
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
May 15, 2014

• 5295: Proposed by Kenneth Korbin, New York, NY

A convex cyclic hexagon has sides(
5, 7
√

17, 23
√

13, 25
√

13, 25
√

17, 45
)
.

Find the diameter of the circumcircle and the area of the hexagon.

• 5296: Proposed by Roger Izard, Dallas, TX

Consider the “Star of David,” a six pointed star made by overlapping the triangles ABC
and FDE. Let

AB ∩DF = G, and AB ∩DE = H,

AC ∩DF = L, and AC ∩ FE = K,

BC ∩DE = I, and BC ∩ FE = J,

in such a way that:

CK

AC
=

EI

DE
=

BI

BC
=

GD

DF
=

AG

AB
=

FK

EF
and

AL

AC
=

DH

DE
=

BH

AB
=

EJ

EF
=

FL

DF
=

CJ

CB
.

Let r =
CK

AC
and let p =

AL

AC
. Prove that r + p =

3pr + 1

2
.

• 5297: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

Let sn = n2, tn =
n(n + 1)

2
, pn =

n(3n− 1)

2
, for positive integers n, be the square,

triangular and pentagonal numbers respectively. Prove, independently of each other,
that
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i) ta + pb = tc

ii) ta + sb = pc

iii) pa + sb = sc,

for infinitely many positive integers, a, b, and c.

• 5298: Proposed by D. M. Bătinetu-Giurgiu,“Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” School, Buzău,
Romania

Let (an)n≥1 be an arithmetic progression and m a positive integer. Calculate:

lim
n→∞

((
m∑
k=1

(
1 +

1

n

)n+ak
−me

)
n

)
.

• 5299: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Without the aid of a computer, show that

ln2 2

∫ 1

0

x3/22x sinx

(1 + x ln 2)2
dx ≥ 1− ln 2

1 + ln 2

∫ 1

0

√
x sinx dx.

• 5300: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let n ≥ 1 be an integer. Prove that

∫ π/2

π/4

dx

sin2n x
=

n−1∑
k=0

(
n− 1

k

)
· 1

2n− 2k − 1
.

Solutions

• 5277: Proposed by Kenneth Korbin, New York, NY

Find x and y if a triangle with sides (2013, 2013, x) has the same area and the same
perimeter as a triangle with sides (2015, 2015, y).

Solution 1 by Carl Libis, Lane College, Jackson, TN

The perimeter of (2013, 2013, x) equals the perimeter of (2015, 2015, y) implies that
x = y + 4.

Also, the altitude h1 of (2013, 2013, y + 4) bisects y + 4.
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Use the Pythagorean Theorem on right triangle (2013, h1, (y + 4)/2) to obtain
h1 =

√
20132 − (2 + y/2)2. Similarly for altitude h2 of (2015, 2015, y) we obtain

h2 =
√

20152 − (y/2)2.

Equal areas implies that

(
2 +

y

2

)√
20132 −

(
2 +

y

2

)2

=
y

2

√
20152 −

(
y

2

)2

.

Square both sides, simplify, and then factor to obtain

0 = y3 + 2020y2 − 81043224y − 16208660

= (y + 4030)(y2 − 2010y − 4022)

= (y + 4030)(y2 − 2010y − 4022)

= (y + 4030)
(
y − 1005−

√
1014047

) (
y − 1005 +

√
1014047

)
.

The only positive solution of the three solutions is y = 1005 +
√

1014047 ≈ 2012.

Thus the values are: y ≈ 2012 and x ≈ 2016.

Solution 2 by proposer

The method to obtain x and y is to solve the system of equations:
2y2 + 8y + 12

y + 2
= 2013+2015, and

x = y + 4.

If a triangle with sides (a, a, b) has the same area and the same perimeter as a triangle
with sides (c, c, d), where a, b, c and d are positive integers, then the value of the area
and the perimeter can be expressed in terms of b and d. Namely,

Area =
bd
√

b2 + bd + d2

2b + 2d

Perimeter =
2b2 + 2bd + 2d2

b + d
.

