. For the pair (2, 7), the integer c is always divisible by the prime 7
and for the pair (9, b), c is always divisible by 11.

Given: N is a positive integer and N = an10n + an−110n−1 + · · ·+ a110 + a0. Then

N ≡ (100a2 + 10a1 + a0)− (100a5 + 10a4 + a3) + (100a8 + 10a7 + a6)− · · · (mod 7).

For this case, N is divisible by 7 if and only if N ≡ 0 (mod 7). Moreover,

N ≡ (−1)nan + (−1)n−1an−1 + · · · − a1 + a0 (mod 11)

and N is divisible by 11 if and only if N ≡ 0 (mod 11). Let n be a positive integer and
define

Cn = 537aaab . . . b18403

where the number of digits b is 2n. If a = 2 and b = 7, then C1 = 5372227718403,
C2 = 537222777718403 and C3 = 53722277777718403. Therefore, modulo 7,

C1 ≡ 403− 718 + 227− 372 + 5 ≡ 4− 4 + 3− 1 + 5 ≡ 0 (mod 7),

C2 ≡ 403− 718 + 777− 222 + 537 ≡ 4− 4 + 0− 5 + 5 ≡ 0 (mod 7),

C3 ≡ 403− 718 + 777− 277 + 722− 53 ≡ 4− 4 + 0− 4 + 1− 4 ≡ 0 (mod 7).

Thus, C1, C2 and C3 are all divisible by 7 and hence, each one is composite.
Furthermore, C3n+1 ≡ C1 (mod 7), C3n+2 ≡ C2 (mod 7) and C3n ≡ C3 (mod 7) for all
positive integers n. Hence, if a = 2 and b = 7, then Cn is always composite since all of
these integers are divisible by 7.
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If a = 9 and b is any nonnegative integer, then the number of digits in Cn is always odd
and

Cn ≡ 5− 3 + 7− a+ a− a+ b− b+ · · ·+ b− b+ 1− 8 + 4− 0 + 3

≡ 9− a (mod 11).

Therefore, for all positive integers n, the prime 11 is a divisor of Cn if and only if a = 9
and the value of b is superfluous. Hence, Cn is always composite.

Solution 4 Anthony J. Bevelacqu, University of North Dakota, Grand Forks,
ND

We have

c = 18403 + 105 · b · (
2n︷ ︸︸ ︷

1 · · · 1) + 105+2n · (a · 111 + 103 · 537).

Note that c > 18403 = 7 · 11 · 239.

Since 10 ≡ −1 mod 11 we have (

2n︷ ︸︸ ︷
1 · · · 1) ≡ 0 mod 11 for any n and so

c ≡ −(a+ 2) mod 11. Thus c will be divisible by 11 when a = 9 for any choice of the
digit b and for any non-negative n.

Now if b = 7 we have c ≡ 105+2n(6a+ 2) mod 7. Thus c will be divisible by 7 when a = 2
for any number of digits b = 7.

Therefore c will be composite when (a, b) = (9, b) for any choice of the digit b and when
(a, b) = (2, 7).

Editor′s comments : Most of the other solvers of this problem noticed that an even
number of b digits forces the number formed by them alone, to be divisible by 11.
Hence, they found the value a = 9 makes the number 537aaa18403 divisible by 11, and
so (9, any digit) solves the problem. The solutions listed above pick up another ordered
pair. But then The Honor Students at Ashland University in Ashland, Ohio
upped the ante by finding additional ordered pairs to (9, any other digit). Using
MAPLE they found 6 pairs of values for (a, b) that satisfy the problem. They checked
these values for all positive integers n ≤ 25. Letting c = 537aaa b . . . b︸ ︷︷ ︸ 18403 they found

that: 

(a, b) c is divisible by
(2, 7) 7
(4, 1) 29
(4, 5) 13
(6, 5) 17
(6, 9) 59
(7, 5) 89


David Stone and John Hawkins of Georgia Southern University, Statesboro,
GA found all of the solutions in the above table and an additional one (4, 8), which is
divisible by 13. They also found that if b = 0 were allowed, then (2, 0) is divisible by 7,
for all n ≥ 0. With respect to the pair (4, 8) they stated that it seemingly has a unique
property. If cn = 537aaab....b18403 as defined in the problem, then no single prime
divides all cn, but 7 divides all c3k, 3 divides all c3k+1, and and 13 divides all c3k+2.

