Problems

This section of the Journal offers readers an opportunity to exchange interesting mathematical problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics, Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions can be sent e-mail to eisenbt@013.net. Solutions to previously stated problems can be seen at http://ssmj.tamu.edu.

Solutions to the problems stated in this issue should be posted before
May 15, 2010

- 5104: Proposed by Kenneth Korbin, New York, NY

There are infinitely many primitive Pythagorean triangles with hypotenuse of the form $4 x^{4}+1$ where x is a positive integer. Find the dimensions of all such triangles in which at least one of the sides has prime integer length.

- 5105: Proposed by Kenneth Korbin, New York, NY

Solve the equation

$$
x+y-\sqrt{x^{2}+x y+y^{2}}=2+\sqrt{5}
$$

if x and y are of the form $a+b \sqrt{5}$ where a and b are positive integers.

- 5106: Proposed by Michael Brozinsky, Central Islip, NY

Let a, b, and c be the sides of an acute-angled triangle $A B C$. Let H be the orthocenter and let d_{a}, d_{b} and d_{c} be the distances from H to the sides BC, CA, and AB respectively.

Show that

$$
d_{a}+d_{b}+d_{c} \leq \frac{3}{4} D
$$

where D is the diameter of the circumcircle.

- 5107: Proposed by Tuan Le (student, Fairmont, H.S.), Anaheim, CA

Let a, b, c be positive real numbers. Prove that

$$
\frac{\sqrt{a^{3}+b^{3}}}{a^{2}+b^{2}}+\frac{\sqrt{b^{3}+c^{3}}}{b^{2}+c^{2}}+\frac{\sqrt{c^{3}+a^{3}}}{c^{2}+a^{2}} \geq \frac{6(a b+b c+a c)}{(a+b+c) \sqrt{(a+b)(b+c)(c+a)}}
$$

- 5108: Proposed by José Luis Díaz-Barrero, Barcelona, Spain

Compute

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \tan \left[\sum_{k=1}^{4 n+1} \arctan \left(1+\frac{2}{k(k+1)}\right)\right] .
$$

- 5109 Proposed by Ovidiu Furdui, Cluj, Romania

Let $k \geq 1$ be a natural number. Find the value of

$$
\lim _{n \rightarrow \infty} \frac{(k \sqrt[n]{n}-k+1)^{n}}{n^{k}}
$$

Solutions

- 5086: Proposed by Kenneth Korbin, New York, NY

Find the value of the sum

$$
\frac{2}{3}+\frac{8}{9}+\cdots+\frac{2 N^{2}}{3^{N}}
$$

Solution 1 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, San Angelo, TX

If $x \neq 1$, the formula for a geometric sum yields

$$
\sum_{k=0}^{N} x^{k}=\frac{x^{N+1}-1}{x-1}
$$

If we differentiate and simplify, we obtain

$$
\sum_{k=1}^{N} k x^{k-1}=\frac{N x^{N+1}-(N+1) x^{N}+1}{(x-1)^{2}}
$$

Next, multiply by x and differentiate again to get

$$
\sum_{k=1}^{N} k x^{k}=\frac{N x^{N+2}-(N+1) x^{N+1}+x}{(x-1)^{2}}
$$

and

$$
\sum_{k=1}^{N} k^{2} x^{k-1}=\frac{N^{2} x^{N+2}-\left(2 N^{2}+2 N-1\right) x^{N+1}+(N+1)^{2} x^{N}-x-1}{(x-1)^{3}}
$$

Finally, multiply by x once more to yield

$$
\sum_{k=1}^{N} k^{2} x^{k}=\frac{N^{2} x^{N+3}-\left(2 N^{2}+2 N-1\right) x^{N+2}+(N+1)^{2} x^{N+1}-x^{2}-x}{(x-1)^{3}}
$$

In particular, when we substitute $x=\frac{1}{3}$ and simplify, the result is

$$
\sum_{k=1}^{N} \frac{k^{2}}{3^{k}}=\frac{3^{N+1}-\left(N^{2}+3 N+3\right)}{2 \cdot 3^{N}}
$$

Therefore, the desired sum is

$$
\sum_{k=1}^{N} \frac{2 k^{2}}{3^{k}}=\frac{3^{N+1}-\left(N^{2}+3 N+3\right)}{3^{N}}
$$