Comment by David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA. More generally, if we let k > 2 be some positive constant and
enforce the same “equal-area and equi-perimeter” condition on the two triangles (k, k, x)
and (k + 2, k + 2, y), we find the single solution

y =
k − 3 +

√
(k + 1)2 − 8

2
and x = y + 4 =

k + 5 +
√

(k + 1)2 − 8

2
.
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Also solved by Dionne Bailey, Elsie Camjpbell, and Charles Diminnie,
Angelo State University, TX; Brian D. Beasely, Presbyterian College,
Clinton, SC; D. M. Batinetu-Giurgiu, Bucharest, Romania, Neculai Stanciu,
Buza, Romania, and Titu Zvonaru, Comanesi, Romania; Bruno Salgueiro
Fanego, Viveiro, Spain; Michael Fried, Ben-Gurion University, Beer-Sheva,
Israel; Ed Gray, Highland Beach, FL; Paul M. Harms, North Newton, KS;
Jahangeer Kholdi and Farideh Firoozbakht, University of Isfahan, Khansar,
Iran; Kee-Wai Lau, Hong Kong, China; David E. Manes, SUNY College at
Oneonta, Oneonta, NY; Angel Plaza, Universidad de Las Palmas de Gran
Canaria, Spain, and the proposer.

• 5278: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

The triangular numbers 6 = (2)(3) and 10 = (2)(5) are each twice a prime number. Find
all triangular numbers that are twice a prime.

Solution 1 by Ed Gray, Highland Beach, FL

The triangular numbers are given by: (1) Tn =
n(n + 1)

2
, so if a triangular number is

double a prime p, we must have the following equation: (2)
n(n + 1)

2
= 2p.

First, suppose n is an even integer. Then n = 2k for some integer k, and
n(n + 1)

2

becomes
2k(2k + 1)

2
= k(2k + 1). If k(2k + 1) = 2p, then k must be even, say k = 2r

and k(2k + 1) = 2r(4r + 1) = 2p. So, r(4r + 1) = p. But p is prime and this implies that

r = 1, k = 2, n = 4 and
(n)(n + 1)

2
= 10.

Second, If n is odd, let n = 2k + 1; then

n(n + 1)

2
=

(2k + 1)(2k + 2)

2
= (2k + 1)(k + 1) = 2p.

Here, k + 1 must be even, say k + 1 = 2r, and (2k + 1)(k + 1) = 2r(4r− 1) = 2p. Since p

is prime, r = 1, k = 1, n = 3 and
n(n + 1)

2
= 6. Hence, all relevant triangular numbers

were given in the statement of the problem.

Solution 2 by Paul M. Harms, North Newton, KS

Triangular numbers have the form
n(n + 1)

2
where n is a positive integer. For each

positive integer n either n or n + 1 has a factor of 2. When n is a positive integer

greater then 4, the number n, (n + 1),
n

2
, and

n + 1

2
are all greater than 2.

When n > 4, and an even integer, then
n

2
, is a prime number greater than 2 or a

product of prime numbers, and n + 1 is also a prime number greater than 2 or a product

of prime numbers. In this case,
n

2
(n + 1) cannot be two times one prime number.

Similarly, when n > 4 and an odd number, n as well as
n + 1

2
are prime numbers greater
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than 2 or are a product of prime numbers. Then n
(n + 1)

2
cannot be two times one

prime number.

The triangular numbers that are twice a prime must come from positive integers n
which are not greater than 4. We see that the triangular numbers 6 when n = 3 and 10
when n = 4 are the only triangular numbers which are twice a prime number.

Also solved by Dionne Bailey, Elsie Campbell and Charles Diminnie, Angelo
State University, San Angelo, TX; Brian D. Beasely, Presbyterian College,
Clinton, SC; Jahangeer Kholdi and Farideh Firoozbakht, University of
Isfahan, Khansar, Iran; Kenneth Korbin, New York, NY; Kee-Wai Lau,
Hong Kong, China; David E. Manes, SUNY College at Oneonta, Oneonta,
NY; Neculai Stanciu and Titu Zvonaru, Romania; David Stone and John
Hawkins, Georgia Southern University, Statesboro, GA, and the proposer.

• 5279: Proposed by D.M. Bătinetu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” General School,
Buzău, Romania

Let f : <+ −→ <+ be a convex function on <+, where <+ stands for the positive real
numbers. Prove that

3
(
f2(x) + f2(y) + f2(z)

)
−9f2

(
x + y + z

3

)
≥ (f(x)− f(y))2+(f(y)− f(z))2+(f(z)− f(x))2 .

Solution 1 by Arkady Alt, San Jose, CA

Since

3
(
f2 (x) + f2 (y) + f2 (z)

)
− (f (x)− f (y))2 + (f (y)− f (z))2 + (f (z)− f (x))2

= (f (x) + f (y) + f (z))2 ,

the original inequality is equivalent to

(f (x) + f (y) + f (z))2 ≥ 9f2
(
x + y + z

3

)
⇐⇒ f (x) + f (y) + f (z)

3
≥ f

(
x + y + z

3

)
,

where the latter inequality is Jensen’s Inequality for the convex function f : <+ −→ <+.