Also solved by Brian D. Beasley, Presbyterian College, Clinton, SC; Pat
Costello, Eastern Kentucky University, Richmond, KY; Kee-Wai Lau, Hong
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Kong, China; Zachary Morgan, student at Eastern Kentucky University,
Richmond, KY; Nathan Russell, Eastern Kentucky University, Richmond,
KY; Albert Stadler, Herrliberg, Switzerland; David Stone and John
Hawkins, Georgia Southern University, Statesboro, GA, and the proposer.

• 5459: Proposed by Arsalan Wares, Valdosta State University, Valdosta, GA

Triangle ABC is an arbitrary acute triangle. Points X,Y , and Z are midpoints of three
sides of 4ABC. Line segments XD and XE are perpendiculars drawn from point X to
two of the sides of 4ABC. Line segments Y F and Y G are perpendiculars drawn from
point Y to two of the sides of 4ABC. Line segments ZJ and ZH are perpendiculars
drawn from point Z to two of the sides of 4ABC. Moreover,
P = ZJ ∩ FY, Q = ZH ∩DX, and R = Y G ∩XE. Three of the triangles, and three of
the quadrilaterals in the figure are shaded. If the sum of the areas of the three shaded
triangles is 5, find the sum of the areas of the three shaded quadrilaterals.
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Solution 1 by David A. Huckaby, Angelo State University, San Angelo, TX

Let a be the area of triangle ABC. Since Y and Z are the midpoints of AC and AB,
respectively, 4AY Z is similar to 4ACB with a scale factor of 2, so that the area of
4AY Z is 1

4a. Similarly, the areas of 4BXZ and 4CXY are each 1
4a, and therefore the

area of 4XY Z is also 1
4a.

The area of rectangle GY ZH is 1
2a, since it has the same height and base as 4XY Z.

Similarly, the areas of rectangles FY XD and EXZJ are each 1
2a.

Consider the sum of the areas of these three rectangles:

area of three rectangles = area of six outer white triangles

+2(area of three pink triangles) + 3(area of 4XY Z),

that is,

3(
1

2
a) = area of six outer white triangles + 2(5) + 3(

1

4
a),

so that the sum of the areas of the six outer white triangles is 3
4a− 10.

Now consider the sum of the areas of triangles AY Z, BXZ, and CXY :

area of triangles AY Z, BXZ, and CXY = area of six outer white triangles

+area of three pink triangles + area of three blue quadrilaterals,

that is,

3(
1

4
a) =

[
3

4
a− 10

]
+ 5 + area of three blue quadrilaterals,

so that the sum of the areas of the three blue quadrilaterals is 5.
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Solution 2 by Andrea Fanchini, Cantú, Italy

We use barycentric coordinates and the usual Conway’s notations with reference to the
triangle ABC. Then we have X(0 : 1 : 1), Y (1 : 0 : 1), Z(1 : 1 : 0).
• Coordinates of points D,E, F,G,H, J .
Line segments XD and XE perpendiculars drawn from point X to two of the sides of
4ABC are

XAB∞⊥ : (c2 + SA)x− SBy + SBz = 0, XAC∞⊥ : (b2 + SA)x+ SCy − SCz = 0

therefore the points D,E have coordinates

D = XAB∞⊥ ∩AB = (SB : c2 + SA : 0), E = XAC∞⊥ ∩AC = (SC : 0 : b2 + SA)

then cyclically

G = (0 : SC : a2+SB), J = (b2+SC : 0 : SA), F = (c2+SB : SA : 0), H = (0 : a2+SC : SB)

• Coordinates of point P,Q,R.
Coordinates of point P are

P = ZAC∞⊥ ∩ Y AB∞⊥ = (2S2 − a2SA : SASC : SASB)

then cyclically

Q = (SBSC : 2S2 − b2SB : SASB), R = (SBSC : SASC : 2S2 − c2SC)

• Areas of the three shaded triangles.
Areas of the three shaded triangles are

[PZY ] =
SBSC
4S2

[ABC], [QZX] =
SASC
4S2

[ABC], [RXY ] =
SASB
4S2

[ABC]

If the sum of the areas of the three shaded triangles is 5, we have

[PZY ] + [QZX] + [RXY ] =
[ABC]