Solution 2 by Ercole Suppa, Teramo, Italy

The required sum can be written as $S_{N}=\frac{2}{3^{N}} \cdot x_{n}$, where x_{n} denotes the sequence

$$
x_{n}=1^{2} \cdot 3^{n-1}+2^{2} \cdot 3^{n-2}+3^{2} \cdot 3^{n-3}+\cdots+n^{2} \cdot 3^{0} .
$$

Since

$$
x_{n+1}=1^{2} \cdot 3^{n}+2^{2} \cdot 3^{n-1}+3^{2} \cdot 3^{n-2}+\cdots+n^{2} \cdot 3^{1}+(n+1)^{2} \cdot 3^{0},
$$

such a sequence satisfies the linear recurrence

$$
\begin{equation*}
x_{n+1}-3 x_{n}=(n+1)^{2} . \tag{*}
\end{equation*}
$$

Solving the characteristic equation $\lambda-3=0$, we obtain the homogeneous solutions $x_{n}=A \cdot 3^{n}$, where A is a real parameter. To determine a particular solution, we look for a solution of the form $x_{n}^{(p)}=B n^{2}+C n+D$. Substituting this into the difference equation, we have

$$
\begin{aligned}
B(n+1)^{2}+C(n+1)+D-3\left[B n^{2}+C n+D\right] & =(n+1)^{2} \Leftrightarrow \\
-2 B n^{2}+2(B-C) n+B+C-2 D & =n^{2}+2 n+1 .
\end{aligned}
$$

Comparing the coefficients of n and the constant terms on the two sides of this equation, we obtain

$$
B=-\frac{1}{2}, \quad C=-\frac{3}{2}, \quad D=-\frac{3}{2}
$$

and thus

$$
x_{n}^{(p)}=-\frac{1}{2} n^{2}+-\frac{3}{2} n-\frac{3}{2}
$$

The general solution of $(*)$ is simply the sum of the homogeneous and particular solutions, i.e.,

$$
x_{n}=A \cdot 3^{n}-\frac{1}{2} n^{2}+-\frac{3}{2} n-\frac{3}{2}
$$

From the boundary condition $x_{1}=1$, the constant is determined as $\frac{3}{2}$.
Finally, the desired sum is

$$
S_{N}=\frac{3^{N+1}-N^{2}-3 N-3}{3^{N}}
$$

and we are done.
Also solved by Brian D. Beasley, Clinton, SC; Valmir Bucaj (student, Texas Lutheran University), Seguin, TX; Pat Costello, Richmond, KY; G. C. Greubel, Newport News, VA; Paul M. Harms, North Newton, KS; Enkel Hysnelaj, Sydney, Australia \& Elton Bojaxhiu, Germany; Kee-Wai Lau, Hong Kong, China; David E. Manes, Oneonta, NY; John Nord, Spokane, WA; Paolo Perfetti, Department of Mathematics, Tor Vergata Universtiy, Rome, Italy; David Stone and John Hawkins (jointly), Statesboro, GA; Taylor University Problem Solving Group, Upland, IN, and the proposer.

- 5087: Proposed by Kenneth Korbin, New York, NY

Given positive integers a, b, c, and d such that $(a+b+c+d)^{2}=2\left(a^{2}+b^{2}+c^{2}+d^{2}\right)$ with $a<b<c<d$. Rationalize and simplify

$$
\frac{\sqrt{x+y}-\sqrt{x}}{\sqrt{x+y}+\sqrt{x}} \quad \text { if } \quad\left\{\begin{array}{l}
x=b c+b d+c d, \\
y=a b+a c+a d .
\end{array}\right.
$$

Solution by Paul M. Harms, North Newton, KS

From the equation given in the problem we have $(a+b+c+d)^{2}=a^{2}+b^{2}+c^{2}+d^{2}+2 a b+2 a c+2 a d+2 b c+2 b d+2 c d=2\left(a^{2}+b^{2}+c^{2}+d^{2}\right)$.