Solution 2 by Angel Plaza, Universidad de Las Palmas de Gran Canaria,
Spain

Since f is convex, then f

(
x + y + z

3

)
≤ f(x) + f(y) + f(z)

3
and the left-hand side of

the given inequality is

LHS ≥ 3
(
f2(x) + f2(y) + f2(z)

)
− (f(x) + f(y) + f(z))2

= 2
(
f2(x) + f2(y) + f2(z)

)
− (2f(x)f(y) + 2f(y)f(z) + 2f(z)f(x))

= (f(x)− f(y))2 + (f(y)− f(z))2 + (f(z)− f(x))2 .

Solution 3 by Michael Brozinsky, Central Islip, NY
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Since f is convex we know that if a ≤ b and 0 < t < 1 that

f (t · a + (1− t) · b) ≤ t · f(a) + (1− t) · f(b).

(See, for example, the Chord Theorem in Calculus with Analytic Geometry (1978) by
Flanders and Price, pages 153-154.)

Without loss of generality, let 0 < x ≤ y ≤ z and since x ≤ y + z

2
, we have, using the

above result twice that:

f

(
x + y + z

3

)
= f

(
1

3
· x +

2

3
·
(
y + z

2

))
≤ 1

3
· f(x) +

2

3
·
(
y + z

2

)

≤ 1

3
· f(x) +

2

3
·
(

1

2
· f(z) +

1

2
· f(z)

)

=
f(x) + f(y) + f(z)

3
.

Hence, f(x) + f(y) + f(z) ≥ 3 · f
(
x + y + z

3

)
where the right hand side is positive by

definition of f .

Squaring both sides gives

f2(x)+f2(y)+f2(z)+2 ·f(x) ·f(y)+2 ·f(x) ·f(z)+2 ·f(y) ·f(z)−9 ·f2
(
x + y + z

3

)
≥ 0,

which is clearly equivalent to the inequality to be proved.

Also solved by Ed Gray, Highland Beach, FL; Jahangeer Kholdi and Farideh
Firoozbakht, University of Isfahan, Khansar, Iran; Kee-Wai Lau, Hong
Kong, China; Adrian Naco, Polytechnic University, Tirana, Albania; Titu
Zvonaru, Comănesti, Romania, and the proposers.

• 5280: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let a ≥ b ≥ c be nonnegative real numbers. Prove that

1

3

(
(a + b)(c + a)

2 +
√
a + b

+
(c + a)(b + c)

2 +
√
c + a

+
(b + c)(a + b)

2 +
√
b + c

)
≤ (a + b)2

2 +
√
b + c

.

Solution 1 by Greg Cook, Student, Angelo State University, San Angelo,TX

First, since a ≥ b ≥ c ≥ 0, then (a + b)(c + a) ≤ (a + b)2 and
2 +
√
a + b ≥ 2 +

√
b + c. Then,

(a + b) (c + a)

2 +
√
a + b

≤ (a + b)2

2 +
√
b + c

. (1)

Again since a ≥ b ≥ c ≥ 0, then (c + a) (b + c) ≤ (a + b)2 and
2 +
√
c + a ≥ 2 +

√
b + c. Then,
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(c + a) (b + c)

2 +
√
c + a

≤ (a + b)2

2 +
√
b + c

. (2)

Also, since a ≥ b ≥ c ≥ 0, then (b + c)(a + b) ≤ (a + b)2. Then,

(b + c)(a + b)

2 +
√
b + c

≤ (a + b)2

2 +
√
b + c

. (3)

Combining (1), (2), and (3),

(a + b) (c + a)

2 +
√
a + b

+
(c + a) (b + c)

2 +
√
c + a

+
(b + c)(a + b)

2 +
√
b + c

≤ 3

(
(a + b)2

2 +
√
b + c

)
.

Finally,

1

3

(
(a + b) (c + a)

2 +
√
a + b

+
(c + a) (b + c)

2 +
√
c + a

+
(b + c)(a + b)

2 +
√
b + c

)
≤ (a + b)2

2 +
√
b + c

.

Solution 2 by Angel Plaza, Universidad de Las Palmas de Gran Canaria,
Spain

The inequality is a consequence of the Chebyshev’s sum inequality. Note that sequences

(a + b)(c + a), (c + a)(b + c), (b + c)(a + b) and
1

2 +
√
a + b

,
1

2 +
√
c + a

,
1

2 +
√
b + c

are oppositely sorted. Therefore, the left-hand side of the given inequality LHS is
bounded as

LHS ≤ 1

3
((a + b)(c + a) + (c + a)(b + c) + (b + c)(a + b))

1

3

(
1

2 +
√
a + b

+
1

2 +
√
c + a

+
1

2 +
√
b + c

)
≤ (a + b)(c + a)

1

2 +
√
b + c

≤ (a + b)2

2 +
√
b + c

.