4
, ⇒ [ABC] = 20

• Areas of the three shaded quadrilaterals.
Area of the quadrilateral [AFPJ ] is given from [AFJ ] + [PFJ ] so

[AFJ ] =
S2
A

4b2c2
[ABC], [PFJ ] =

S2
ASBSC

4b2c2S2
[ABC], ⇒ [AFPJ ] =

S2
A(S2 + SBSC)

4b2c2S2
[ABC]

then cyclically

[BDQH] =
S2
B(S2 + SASC)

4a2c2S2
[ABC], [CERG] =

S2
C(S2 + SASB)

4a2b2S2
[ABC]

therefore

[AFPJ ]+[BDQH]+[CERG] =
a2S2

A(S2 + SBSC) + b2S2
B(S2 + SASC) + c2S2

C(S2 + SASB)

4a2b2c2S2
[ABC]

but [ABC] = 20 then

[AFPJ ]+[BDQH]+[CERG] = 5
S2(a2S2

A + b2S2
B + c2S2

C) + SASBSC(a2SA + b2SB + c2SC)

a2b2c2S2
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now a2SA + b2SB + c2SC = 2S2 then

[AFPJ ] + [BDQH] + [CERG] = 5
a2S2

A + b2S2
B + c2S2

C + 2SASBSC
a2b2c2

finally a2S2
A + b2S2

B + c2S2
C + 2SASBSC = a2b2c2 so we have that also

[AFPJ ] + [BDQH] + [CERG] = 5.

Solution 3 by Nikos Kalapodis, Patras, Greece

We denote with [S] the area of shape S.
Let XL, YM and ZN be the heights of triangle XY Z and K its orthocenter.
Then the quadrilaterals PZKY , QXKZ and RYKX are parallelograms.
It follows that [PZY ] = [KZY ], [QZX] = [KZX], and [RXY ] = [KXY ].
Therefore [PZY ] + [QZX] + [RXY ] = [KZY ] + [KZX] + [KXY ] = [XY Z] (1).
Furthermore since the triangles AZY , BXZ, CY X and XY Z are congruent with
orthocenters P , Q, R and K respectively, it easily follows that [AFPJ ] = [XNKM ],
[BHQD] = [Y LKN ] and [CERG] = [ZMKL].
Therefore
[AFPJ ] + [BHQD] + [CERG] = [XNKM ] + [Y LKN ] + [ZMKL] = [XY Z] (2).
From (1) and (2) we get that
[AFPZ] + [BHQD] + [CERG] = [PZY ] + [QZX] + [RXY ] = 5.

Solution 4 by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain

Triangles ∆AZY , ∆ZBX and ∆Y XC are equal. Also the sum of the areas of the saded
triangles is equal to the area of for example ∆AZY . Also the sum of the areas of the
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three shaded quadrilaterals is equal to the area of one of the triangles, for example
∆AZY . Therefore, the requested sum is equal to 5.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland
Beach, FL; Kee-Wai, Lau, Hong Kong, China; David E. Manes, Oneonta,
NY; Sachit Misra, Nelhi, India; Neculai Stanciu,“George Emil Palade”
School, Buzău, Romania and Titu Zvonaru, Comănesti, Romania; David
Stone and John Hawkins, Georgia Southern University, Statesboro, GA and
the proposer.

• 5460: Proposed by Ángle Plaza,Universidad de Las Palmas de Gran Canaria, Spain

If a, b > 0 and x, y > 0 then prove that

a3

ax+ by
+

b3

bx+ ay
≥ a2 + b2

x+ y
.

Solution 1 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo,TX

Since a, b, x, y > 0, we have

a3 (bx+ ay) (x+ y) + b3 (ax+ by) (x+ y)−
(
a2 + b2

)
(ax+ by) (bx+ ay)

= a2 (bx+ ay) [a (x+ y)− (ax+ by)] + b2 (ax+ by) [b (x+ y)− (bx+ ay)]

= a2 (a− b) y (bx+ ay) + b2 (b− a) y (ax+ by)

= (a− b) y
[
a2 (bx+ ay)− b2 (ax+ by)

]
= (a− b) y

[
ab (a− b)x+

(
a3 − b3

)
y
]

= (a− b)2 y
[
abx+

(
a2 + ab+ b2

)
y
]

≥ 0, (1)

with equality if and only if a = b.