From the last equation we have

$$
2(a b+a c+a d+b c+b d+c d)=a^{2}+b^{2}+c^{2}+d^{2}
$$

We note that,

$$
\begin{aligned}
x+y & =a b+a c+a d+b c+b d+c d, \text { then } \\
2(x+y) & =a^{2}+b^{2}+c^{2}+d^{2}
\end{aligned}
$$

From the identity in the problem,

$$
\begin{aligned}
2(x+y) & =\frac{(a+b+c+d)^{2}}{2} \text { or } \\
(x+y) & =\frac{(a+b+c+d)^{2}}{2^{2}}
\end{aligned}
$$

Also note that,

$$
\begin{aligned}
y & =a(b+c+d) \text { or } \\
\frac{y}{a} & =b+c+d . \text { Then } \\
x+y & =\frac{(a+(y / a))^{2}}{2^{2}}=\frac{\left(a^{2}+y\right)^{2}}{(2 a)^{2}} .
\end{aligned}
$$

We have,

$$
\begin{aligned}
x & =(x+y)-y \\
& =\frac{\left(a^{2}+y\right)^{2}}{(2 a)^{2}}-y \\
& =\frac{a^{4}+2 a^{2} y+y^{2}-4 a^{2} y}{4 a^{2}} \\
& =\frac{\left(a^{2}-y\right)^{2}}{(2 a)^{2}} .
\end{aligned}
$$

From $a<b<c<d$, we see that

$$
\begin{aligned}
a^{2}-y & =a^{2}-a(b+c+d)<0 . \text { Thus } \\
\sqrt{\left(a^{2}-y\right)^{2}} & =y-a^{2} .
\end{aligned}
$$

Working with the expression to be simplified, we have

$$
\begin{aligned}
\frac{\sqrt{x+y}-\sqrt{x}}{\sqrt{x+y}+\sqrt{x}} & =\frac{(\sqrt{x+y}-\sqrt{x})^{2}}{y} \\
& =\frac{\left[\left(a^{2}+y\right) /(2 a)-\left(y-a^{2}\right) /(2 a)\right]^{2}}{y} \\
& =\frac{\left(2 a^{2} / 2 a\right)^{2}}{y} \\
& =\frac{a^{2}}{y} \\
& =\frac{a}{b+c+d} .
\end{aligned}
$$

Also solved by Brian D. Beasley, Clinton, SC; G. C., Greubel, Newport News, VA; Enkel Hysnelaj, Sydney, Australia \& Elton Bojaxhiu, Germany; Kee-Wai Lau, Hong Kong, China; David E. Manes, Oneonta, NY; Boris Rays, Brooklyn, NY; David Stone and John Hawkins (jointly), Statesboro, GA, and the proposer.

- 5088: Proposed by Isabel Iriberri Díaz and José Luis Díaz-Barrero, Barcelona, Spain

Let a, b be positive integers. Prove that

$$
\frac{\varphi(a b)}{\sqrt{\varphi^{2}\left(a^{2}\right)+\varphi^{2}\left(b^{2}\right)}} \leq \frac{\sqrt{2}}{2}
$$

where $\varphi(n)$ is Euler's totient function.
Solution by Tom Leong, Scotrun, PA
We show

$$
\varphi(a b) \leq \sqrt{\varphi\left(a^{2}\right) \varphi\left(b^{2}\right)} \leq \sqrt{\frac{\left.\varphi^{2} a^{2}\right)+\varphi^{2}\left(b^{2}\right)}{2}}
$$

which implies the desired result. The second inequality used here is simply the AM-GM Inequality. To prove the first inequality, let p_{i} denote the prime factors of both a and b, and let q_{j} denote the prime factors of a only and r_{k} the primes factors of b only. Then

$$
\begin{aligned}
\varphi(a b) & =a b \prod_{i}\left(1-\frac{1}{p_{i}}\right) \prod_{j}\left(1-\frac{1}{q_{j}}\right) \prod_{k}\left(1-\frac{1}{r_{k}}\right) \\
\varphi\left(a^{2}\right) \varphi\left(b^{2}\right) & =\left[a^{2} \prod_{i}\left(1-\frac{1}{p_{i}}\right) \prod_{j}\left(1-\frac{1}{q_{j}}\right)\right]\left[b^{2} \prod_{i}\left(1-\frac{1}{p_{i}}\right) \prod_{k}\left(1-\frac{1}{r_{k}}\right)\right]
\end{aligned}
$$

