
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
May 15, 2018

5487: Proposed by Kenneth Korbin, New York, NY

Given that
(x+ 1)4

x(x− 1)2
= a with x =

b+
√
b−
√
b

b−
√
b−
√
b
. Find positive integers a and b.

5488: Proposed by Daniel Sitaru, “Theodor Costescu” National Economic College,
Drobeta, Turnu-Severin, Mehedinti, Romania

Let a, and b be complex numbers. Solve the following equation:

x3 − 3ax2 + 3(a2 − b2)x− a3 + 3ab2 − 2b3 = 0.

5489: Proposed by D.M. Bătinetu-Giurgiu, Bucharest, Romania, and Neculai Stanciu,
“George Emil Palade” School Buzău, Romania

If a > 0, compute

∫ a

0

(
x2 − ax+ a2

)
arctan(ex − 1)dx.

5490: Proposed by Moshe Stupel, “Shaanan” Academic College of Education and
Gordon Academic College of Education, and Avi Sigler, “Shaanan” Academic College of
Education, Haifa, Israel

Triangle ABC whose side lengths are a, b, and c lies in plane P . The
segmentA1A, BB1, CC1 satisfy:

A1A ⊥ P, B1B ⊥ P, C1C ⊥ P,

where A1A = a, B1B = b and C1C = c, as shown in the figure. Prove that 4A1B1C1 is
acute -angled.
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5491: Proposed by Roger Izard,Dallas, TX

Let O be the orthocenter of isosceles triangle ABC, AB = AC. Let OC meet the line
segment AB at point F. If m = FO, prove that c4 ≥ m4 + 11m2c2.

5492: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let a, b, c, d be four positive numbers such that ab+ ac+ ad+ bc+ bd+ cd = 6. Prove
that√

abc

a+ b+ c+ 3d
+

√
bcd

b+ c+ d+ 3a
+

√
cda

c+ d+ a+ 3b
+

√
dab

d+ a+ b+ 3c
≤ 2

√
2

3
.

Solutions

5469: Proposed by Kenneth Korbin, New York, NY

Let x and y be positive integers that satisfy the equation 3x2 = 7y2 + 17. Find a pair of
larger integers that satisfy this equation expressed in terms of x and y.

Solution 1 by Bruno Salugueiro Fanego, Viveiro, Spain
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It suffices to find a pair of the type (ax+ by, cx+ dy) where a, b, c, and d are positive
integers and 3(ax+ by)2 − 7(cx+ dy)2 = 3x2 − 7y2.

Since (ax+ by)2 − 7(cx+ dy)2 = (3a2 − 7c2)x2 + (3b2 − 7d2)y2 + 2(3ab− 7cd)xy, it is
sufficient that a, b, c, and d satisfy the relations:

3a2 − 7b2 = 3
3b2 − 7d2 = −7
3ab− 7cd = 0.

The pair (a, c) = (55, 36) of positive integers verifies 3a2 − 7b2 = 3, and if it assumed
that d = a = 55 then it only remains to find a positive integer b such that
3 · b− 7 · 36 = 0 and 3b2 − 7 · 552 = −7.

Since b = 84 satisfies 3b2 − 7 · 552 = −7, the pair of larger integers
(55x+ 84y, 36x+ 55y) solves the problem.

Solution 2 by Ed Gray, Highland Beach, FL

Clearly, by inspection, the equation is satisfied by x = 8, y = 5. Let the larger integers
which satisfy the equation be x+ k = 8 + k and y +m = 5 +m then we have:

1. 3(8 + k)2 = 7(5 +m)2 + 17, expanding
2. 3(64 + 16k + k2) = 7(25 + 10m+m2) + 17
3. 192 + 48k + 3k2 = 175 + 70m+ 7m2 + 17
4. 48k + 3k2 = 70m+ 7m2. Let (k ,m) = r . So,
5. k = ra,m = rb, (a, b) = 1, and substituting into 4)
6. 48ra+ 3r2a2 = 70rb+ 7r2b2

7. 48a+ 3ra2 = 70b+ 70rb2

8. 3a(16 + ra) = 7b(10 + rb). Suppose
9. 3a = 10 + rb and that

10. 7b = 16 + ra. Multiply step 9 by a and step10 by b
11. 3a2 = 10a+ arb
12. 7b2 = 16b+ arb
13. 3a2 − 7b2 = 10a− 16b
14. 3a2 − 10a = 7b2 − 16b, and by inspection b = 4, a = 6
15. 3a2 − 10a = 3(6)2 − (10)(6) = 108a2 − 60 = 48
16. 7b2 − 16b = 7(4)2 − (16)(4) = 112− 64 = 48. From step 10
17. 7b = 16 + ra or (7)(4) = 28 = 16 + 6r , and r = 2. From step 5
18. k = ra = (2)(16) = 12, m = rb = (2)(4) = 8.

Hence the larger integers are x+ k = x+ 12 = 20 and y +m = y + 8 = 13.

As a check, substituting (20, 13) into 3x2 = 7y2 + 17, gives equality.