Since a, b, x, y > 0, we need only to divide (1) by the positive quantity
(ax+ by) (bx+ ay) (x+ y) and to re-arrange terms to obtain the desired inequality.
Further, equality is attained if and only if a = b.

Solution 2 by Henry Ricardo, Westchester Area Math Circle, NY

Using the Engel form of the Cauchy-Schwarz inequality (or Bergström’s inequality) and
the AGM inequality, we see that

a3

ax+ by
+

b3

bx+ ay
=

a4

a2x+ aby
+

b4

b2x+ aby

≥ (a2 + b2)2

(a2 + b2)x+ 2aby

≥ (a2 + b2)2

(a2 + b2)x+ (a2 + b2)y
=

a2 + b2

x+ y
.

Solution 3 by Anna Valkova Tomova, Varna, Bulgaria
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We move the expression to the left of the right side of the inequality. Now we have to
prove that the new left part is non-negative. Again we will use the capabilities of the
mathematical site <http://www.worframalpha.com> to examine the transformed look
of this new left-hand side of the inequality.

a3

ax+ by
+

b3

bx+ ay
− a2 + b2

x+ b

=
y(a4y + a3bx− a3by − 2a2b2x+ ab3x− ab2y + b4y)

(x+ y)(ay + bx)(ax+ by)
.

=
y(a− b)2(a2y + abx+ aby + b2y)

(x+ y)ay + bx)(ax+ by)
.

Since the numbers involved in the expression are conditionally positive, we have proved
the inequality because the equivalent expression is positive too.

Conclusion: The application of information technology enhances the quality of education
in mathematics in all of its stages of study. Of course, it should be checked at every
stage so as not to allow ridiculous errors. In this sense, “E-Mathematics” does not
replace the classic, it continues development with new, more efficient vehicles.

Editor′s Comments : Brian Bradie of Christopher Newport University in
Newport News VA stated that this problem is a generalization of two inequalities
that appeared in Problem B-1201 in the February 2017 issue of the Fibonacci Quarterly:

a3

aFn + bFn+1
+

b3

bFn + aFn+1
≥ a2 + b2

Fn+2

a3

aLn + bLn+1
+

b3

bLn + aLn+1
≥ a2 + b2

Ln+2

Three other generalizations of this problem were made by D.M.Bătinetu-Giurgiu of
the “Matei Basarab” National College in Bucharest, Romania.

1. A generalization with “two variables:”

If m ≥ 0 and a, b, x, y > 0, then
am+2

(ax+ by)m
+

bm+2

(bx+ ay)m
≥ a2 + b2

(x+ y)m
.

Proof:

am+2

(ax+ by)m
+

bm+2

(bx+ ay)m
=

a2m+2

(a2x+ aby)m
+

b2m+2

(b2x+ aby)m

=
(a2)m+1

(a2x+ aby)m
+

(b2)m+1

(b2x+ aby)m

J.Radon︷︸︸︷
≥ (a2 + b2)m+1

(a2 + b2)x+ 2aby)m

AM≥GM︷︸︸︷
≥ (a2 + b2)m+1

((a2 + b2)x+ (a2 + b2)y)m
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=
(a2 + b2)m+1

(a2 + b2)m(x+ y)m
=

a2 + b2

(x+ y)m
. Q.E.D.

Corollary 1. If m = 1, then we obtain the problem 5460.

2. A generalization with “three variables:”

If m ≥ 0 and a, b, c, x, y, z > 0, then

am+2

(ax+ by + cz)m
+

bm+2

(bx+ cy + az)m
+

cm+2

(cx+ ay + bz)m
≥ a2 + b2 + c2

(x+ y + z)m
.

Proof:

am+2

(ax+ by + cz)m
+

bm+2

(bx+ cy + az)m
+.

cm+2

(cx+ ay + bz)m

=
(a2)m+1

(a2x+ aby + acz)m
+

(b2)m+1

(b2x+ bcy + abz)m
+

(c2)m+1

(c2x+ acy + bcz)m

J.Radon︷︸︸︷
≥ (a2 + b2 + c2)m+1

((a2 + b2 + c2)x+ (ab+ bc+ ca)y + (bc+ ca+ ab)z)m

≥ (a2 + b2 + c2)m+1

(a2 + b2 + c2)m(x+ y + z)m
=

a2 + b2 + c2

(x+ y + z)m
, Q.E.D.