Solution 3 by Arkady Alt, San Jose, CA

Note that:

1. c ≤ b ⇐⇒ c + a ≤ a + b ⇐⇒ (a + b) (c + a)

2 +
√
a + b

≤ (a + b)2

2 +
√
a + b

and

c ≤ a ⇐⇒ 2 +
√
b + c ≤ 2 +

√
a + b ⇐⇒ (a + b)2

2 +
√
a + b

≤ (a + b)2

2 +
√
b + c

yields

(a + b) (c + a)

2 +
√
a + b

≤ (a + b)2

2 +
√
b + c

;

2.

{
a + b ≥ c + a
a + b ≥ b + c

(c + a) (b + c)

2 +
√
c + a

≤ (a + b)2

2 +
√
c + a

and 2 +
√
c + a ≥ 2 +

√
b + c

yields
(c + a) (b + c)

2 +
√
c + a

≤ (a + b)2

2 +
√
b + c

;
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3.
(b + c) (a + b)

2 +
√
b + c

≤ (a + b)2

2 +
√
b + c

⇐⇒ b + c ≤ a + b ⇐⇒ c ≤ a.

Then
1

3

(
(a + b) (c + a)

2 +
√
a + b

+
(c + a) (b + c)

2 +
√
c + a

+
(b + c) (a + b)

2 +
√
b + c

)
≤

1

3
· 3 frac(a + b)22 +

√
b + c =

(a + b)2

2 +
√
b + c

.

Solution 4 by Michael Brozinsky, Central Islip, NY

Denote the left hand side and right hand side of the given inequality by L and R
respectively. The inequality will be established if we can show the maximum value of L
and the minimum value of R are equal to one another. Specifically, we will show that

max L = min R =
4a2

2 + 2
√

2a
, and that this occurs when a = b = c.

If we differentiate L, with respect to b we obtain

∂

∂b

(
1

3

(
(a + b) · (c + a)

2 +
√
a + b

+
(c + a) · (b + c)

2 +
√
c + a

+
(b + c) · (a + b)

2 +
√
b + c

))
=

1

3
· (A + B) where

A =
c + a

2 +
√
a + b

− 1

2

√
a + b (c + a)

(2 +
√
a + b)2

+
c + a

2 +
√
a + b

=
1

2

(c + a)
(
16 + 4

√
c + a + 10

√
a + b +

√
a + b

√
c + a + 2a + 2b

)
(
2 +
√
a + b

)2 (
2 +
√
c + a

)

and

B =
a + b

2 +
√
b + c

+
b + c

2 +
√
b + c

− 1

2

√
b + c (a + b)

(2 +
√
b + c)2

=
1

2

4a + a
√
b + c + 8b + 3b

√
b + c + 4c + 2c

√
b + c(

2 +
√
b + c

)2 .

Since A and B are clearly non-negative and since a ≥ b ≥ c we have L increases with b
and so has its maximum when b = a.

Replacing b by a in L (call this expression M) and differentiating with respect to c gives

∂

∂c
(M) =

∂

∂c

(
1

3

(
2a(c + a)

2 +
√

2a
+

(c + a)2

2 +
√
c + a

+
2(c + a)a

2 +
√
c + a

))

=
2

3

(
a

2 +
√

2a

)
+

2

3

(
c + a

2 +
√
c + a

)
− 1

6

(c + a)
√
c + a(

2 +
√
c + a

)2
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+
2

3

(
a

2 +
√
c + a

)
− 1

3

√
c + a a(

2 +
√
c + a

)2

which simplifies to

1

6

1

(2 +
√

2a)(2 +
√
c + a)2

(
48a + 26

√
c + a a + 4ac + 4a2 + 16c + 6c

√
c + a

+8c
√

2a + 3c
√

2a
√
c + a + 16a

√
2a + 5a

√
2a
√
c + a

)
.

Since this derivative is clearly nonnegative, M increases with c and since a ≥ c, M is
maximized when c = a. So, L is maximized when b and c are both a. This value is

4a2

2 +
√

2a
.

Now if R is differentiated with respect to a we obtain.

∂

∂a

(
(a + b)2

2 +
√
b + c

)
=

2(a + b)

2 +
√
b + c

which is clearly nonnegative and so R increases with a and since a ≥ b is minimized
when a = b.

Replacing a by b in R (call this expression N) we have

∂

∂b
(N) =

∂

∂b

(
(2b)2

2 +
√
b + c

)
=

2b
(
8
√
b + c + 3b + 4c

)
(
2 +
√
b + c

)2√
b + c

which is clearly nonnegative. So, N increases with b, and since b ≥ c is minimized when

b = c, R is minimized when a = b = c, and has value of
4a2

2 +
√

2a
.