where we understand the empty product to be 1 . Then $\varphi(a b) \leq \sqrt{\varphi\left(a^{2}\right) \varphi\left(b^{2}\right)}$ reduces to

$$
\prod_{j}\left(1-\frac{1}{q_{j}}\right) \prod_{k}\left(1-\frac{1}{r_{k}}\right) \leq 1
$$

which is obviously true.
Editor's comment: Kee-Wai Lau of Hong Kong, China mentioned in his solution to this problem that in the Handbook of Number Theory I (Section 1.2 of Chapter I by J. Sándor, D.S. Mitrinovi, and B. Crstic, Springer, 1995), the proof of $(\varphi(m n))^{2} \leq \varphi\left(m^{2}\right) \varphi\left(n^{2}\right)$, for positive integers m and n is attributed to a 1940 paper by T. Popoviciu. Kee-Wai then wrote $\sqrt{\varphi^{2}\left(a^{2}\right)+\varphi^{2}\left(b^{2}\right)} \geq \sqrt{2 \varphi\left(a^{2}\right) \varphi\left(b^{2}\right)} \geq \sqrt{2} \varphi(a b)$, proving the inequality.

Also solved by Brian D. Beasley, Clinton, SC; Valmir Bucaj (student, Texas Lutheran University), Seguin, TX; Enkel Hysnelaj, Sydney, Australia \& Elton Bojaxhiu, Germany; David E. Manes, Oneonta, NY; Paolo Perfetti, Department of Mathematics, University Tor Vergata, Rome, Italy; David Stone and John Hawkins (jointly), Statesboro, GA; Ercole Suppa, Teramo, Italy; and the proposers.

- 5089: Proposed by Panagiote Ligouras, Alberobello, Italy

In $\triangle A B C$ let $A B=c, B C=a, C A=b, r=$ the in-radius and r_{a}, r_{b}, and $r_{c}=$ the ex-radii, respectively.
Prove or disprove that

$$
\frac{\left(r_{a}-r\right)\left(r_{b}+r_{c}\right)}{r_{a} r_{c}+r r_{b}}+\frac{\left(r_{c}-r\right)\left(r_{a}+r_{b}\right)}{r_{c} r_{b}+r r_{a}}+\frac{\left(r_{b}-r\right)\left(r_{c}+r_{a}\right)}{r_{b} r_{a}+r r_{c}} \geq 2\left(\frac{a b}{b^{2}+c a}+\frac{b c}{c^{2}+a b}+\frac{c a}{a^{2}+b c}\right)
$$

Solution by Kee-Wai Lau, Hong Kong, China

We prove the inequality.
Let s and S be respectively the semi-perimeter and area of $\triangle A B C$. It is well known that

$$
r=\frac{S}{s}, r_{a}=\frac{S}{s-a}, r_{b}=\frac{S}{s-b}, r_{c}=\frac{S}{s-c}
$$

Using these relations, we readily simplify

$$
\frac{\left(r_{a}-r\right)\left(r_{b}+r_{c}\right)}{r_{a} r_{c}+r r_{b}} \text { to } \frac{a}{c}, \frac{\left(r_{c}-r\right)\left(r_{a}+r_{b}\right)}{r_{c} r_{b}+r r_{a}} \text { to } \frac{c}{b}, \text { and } \frac{\left(r_{b}-r\right)\left(r_{c}+r_{a}\right)}{r_{b} r_{a}+r r_{c}} \text { to } \frac{b}{a} .
$$

Since $b^{2}+c a \geq 2 b \sqrt{c a}, c^{2}+a b \geq 2 c \sqrt{a b}$, and $a^{2}+b c \geq 2 a \sqrt{b c}$, so

$$
2\left(\frac{a b}{b^{2}+c a}+\frac{b c}{c^{2}+a b}+\frac{c a}{a^{2}+b c}\right) \leq \sqrt{\frac{a}{c}}+\sqrt{\frac{b}{a}}+\sqrt{\frac{c}{b}}
$$

By the Cauchy-Schwarz inequality, we have

$$
\sqrt{\frac{a}{c}}+\sqrt{\frac{b}{a}}+\sqrt{\frac{c}{b}} \leq \sqrt{3\left(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\right)}
$$

and by the arithmeic mean-geometric mean inequality we have

$$
3=3\left(\sqrt[3]{\left(\frac{a}{c}\right)\left(\frac{b}{a}\right)\left(\frac{c}{b}\right)} \leq \frac{a}{c}+\frac{b}{a}+\frac{c}{b}\right.
$$

It follows that $\sqrt{\frac{a}{c}}+\sqrt{\frac{b}{a}}+\sqrt{\frac{c}{b}} \leq \frac{a}{c}+\frac{b}{a}+\frac{c}{b}$ and this completes the solution.
Also solved by Tom Leong, Scotrun, PA; Ercole Suppa, Teramo, Italy, and the proposer.