In the last inequality we are utilizing the fact that a2 + b2 + c2 ≥ ab+ bc+ ca where
a, b, c > 0.

3. A generalization with “n variables:”

If t, x, y, ak > 0, n ∈ N,n ≥ 2, n ∈ {1, 2, . . . , n} such that

t

n∑
t=1

a2k ≥
n∑
k=1

akak+1, an+1 = a1, then

n∑
k=1

a3k
xak + yak+1

≥ 1

x+ ty

n∑
k=1

a2k.

Proof:

n∑
k=1

a3k
xak + yak+1

=
n∑
k=1

(a2k)
2

xa2k + yakak+1

Bergstrom︷︸︸︷
≥

(
n∑
k=1

a2k

)2

n∑
k=1

(xa2k + yakak+1)

13



(
n∑
k=1

a2k

)2

x
n∑
k=1

a2k + y
n∑
k=1

akak+1

=

(
n∑
k=1

a2k

)2

x
n∑
k=1

a2k + ty
n∑
k=1

a2k

=
1

x+ ty

n∑
k=1

a2k, Q.E.D.

Also solved by Arkady Alt (3 solutions), San Jose, CA; Bruno Salgueiro
Fanego Viveiro, Spain; D.M.Bătinetu-Giurgiu of the “Matei Basarab”
National College in Bucharest, Romania; D.M.Bătinetu-Giurgiu of the
“Matei Basarab” National College in Bucharest, Romania with Neculai
Stanciu, “George Emil Palade” School, Buzău, Romania; Brian Bradie,
Christopher Newport University, Newport News, VA; Ed Gray, Highland
Beach, FL; Paul M. Harms, North Newton, KS; Kee-Wai, Lau, Hong Kong,
China; Nikos Kalapodis, Patras, Greece; Moti Levy, Rehovot, Israel; David
E. Manes, Oneonta, NY; Paolo Perfetti, Department of Mathematics, Tor
Vergata University, Rome, Italy; Ioannis D. Sfikas, National and
Kapodistrian University of Athens, Greece; Albert Stadler, Herrliberg,
Switzerland; Neculai Stanciu, “George Emil Palade” School in Buzau,
Romanina with Titu Zvonaru of Comănesti, Romania; and the proposer.

• 5461: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Compute the following sum:
∞∑
n=1

cos (2n− 1)

(2n− 1)2
.

Solution 1 by Brian Bradie, Christopher Newport University, Newport, VA

Consider the function f(x) =
π

2
− x on the interval [0, π]. Because

2

π

∫ π

0

(π
2
− x
)
dx = 0

and, for positive integer n,

2

π

∫ π

0

(π
2
− x
)

cosnx dx =

{ 4

n2π
, n odd

0, n even

it follows that the Fourier cosine series for f is

4

π

∞∑
n=1

cos(2n− 1)x

(2n− 1)2
.

The function f is continuous at x = 1, so

f(1) =
4

π

∞∑
n=1

cos(2n− 1)

(2n− 1)2
;

14



therefore,
∞∑
n=1

cos(2n− 1)

(2n− 1)2
=
π

4
f(1) =

π

4

(π
2
− 1
)
.

Solution 2 by Ed Gray, Highland Beach, FL

Many of these infinite series can be solved by finding a function whose Fourier series
expansion results in the given series. The series at hand reprsents an even function so
suitable candidates are functions like f(x) = x2, f(x) = |x|, etc. A perusal of some
functions reveals that the function f(x) = |x|, π < x < π, seems just was we need.

The expression is:

1. f(x) =
π

2
− 4

π

∞∑
k≥1,odd

cos(kx)

k2
.

Since the sum involves odd terms only, we let k = 2n− 1. Further, we eliminate x by
letting x = 1.(Since an even function, x = −1 would do just as well.) In either case,
f(1) = f(−1) = |1| = 1 and equation (1) becomes:

2. 1 =
π

2
− 4

π

∞∑
n=1

cos(2n− 1)

(2n− 1)2
, or

3.
4

π

∞∑
n=1

cos(2n− 1)

(2n− 1)2
=
π

2
− 1.

Multiplying by
π

4
.

4.

∞∑
n=1

cos(2n− 1)

(2n− 1)2
=
π2

8
− π

4
.