Editor’s Comment: D. M. Bătinetu-Giurgiu, Neuclai Stanciu and Titu
Zvonaru, all of Romania, jointly constructed and proved a generalization of Problem
5280. Their generalization follows:

Let n ∈ N, n ≥ 3, a = x1 ≥ b = x2 ≥ x3 ≥ . . . ≥ c = xn−1 ≥ d = xn > 0 and
u, v ∈ R+ = (0,∞).

If xn+1 = x1, xn+2 = x2, then

n∑
k=1

(xk + xk+1)(xk + xk+2)

u + v
√
xk+1 + xk+2

≤ n(a + b)2

u + v
√
c + d

.

Letting n = 3, x1 = a, x2 = b, x3 = c and u = 2, v = 1, they showed that the
inequality holds.

Also solved by D. M. Bătinetu-Giurgiu, “Matei Basarab” National College
Bucharest, Neuclai Stanciu, “George Emil Palade” School, Buzău, and Titu
Zvonaru, Comănesti, Romania; Dionne Bailey, Elsie Campbell and Charles
Diminnie, Angelo State University, San Angelo, TX; Ed Gray, Highland
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Beach, FL; Jahangeer Kholdi and Farideh Firoozbakht, University of
Isfahan, Khansar, Iran; Kee-Wai Lau, Hong Kong, China; David E. Manes,
SUNY College at Oneonta, Oneonta, NY; Adrian Naco, Polytechnic
University, Tirana, Albania; Perfetti Paolo, Department of Mathematics,
“Tor Vergata” University, Rome, Italy, and the proposer.

• 5281: Proposed by Arkady Alt, San Jose, CA

For the sequence {an}n≥1 defined recursively by an+1 =
an

1 + apn
for n ∈ N , a1 = a > 0,

determine all positive real p for which the series
∞∑
n=1

an is convergent.

Solution 1 by Paolo Perfetti, Department of Mathematics, “Tor Vergata”
University, Rome, Italy

Answer: p < 1.

Proof: Since an+1 < an, an → 0.
It follows that

an+1 = an − ap+1
n + a2p+1

n + O(a3p+1
n )

We employ the standard result of the exercise num.174 at page 38 of the book by G.
Pólya, G. Szegö, Problems and Theorems in Analysis, I.

Assume that 0 < f(x) < x and f(x) = x− axk + bxl + xlε(x), limx→0 ε(x) = 0, for
0 < x < x0 where 1 < k < l and a, b both positive. The sequence xn defined by
xn+1 = f(xn) satisfies

lim
n→∞

n1/(k−1)xn = (a(k − 1))−1/(k−1).

In our case we have a = 1, k = p + 1, b = 1, l = 2p + 1. Thus the sequence satisfies

an = p−1/pn−1/p + o(n−1/p)

and then the series converges if and only if p < 1.

Solution 2 by Kee-Wai Lau, Hong Kong, China

We show that the series
∞∑
n=1

an is convergent if 0 < p < 1 and divergent if ≥ 1.

We assume in what follows that n ∈ N . Clearly an > 0 and by the given recursive

relation, we have an+1 < an. Therefore L = lim
n→∞

an exists and from L =
L

1 + Lp
, we see

that L = 0. Inductively, we have

an+1 =
a

n∏
k=1

(
1 + apk

) . (1)

By making use of the well-known inequality 1 + x < ex for x > 0, we deduce from (1)

that an+1 > ae−
∑n

k=1
ap
k > 0. Since lim

n→∞
an+2 = 0, so

n∑
k=1

apk is divergent. Now there
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exits k0 ∈ N , depending at most on a and p, such that ak < 1 whenever k > k0. Hence if

p ≥ 1, then for any integer M > k0, we have
M∑

k=k0+1

ak ≥
M∑

k=k0+1

apk. Thus
∞∑

k=+1

ak is

divergent.

We next consider the case 0 < p < 1. Let m =

⌊
1

1− p

⌋
+ 1, where bxc is the greatest

integer not exceeding x. By (1), for any n > m, we have

0 < an+1 ≤
a

(1 + apn)
n <

a(
1 + apn+1

)n <
a(

n

m

)
ampn+1

,

so that

0 < an+1 <

(
am!∏m−1

k=0 (n− k)

)1/(1+mp)

≤
(

am!

(n−m + 1)m

)1/(1+mp)

.

It is easy to check that
m

1 + mp
> 1, and so

∞∑
n=1

an is convergent.

This completes the solution.