- 5090: Proposed by Mohsen Soltanifar (student), University of Saskatchewan, Canada

Given a prime number p and a natural number n. Calculate the number of elementary matrices $E_{n \times n}$ over the field Z_{p}.

Solution by Paul M. Harms, North Newton, KS

The notation 0 and 1 will be used for the additive and multiplicative identities, respectively.
There are three types of matrices which make up the set of elementary matrices. One type is a matrix where two rows of the identity matrix are interchanged. Since there are n rows and we interchange two at a time, the number of elementary matrices of this type is $\frac{n(n-1)}{2}$, the combination of n things taken two at a time.
Another type of elementary matrix is a matrix where one of the elements along the main diagonal is replaced by an element which is not 0 or 1 . There are $(p-2)$ elements which can replace a 1 on the main diagonal. The number of elementary matrices of this type is $(p-2) n$.
The third type of elementary matrix is the identity matrix where at most one position, not on the main diagonal, is replaced by a non-zero element. There are $\left(n^{2}-n\right)$ positions off the main diagonal and $(p-1)$ non-zero elements. Then there are $\left(n^{2}-n\right)(p-1)$ different elementary matrices where a non-zero element replaces one zero element in the identity matrix. If the identity matrix is included here, the number of elementary matrices of this type is $\left(n^{2}-n\right)(p-1)+1$.
The total number of elementary matrices is

$$
\frac{n(n-1)}{2}+(p-2) n+\left(n^{2}-n\right)(p-1)+1=n^{2}\left(p-\frac{1}{2}\right)-\frac{3 n}{2}+1 .
$$

Comment by David Stone and John Hawkins of Statesboro, GA. There doesn't seem to be any need to require that p be prime as we form and count these elementary matrices. However, if m were not prime then Z_{m} would not be a field and the algebraic properties would be affected. For instance, it's preferable that any elementary matrix be invertible and the appearance of non-invertible scalars would produce non-invertible elementary matrices such as $\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$ over Z_{4}.

Also solved by David E. Manes, Oneonta, NY; David Stone and John Hawkins (jointly), Statesboro, GA, and the proposer.

- 5091: Proposed by Ovidiu Furdui, Cluj, Romania

Let $k, p \geq 0$ be nonnegative integers. Evaluate the integral

$$
\int_{-\pi / 2}^{\pi / 2} \frac{\sin ^{2 p} x}{1+\sin ^{2 k+1} x+\sqrt{1+\sin ^{4 k+2} x}} d x
$$

Solution 1 by Kee-Wai Lau, Hong Kong, China

We show that the integral equals $\frac{(2 p-1)!!}{(2 p)!!} \frac{\pi}{2}$, independent of k.
Here $(-1)!!=0!!=1, n!!=n(n-2) \ldots(3)(1)$ if n is a positive odd integer and $n!!=n(n-2) \ldots(4)(2)$ if n is a positive even integer.