Solution 3 by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy

∞∑
n=1

cos(2n− 1)

(2n− 1)2
=

1

2

∞∑
n=1

(ei(2n−1) + e−i(2n−1))

∫ 1

0
t2n−2dt

∫ 1

0
u2n−2du

=
e−i

2

∫ 1

0

dt

t2

∫ 1

0

du

u2

∞∑
n=1

(tuei)2k +
ei

2

∫ 1

0

dt

t2

∫ 1

0

du

u2

∞∑
n=1

(tue−i)2k

=
e−i

2

∫ 1

0
dt

∫ 1

0
du

e2i

1− (tu)2e2i
+
ei

2

∫ 1

0
dt

∫ 1

0
du

e−2i

1− (tu)2e−2i
.

The change x = tu, y = u yields

ei

2

∫ 1

0

dy

y

∫ y

0
dx

1

1− x2e2i
+
e−i

2

∫ 1

0

dy

y

∫ y

0
dx

1

1− x2e−2i

15



=
ei

4

∫ 1

0

dy

y

∫ y

0
dx

(
1

1− xei
+ 11 + xei

)
+
e−i

4

∫ 1

0

dy

y

∫ y

0
dx

(
1

1− xe−i
+

1

1 + xe−i

)

=
1

4

∫ 1

0

dy

y

[
Ln(1− xei

]∣∣∣0
y
+

1

4

∫ 1

0

dy

y

[
Ln(1 + xei

]∣∣∣y
0

=
1

4

∫ 1

0

dy

y

[
Ln(1− xe−i

]∣∣∣0
y
+

1

4

∫ 1

0

dy

y

[
Ln(1 + xe−i

]∣∣∣y
0

=
−1

4

∫ 1

0

Ln(1− yei)
y

dy +
1

4

∫ 1

0

Ln(1 + yei)

y
dy +

−1

4

∫ 1

0

Ln(1− ye−i)
y

dy +
1

4

∫ 1

0

Ln(1 + ye−i)

y
dy

=
−1

4

∫ ei

0

Ln(1− y)

y
dy +

1

4

∫ −ei
0

Ln(1− y)

y
dy +

−1

4

∫ e−i

0

Ln(1− y)

y
dy +

1

4

∫ −e−i
0

Ln(1− y)ydy

=
1

4
Li2(e

i)− 1

4
Li2(−ei) +

1

4
Li2(e

−i)− d1

4
Li2(−e−i).

The relation

Li2(
1

z
) + Li2(z) = −π

2

6
− (Ln(−z))2

2

gives

1

4

(
−π

2

6
− (Ln(−ei))2

2

)
− 1

4

(
−π

2

6
− (Ln(ei))2

2

)
= −1

8
(i(π − 1))2 +

i2

8
=
π2 − 2π

8
.

Solution 4 by Ioannis D. Sfikas, National and Kapodistrian University of
Athens, Greece

A given 2π-periodic function f can be represented as by the convergent series

f(x) =
a0
2

+
∞∑
n=1

[an cos(nx) + bn sin(nx)].

The convergence of the series means that the sequence (sn(x)) of partial sums, defined by

sn(x) =
a0
2

+
n∑
k=1

[an cos(kx) + bn sin(kx)],

converges at a given point x to f(x), sn(x)→ f(x). Consider f to be a 2π-periodic
function defined by f(x) = |x| for x ∈ [−π, π]. Note that f is even. Since the product of

even functions with the odd function is odd, it follows that

∫ n

−n
f(x) sin(nx)dx = 0.

Hence bn = 0 for all n ≥ 1. To compute an note that the product of an even function
with an even function is even, so that

an =
1

n

∫ n

−n
f(x) cos(nx)dx =

2

n

∫ π

0
f(x) cos(nx)dx =

2

n

∫ π

0
x cos(nx)dx.
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If n = 0 then a0 =
2

n

∫ π

0
xdx = π. Hence an = 0 if n is even and an = − 4

n2π
when n is

odd, and hence

f(x) ∼ π

2
− 4

π

∞∑
n=1

cos(2n− 1)x

(2n− 1)2
.

Since the series
∑ 1

n2
converges, the M−Weierstarss test implies that the above series

converges. Furthermore, f is continuous at every point and it is smooth except at points
mπ, with m odd. Hence the Fourier series of f converges to f at every point. In
particular,

|x| = π

2
− 4

π

∞∑
n=1

cos(2n− 1)x

(2n− 1)2
,

for x ∈ [−π, π]. Substituting x = 0, we find that

∞∑
n=1

1

(2n− 1)2
=
n2

8
,

and substituting x = 1, we find that

∞∑
n=1

cos(2n− 1)

(2n− 1)2
=
π

4

(π
2
− 1
)
≈ 0.448302.