Also solved by Ed Gray, Highland Beach, FL, and the proposer.

• 5282: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Calculate ∫ 1

0
x ln

(√
1 + x−

√
1− x

)
ln
(√

1 + x +
√

1− x
)
dx.

Solution 1 by Anastasios Kotronis, Athens, Greece

Using the identity

ab =
1

4
· a + b2 − a− b2,

with a = ln
√

1 + x−
√

1− x and b = ln
√

1 + x +
√

1− x we have

I =

∫ 1

0
x ln
√

1 + x−
√

1− x ln
√

1 + x +
√

1− x dx

=
1

4

∫ 1

0
xln2(2x)− ln2

1−
√

1− x

1 + x

1 +

√
1− x

1 + x

dx

=
1

4

∫ 1

0
x ln2(2x) dx− 1

4

∫ 1

0
x ln2

1−
√

1− x

1 + x

1 +

√
1− x

1 + x

dx

= I1 − I2.

11



Integrating by parts twice we easily get that

I1 =
ln2 2

8
− ln 2

8
+

1

16
. (1)

In order to calculate I2, we first note that∫
u(1− u2)

(1 + u2)3
du u2 = y

1

2

∫
1− y

(1 + y)3
dy

=

∫
1

(1 + y)3
dy − 1

2

∫
1

(1 + y)2

=
u2

2(1 + u2)2
+ c,

so, letting

√
1− x

1 + x
= y and letting

1− y

1 + y
= u we have

1

4

∫
x ln2

1−
√

1− x

1 + x

1 +

√
1− x

1 + x

dx =

∫
y(1− y2)

(1 + y2)3
ln2 1− y

1 + y
dy

=

∫
u(1− u2)

(1 + u2)3
ln2 u du

=
u2 ln2 u

2(1 + u2)2
−
∫

u

2(1 + u2)2
lnu du

=
u2 ln2 u

2(1 + u2)2
−
∫
− 1

2(1 + u2)

′
lnu du

=
u2 ln2 u

2(1 + u2)2
+

lnu

2(1 + u2)
− 1

2

∫
1

u
− u

1 + u2
du

=
u2 ln2 u

2(1 + u2)2
+

lnu

2(1 + u2)
− lnu

2
+

ln(1 + u2)

4
+

= A(x) + c

which yields

I2 = A(x)
∣∣∣1
0

= lim
x→0+

A(x)− lim
x→1−

A(x) =
ln 2

4
, (2)

and hence, from (1) and (2), I =
ln2 2

8
− ln 8

8
+

1

16
.

12



Solution 2 by Arkady Alt, San Jose, CA

Solution A.

Let I =

1∫
0

x ln
(√

1 + x +
√

1− x
)

ln
(√

1 + x−
√

1− x
)
dx.

Then 4I =

1∫
0

x ln
(√

1 + x +
√

1− x
)2

ln
(√

1 + x−
√

1− x
)2

dx =

1∫
0

xu (x) v (x) dx,

where u (x) = ln
(
2 + 2

√
1− x2

)
, v (x) = ln

(
2− 2

√
1− x2

)
.

Since u (x) + v (x) = ln
(
4x2

)
= 2 ln (2x) then

u2 (x) + v2 (x) + 2u (x) v (x) = 4 ln2 (2x) ⇐⇒ u (x) v (x) = 2 ln2 (2x)− u2 (x) + v2 (x)

2

and, therefore, 4I = 2

1∫
0

x ln2 (2x) dx− 1

2

 1∫
0

xu2 (x) dx +

1∫
0

xv2 (x) dx

 .

1. Using substitution and integration by parts we obtain

2

1∫
0

x ln2 (2x) dx = [t = 2x; dt = 2dx] =
1

2

2∫
0

t ln2 (t) dt = ln2 2− 1

2

2∫
0

t ln t dt =

ln2 2− ln 2 +
1

2
.

2. Let t = 2 + 2
√

1− x2. Since xdx = −(t− 2) dt

4
then

1∫
0

xu2 (x) dx =
1

4

2∫
4

− (t− 2) ln2 tdt =
1

4

4∫
2

(t− 2) ln2 tdt.

3. Let t = 2− 2
√

1− x2. Since xdx =
(2− t) dt

4
then

1∫
0

xv2 (x) dx=
1

4

2∫
0

(2− t) ln2 tdt = −1

4

2∫
0

(t− 2) ln2 tdt.

Hence
1

2

 1∫
0

xu2 (x) dx +

1∫
0

xv2 (x) dx

 =
1

8

 4∫
2

(t− 2) ln2 tdt−
2∫

0

(t− 2) ln2 tdt

 =

1

8

 4∫
0

(t− 2) ln2 tdt− 2

2∫
0

(t− 2) ln2 tdt

 .