By substituting $x=-y$, we have

$$
\begin{aligned}
& \int_{-\pi / 2}^{0} \frac{\sin ^{2 p} x}{1+\sin ^{2 k+1} x+\sqrt{1+\sin ^{4 k+2} x}} d x=\int_{0}^{\pi / 2} 0^{0} \frac{\sin ^{2 p} y}{1-\sin ^{2 k+1} y+\sqrt{1+\sin ^{4 k+2} y}} \text { so that } \\
& \int_{-\pi / 2}^{\pi / 2} \frac{\sin ^{2 p} x}{1+\sin ^{2 k+1} x+\sqrt{1+\sin ^{4 k+2} x}} d x \\
& =\int_{0}^{\pi / 2} \sin ^{2 p} x\left(\frac{1}{1+\sin ^{2 k+1} x+\sqrt{1+\sin ^{4 k+2} x}}+\frac{1}{1-\sin ^{2 k+1} x+\sqrt{1+\sin ^{4 k+2} x}}\right) d x \\
& =2 \int_{0}^{\pi / 2} \sin ^{2 p} x\left(\frac{1+\sqrt{1+\sin ^{4 k+2} x}}{\left(1+\sin ^{2 k+1} x+\sqrt{1+\sin ^{4 k+2} x}\right)\left(1-\sin ^{2 k+1} x+\sqrt{1+\sin ^{4 k+2} x}\right)}\right) d x \\
& =\int_{0}^{\pi / 2} \sin ^{2 p} x d x .
\end{aligned}
$$

The last integral is standard and its value is well known to be $\frac{(2 p-1)!!}{(2 p)!!} \frac{\pi}{2}$.

Solution 2 by Paolo Perfetti, Department of Mathematics, Tor Vergata, Rome, Italy

The answer is: $\frac{(2 p)!}{2^{2 p}(p!)^{2}} \frac{\pi}{2}$ for any k.
Proof Let's substitute $\sin x=t$

$$
\int_{-1}^{1} \frac{t^{2 p}}{1+t^{2 k+1}+\sqrt{1+t^{4 k+2}}} \frac{d t}{\sqrt{1-t^{2}}}=\int_{-1}^{1} \frac{t^{2 p}\left(1+t^{2 k+1}-\sqrt{1+t^{4 k+2}}\right)}{2 t^{2 k+1}} \frac{d t}{\sqrt{1-t^{2}}}
$$

Now

$$
\int_{-1}^{1} \frac{t^{2 p}}{2 t^{2 k+1}} \frac{d t}{\sqrt{1-t^{2}}}=\int_{-1}^{1} \frac{t^{2 p} \sqrt{1+t^{4 k+2}}}{2 t^{2 k+1}} \frac{d t}{\sqrt{1-t^{2}}}=0
$$

since the integrands are odd functions. It remains

$$
\frac{1}{2} \int_{-1}^{1} \frac{t^{2 p}}{\sqrt{1-t^{2}}} d t=\frac{1}{2} \int_{-\pi / 2}^{\pi / 2}(\sin x)^{2 p} d x
$$

after changing variable $t=\sin x$. Integrating by parts we obtain

$$
\begin{aligned}
\int_{-\pi / 2}^{\pi / 2}(\sin x)^{2 p} d x & =\int_{-\pi / 2}^{\pi / 2}(-\cos x)^{\prime}(\sin x)^{2 p-1} d x \\
& =-\left.\cos x(\sin x)^{2 p-1}\right|_{-\pi / 2} ^{\pi / 2}+(2 p-1) \int_{-\pi / 2}^{\pi / 2} \cos ^{2} x(\sin x)^{2 p-2} d x \\
& =(2 p-1) \int_{-\pi / 2}^{\pi / 2}(\sin x)^{2 p-2} d x-(2 p-1) \int_{-\pi / 2}^{\pi / 2}(\sin x)^{2 p} d x
\end{aligned}
$$

and if we call $I_{2 p}=\int_{-\pi / 2}^{\pi / 2}(\sin x)^{2 p} d x$, then we have $I_{2 p}=\frac{2 p-1}{2 p} I_{2 p-2}$. It results that $I_{2 p}=\frac{(2 p-1)!!}{(2 p)!!} \pi=\frac{(2 p)!}{2^{2 p}(p!)^{2}} \pi$ and then $\frac{1}{2} \int_{-1}^{1} \frac{t^{2 p}}{\sqrt{1-t^{2}}} d t=\frac{\pi}{2} \frac{(2 p-1)!!}{(2 p)!!}=\frac{(2 p)!}{2^{2 p}(p!)^{2}} \frac{\pi}{2}$

Editor's comment: The two solutions presented, $\frac{(2 p-1)!!}{(2 p)!!} \frac{\pi}{2}$ and $\frac{(2 p)!}{2^{2 p}(p!)^{2}} \frac{\pi}{2}$, are equivalent to one another.

Also solved by Boris Rays, Brooklyn, NY; David Stone and John Hawkins (jointly), Statesboro, GA, and the proposer.