Also solved by Bruno Salgueiro Fanego Viveiro, Spain; Kee-Wai Lau, Hong
Kong, China; Moti Levy, Rehovot, Israel; Henry Ricardo, Westchester Area
Math Circle, NY; Albert Stadler, Herrliberg, Switzerland; Anna V. Tomova,
Varna, Bulgaria, and the proposer.

• 5462: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let n ≥ 1 be an integer. Calculate∫ π
2

0

cosx(
1 +

√
sin(2x)

)ndx .

Solution 1 by Moti Levy, Rehovot, Israel

First simplification by setting t = 4x− π,

In :=

∫ π
2

0

cosx(
1 +
√

sin 2x
)ndx =

1

4

∫ π

−π

cos
(
t
4 + π

4

)(
1 +

√
cos t

2

)ndt =

√
2

4

∫ π

0

cos t
4(

1 +
√

cos t
2

)ndt
Further simplification by the change of variable w =

1−
√

cos t
2

1+
√

cos t
2

:

cos
t

2
=

(
1− w
1 + w

)2

, cos
t

4
=

√
2

2

√
1 +

(
1− w
1 + w

)2

, sin
t

2
=

√
1−

(
1− w
1 + w

)4
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In =
1

2n

∫ 1

0
(1 + w)n−2

(
1√
w
−
√
w

)
dw.

By the binomial theorem,

(1 + w)n−2 =
n−2∑
k=0

(
n− 2

k

)
wk, n ≥ 2

after interchanging integration and summation,

In =
1

2n

n−2∑
k=0

(
n− 2

k

)∫ 1

0

(
wk−

1
2 − wk+

1
2

)
dw

=
1

2n

n−2∑
k=0

(
n− 2

k

)(
1

k + 1
2

− 1

k + 3
2

)

=
1

2n

n−2∑
k=0

(
n−2
k

)(
k + 1

2

) (
k + 3

2

) , n ≥ 2.

For n = 1,

I1 =
1

2

∫ 1

0

1− w
1 + w

1√
w
dw =

∫ 1

0

1− x2

1 + x2
dx

=

∫ 1

0

(
2

1 + x2
− 1

)
dx =

π

2
− 1.

Solution 2 by Albert Stadler, Herrliberg, Switzerland

The transformation x→ π

2
− x yields∫ π

2

0

cosx(
1 +

√
sin(2x)

)ndx =

∫ π
2

0

sinx(
1 +

√
sin(2x)

)ndx.

Therefore

∫ π
2

0

cosx(
1 +

√
sin(2x)

)ndx =
1

2

∫ π
2

0

cosx+ sinx(
1 +

√
sin(2x)

)ndx =
1

2

∫ π
2

0

√
(cosx+ sinx)2(

1 +
√

sin(2x)
)ndx

=
1

2

∫ π
2

0

√
(1 + sin(2x)(

1 +
√

sin(2x)
)ndx =

∫ π
4

0

√
(1 + sin(2x)(

1 +
√

sin(2x)
)ndx =

1

2

∫ π
2

0

√
1 + sinx(

1 +
√

sinx
)ndx

y=
√
sinx︷︸︸︷

=

∫ 1

0

√
1 + y2

(1 + y)n
· y√

1− y4
dy =

∫ 1

0

1

(1 + y)n
· y√

1− y2
dy

y= 2z
1+z2︷︸︸︷
=

∫ 1

0

1

1 + 2z
(1+z2)n

· 2z

1 + z2
·1 + z2

1− z2
·2(1− z2)
(1 + z2)2

dz = 4

∫ 1

0

z(1 + z2)n−2

(1 + z)2n
dz =

∫ ∞
0

z(1 + z2)n−2

(1 + z)2n
dz,

where we have used that

∫ 1

0

z(1 + z2)n−2

(1 + z)n
dz =

∫ ∞
0

z(1 + z2)n−2

(1 + z)n
dz,
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as follows by performing the change of variables z → 1/z.

Obviously, for n = 0,

∫ π
2

0

cosx(
1 +

√
(2x)

)0dx = 1.