Using integration by parts twice we obtain

∫
(t− 2) ln2 tdt =

 p′ = t− 2; p =
t2

2
− 2t

q = ln2 t; q′ =
2 ln t

t

 =

(
t2

2
− 2t

)
ln2 t−

∫
(t− 4) ln tdt =

(
t2

2
− 2t

)
ln2 t−

(
t2

2
− 4t

)
ln t +

t2

4
− 4t.

13



Since

∫ 4

0
(t− 2) ln2 tdt =

((
t2

2
− 2t

)
ln2 t−

(
t2

2
− 4t

)
ln t +

t2

4
− 4t

)4

0

= 8 ln 4− 12

and∫ 2

0
(t− 2) ln2 tdt =

((
t2

2
− 2t

)
ln2 t−

(
t2

2
− 4t

)
ln t +

t2

4
− 4t

)2

0

= 6 ln 2− 2 ln2 2− 7

then
1

2

 1∫
0

xu2 (x) dx +

1∫
0

xv2 (x) dx

 =
1

8

(
8 ln 4− 12− 2

(
6 ln 2− 2 ln2 2− 7

))
=

1

2
ln 2 +

1

2
ln2 2 +

1

4
.

Therefore, 4I = ln2 2− ln 2 +
1

2
−
(

1

2
ln 2 +

1

2
ln2 2 +

1

4

)
=

1

2
ln2 2− 3

2
ln 2 +

1

4

I =
1

8
ln2 2− 3

8
ln 2 +

1

16
≈ −0.137 37

Solution B.

Let u (x) = ln
(√

1 + x +
√

1− x
)
, v (x) = ln

(√
1 + x−

√
1− x

)
and

I =

1∫
0

xu (x) v (x) dx.

Since u (x) + v (x) = ln

((√
1 + x

)2
−
(√

1− x
)2)

= ln (2x) then

u (x) v (x) =
ln2 (2x)− u2 (x)− v2 (x)

2

and, therefore, 2I =

1∫
0

x ln2 (2x) dx−
1∫

0

x
(
u2 (x) + v2 (x)

)
dx.

Calculation of

1∫
0

x
(
u2 (x) + v2 (x)

)
dx.

1. Let t =
√

1 + x +
√

1− x. Then u2 (x) = ln2 t and

t2 = 2 + 2
√

1− x2 ⇐⇒ t2 − 2

2
=
√

1− x2

yield tdt =
−xdx√
1− x2

⇐⇒ xdx = − t
(
t2 − 2

)
2

dt.

Hence,

1∫
0

xu2 (x) dx = −

√
2∫

2

t
(
t2 − 2

)
2

ln2 tdt =
1

2

2∫
√
2

t
(
t2 − 2

)
ln2 tdt;

2. Let t =
√

1 + x−
√

1− x. Then v2 (x) = ln2 t and

t2 = 2− 2
√

1− x2 ⇐⇒ 2− t2

2
= 2

√
1− x2

yield −tdt =
−x√
1− x2

dx ⇐⇒ xdx =
t
(
2− t2

)
2

dt. Hence,

1∫
0

xu2 (x) dx =

√
2∫

0

t
(
2− t2

)
2

ln2 tdt = −1

2

√
2∫

0

t
(
t2 − 2

)
ln2 tdt

14



and we obtain

1∫
0

x
(
u2 (x) + v2 (x)

)
dx =

1

2

2∫
√
2

t
(
t2 − 2

)
ln2 tdt− 1

2

√
2∫

0

t
(
t2 − 2

)
ln2 tdt =

1

2

2∫
0

t
(
t2 − 2

)
ln2 tdt−

√
2∫

0

t
(
t2 − 2

)
ln2 tdt.

Using integration by parts twice we obtain we obtain∫
t
(
t2 − 2

)
ln2 tdt =

 p′ = t3 − 2t; p =
t4

4
− t2

q = ln2 t; q′ =
2 ln t

t

 =

(
t4

4
− t2

)
ln2 t−

∫ (
t3

2
− 2t

)
ln tdt =(

t4

4
− t2

)
ln2 t−

(
t4

8
− t2

)
ln t +

∫ (
t3

8
− t

)
dt =(

t4

4
− t2

)
ln2 t−

(
t4

8
− t2

)
ln t +

(
t4

32
− t2

2

)
.

Hence,
2∫

0

t
(
t2 − 2

)
ln2 tdt =

((
t4

4
− t2

)
ln2 t−

(
t4

8
− t2

)
ln t +

(
t4

32
− t2

2

))2

0

= 2 ln 2− 3

2
,

√
2∫

0

t
(
t2 − 2

)
ln2 tdt =

(√
2
4

4
−
√

2
2

)
ln2
√

2−
(√

2
4

8
−
√

2
2

)
ln
√

2 +

(√
2
4

32
−
√

2
2
2

)
=

3

4
ln 2− 1

4
ln2 2− 7

8
and, therefore,

1∫
0

x
(
u2 (x) + v2 (x)

)
dx =

1

2

(
2 ln 2− 3

2

)
−
(

3

4
ln 2− 1

4
ln2 2− 7

8

)
=

1

4

(
ln2 2 + ln 2 +

1

2

)
.

Since (using integration by parts again )
1∫

0

x ln2 (2x) dx =
1

4

1∫
0

2x ln2 (2x) · 2dx =
1

4

2∫
0

t ln2 tdt =
1

4

(
t2

2

(
ln2 t− ln t +

1

2

))2

0

=

1

2

(
ln2 2− ln 2 +

1

2

)
then I =

1

2

(
1

2

(
ln2 2− ln 2 +

1

2

)
− 1

4

(
ln2 2 + ln 2 +

1

2

))
=

1

8

(
ln2 2− 3 ln 2 +

1

2

)
≈ −0.137 37.

Solution 3 by Kee-Wai Lau, Hong Kong, China

Denote the integral of the problem by I. We show that

I =
2 ln2 2− 6 ln 2 + 1

16
. (1)

Let I1 =

∫ 1

0
x ln2(2x)dx, I2 =

∫ 1

0
x ln2

(√
1 + x−

√
1− x

)
dx and

15



I3 =

∫ 1

0
x ln2

(√
1 + x−

√
1− x

)
dx. Using the identity ab =

(a + b)2 − a2 − b2

2
with

a = ln
(√

1 + x−
√

1− x
)

and b = ln
(√

1 + x +
√

1− x
)
, we see that

I =
1

2
(I1 − I2 − I3) . (2)

To evaluate I1, I2, and I3, we need the known result, readily proved by differentiation,
that for nonnegative integer n,∫

xn ln2 xdx = xn+1

(
ln2 x

n + 1
− 2 lnx

(n + 1)2
+

2

(n + 1)3

)
+ constant (3)

Since I1 =
1

4

∫ 2

0
x ln2 xdx, so by (3) we have

I1 =
2 ln2−2 ln 2 + 1

4
. (4)

Since (
√

1 + x−
√

1− x)2 = 2(1−
√

1− x2), so

I2 =
1

4

∫ 1

0
x ln2

(
2
(
1−

√
1− x2

))
=

1

8

∫ 1

0
ln2
(
2
(
1−
√

1− x
))

dx.

By the substitution y = 2(1−
√

1− x), so that x = y − y2

4
, we obtain

I2 =
1

16

∫ 2

0
(2− y) ln2 ydy. By (3) we have

I2 =
2 ln2 2− 6 ln 2 + 7

16
. (5)

By using the identity
(√

1 + x +
√

1− x
)2

= 2
(
1 +
√

1− x2
)
, we obtain

I3 =
1

4

∫ 1

0
x ln2

(
2
(
1 +

√
1− x2

))
dx =

1

8

∫ 1

0
x ln2

(
2
(
1 +
√

1− x
))

dx.

By the substitution y = 2
(
1 +
√

1− x) , so that x = y − y2

4
, we obtain

I3 =
1

16

∫ 4

2
(y − 2) ln2 y dy. By (3),we have

I3 =
2 ln2 2 + 10 ln 2− 5

16
. (6)

Now by (2), (4), (5) and (6), we obtain (1) and this completes the solution.

Editor’s comment: Ed Gray of Highland Beach, FL transformed the given integral
into

1

4

∫ √2
2

(
2y − y3

)
ln y (ln(2− y) + ln(2 + y)) dy
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and then he converted the various ln functions into series expansions to obtain a
polynomial in y. This gave the approximate value of the integral as listed above.

Also solved (in closed form) by Paolo Perfetti, Department of Mathematics,
“Tor Vergata” University, Rome, Italy, and the proposer.

Comment by the proposer, Ovidiu Furdui: It is worth mentioning this logarithmic
integral is missing from the book by Gradshteyn and Ryzhik, Tables of Integrals, Series
and Products, Sixth Edition, Academic Press, 2000.

Late Solutions

Late solutions to 5271 and to 5273 were received by Paul M. Harms of North
Newton, KS and from David E. Manes, SUNY College at Oneonta, NY. Their
solutions were mailed on time but they got caught up in the Christmas rush mail, and
arrived on my desk after the solutions to these problems had been published.
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