For n = 1 we have∫ π
2

0

cosx(
1 +

√
(2x)

)dx = 2

∫ ∞
0

z

(1 + z)2(1 + z2)
dz =

∫ ∞
0

(
1

1 + z2
− 1

(1 + z)2

)
dz =

π

2
− 1.

For n ≥ 2 we use the Binomial Theorem to expand the integrand.

2

∫ ∞
0

z(1 + z2)n−2

(1 + z)2n
dz = 2

∫ ∞
0

z(1 + 2z + z2 − 2z)n−2

(1 + z)2n
dz

=2
n−2∑
j=0

(
n− 2

j

)
(−2)j

∫ ∞
0

zj+1

(1 + z)2j+4
dz = 2

n−2∑
j=0

(
n− 2

j

)
(−2)j

(j + 1)!2

(2j + 3)!

= −(n− 2)!

n−2∑
j=0

(−2)j+1(j + 1)
(j + 1)!

(n− 2− j)!(2j + 3)!
,

where we have used that∫ ∞
0

zj+1

(1 + z)2j+4
dz =

j + 1

2j + 3

∫ ∞
0

zj

(1 + z)2j+3
dz =

(j + 1)j

(2j + 3)(2j + 2)

∫ ∞
0

z(j−1)

(1 + z)(2j+2)
dz =

. . . =
(j + 1)j

(2j + 3)(2j + 2) · · · (j + 3)

∫ ∞
0

1

(1 + z)(j+3)
dz =

(j + 1)!2

(2j + 3)!
, applying repeated

integration by parts.

So the integral evaluates to a rational number for all natural numbers n except for n = 1.

Solution 3 by Kee-Wai Lau, Hong Kong, China

Denote the integral of the problem by In. We show that

In =



π − 2

2
, for n = 1

n
n−1∑
k=0

(
n−1
k

)
2k + 1

− 2n−1

(n− 1)2n−1
, for n ≥ 2.

(1)

Let Jn =

∫ π
2

0

sinx(
1 +

√
sin(2x)

)ndx. By substituting x =
π

2
− y into In, we see that

In = Jn. Since 1 + sin(2x) = (cosx+ sinx)2, so

In =
In + Jn

2
=

1

2

∫ π
2

0

√
1 + sin(2x)(

1 +
√

sin(2x)
)ndx =

1

4

∫ π

0

√
1 + sinx(

1 +
√

sinx
)ndx.

By putting x = π − y we see that∫ π

π
2

√
1 + sinx(

1 +
√

sinx
)ndx =

∫ π/2

0

√
1 + sin y(

1 +
√

sin y
)ndy.
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Hence, In =
1

2

∫ π/2

0

√
1 + sinx(

1 +
√

sinx
)ndx. By putting sinx = cos2 θ so that

cosxdx = −2 sin θ cos θdθ and so In =

∫ π/2

0

cos θdθ

(1 + cos θ)n
. We have

I1 =

∫ π/2

0

cos θdθ

1 + cos θ
=
π

2
−
∫ π/2

0

dθ

1 + cos θ
=
π

2
− 1

2

∫ /2

0
sec2

θ

2
d =

π − 2

2
.

For n ≥ 2, integrating by parts, we have

In =

∫ π/2

0

cos θdθ

(1 + cos θ)n
=

∫ π/2

0

d(sin θ)

(1 + cos θ)n
= 1−n

∫ π/2

0

sin2 θdθ

(1 + cos θ)n+1 = 1−n
∫ π/2

0

(1− cos θ)dθ

(1 + cos θ)n
.

Hence (1− n)In = 1− n
∫ π/2

0

dθ

(1 + cos θ)n
= 1− n

2n−1

∫ π/4

0
sec2n θdθ.

By putting t = tan θ, we obtain

∫ π/4

0
sec2n θθ. =

∫ 1

0

(
1 + t2

)n−1
dt+

∫ 1

0

(
n−1∑
k=0

(
n− 1

k

)
t2k

)
dt =

n−1∑
k=0

(
n− 1

k

)
2k + 1

.

Thus (1) holds and this completes the solution.

Also solved by Arkady Alt, San Jose, CA; Ed Gray, Highland Beach, FL;
Paolo Perfetti, Department of Mathematics, Tor Vergata University, Rome,
Italy, and the proposer.
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