Solution 3 by David E. Manes, Oneonta, NY

We will show that if (x, y) is a solution of 3x2 = 7y2 + 17, then (55x+ 84y, 36x+ 55y) is
another solution of this equation. Furthermore, all positive integer solutions of this
equation are given by
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xn =

(
4 +

5ε
√

21

6

)
(55 + 12

√
21)n +

(
4− 5ε

√
21

6

)
(55− 12

√
21)n,

yn =

(
4
√

21

7
+

5ε

2

)
(55 + 12

√
21)n +

(
−4
√

21

7
+

5ε

2

)
(55− 12

√
21)n,

where n ≥ 1 and ε = ±1.
Re-write the equation as (1) 3x2 − 7y2 − 17 = 0 and note that the two least positive
solutions (x, y) are (8, 5) and (20, 13). Construct the recurrent sequences

xn+1 = αxn + βyn

yn+1 = γxn + δyn,

where α, β, γ and δ are unknowns and assume that (xn+1, yn+1) is a solution of (1).
Then 3(αxn + βyn)2 − 7(γxn + δyn)2 − 17 = 0 which expands to

(3α2 − 7γ2)x2n + (3β2 − 7δ2)y2n + (6αβ − 14γδ)xnyn − 17 = 0.

Comparing this equation with (1), we get

(2) 3α2 − 7γ2 = 3, (3) 3β2 − 7δ2 = −7, (4) 3αβ = 7γδ.

Squaring equation (4), we get (3α2)(3β2) = 49γ2δ2. Using (2) and (3), one obtains

(3 + 7γ2)(−7 + 7δ2) = 49γ2δ2 or 3δ2 − 7γ2 = 3.

Subtracting this equation from (2) results in α = ±δ. Substituting this value in (4), we

get 3(±δ)β = 7γδ or β = ±7

3
γ. Finally, substituting this value in (3) along with δ = ±α

yields the equation 3α2 − 7γ2 = 3 which is equation (2). The smallest positive integer

solution of this equation is α = 55, γ = 36 so that β =
7

3
γ = 84. Since we want positive

solutions only, we let

xn+1 = αxn +
7

3
γyn = 55xn + 84yn

yn+1 = γxn + αyn = 36xn + 55yn.

Define the 2× 2 matrix A over the reals as follows: A =

(
55 84
36 55

)
. By construction, if(

x
y

)
is a positive integer solution vector of equation (1), then A

(
x
y

)
=

(
55x+ 84y
36x+ 55y

)
is

also a solution vector with larger integers. Let

(
x0
y0

)
=

(
8
5

)
, and

(
x1
y1

)
=

(
20
13

)
. Then

all positive integer solutions of equation (1) are given by(
x′n
y′n

)
= An

(
8
5

)
and

(
x′′n
y′′n

)
= An

(
20
13

)

for n ≥ 1. Noting that A

(
8
−5

)
=

(
20
13

)
, we can shorten the above description to

(
xn
yn

)
= An

(
8
ε5

)
,
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where n ≥ 1 and ε = ±1. To get a closed form expression for the positive integer
solutions of equation 3x2 − 7y2 − 17 = 0, we note that A has two distinct eigenvalues
λ1 = 55 + 12

√
21 and λ2 = 55− 12

√
21 with corresponding eigenvectors −→v1 = (

√
21, 3)

and −→v2 = (−
√

21, 3). Therefore, A is diagonalizable; that is, there exists a diagonal

matrix D =

(
λ1 0
0 λ2

)
, where λ1, λ2 are the eigenvalues of A and an invertible matrix

P =

(√
21 −

√
21

3 3

)
consisting of the two eigenvectors in columns such that

P−1AP = D. Therefore, A = PDP−1 so that for each positive integer n,
An = PDnP−1. Hence, (

xn
yn

)
= An

(
8
ε5

)
=
(
PDnP−1

)( 8
ε5

)
,

which computationally yields

xn =

(
4 +

5ε
√

21

6

)
(55 + 12

√
21)n +

(
4− 5ε

√
21

6

)
(55− 12

√
21)n,

yn =

(
4
√

21

7
+

5ε

2

)
(55 + 12

√
21)n +

(
−4
√

21

7
+

5ε

2

)
(55− 12

√
21)n,

where n ≥ 1 and ε = ±1.
Some examples of solutions (xn, yn) to the equation 3x2 = 7y2 − 17 with ε = 1 are
(x1, y1) = (860, 563), (x2, y2) = (94592, 61925), (x3, y3) = 10 404 260, 6 811 187) and
(x4, y4) = (1 144 374 008, 749 168 645). Examples of solutions with ε = −1 are
(x1, y1) = (20, 13), (x2, y2) = (2192, 1435), (x3, y3) = (241100, 157837) and
(x4, y4) = (26 518 808, 17 360 635).

Solution 4 by Jeremiah Bartz, University of North Dakota, Grand Forks, ND

Put z = 3x and rewrite 3x2 = 7y2 + 17 as z2 − 21y2 = 51. This is a Pell-like equation
with two classes of solutions with initial solutions (z, y) of (24, 5) and (60, 13). The
fundamental solution of the corresponding Pell equation z2 − 21y2 = 1 is 55 + 12

√
21.

From Pell theory, solutions can be generated via
zi+1 + yi+1

√
21 = (zi + yi

√
21)(55 + 12

√
21). This is equivalent to

zi+1 = 55zi + 252yi

yi+1 = 12zi + 55yi

or back substituting

xi+1 = 55xi + 84yi

yi+1 = 36xi + 55yi.

Thus (xi+1, yi+1) is a larger pair of positive integer solutions to 3x2 = 7y2 + 17 than the
positive integer solutions (xi, yi). The initial solutions are listed below and separated by
class.

i xi yi xi yi
1 8 5 20 13
2 860 563 2192 1435
3 94592 61925 241100 157837
4 10404260 6811187 26518808 17360635
5 1144374008 749168645 2916827780 1909512013
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Editor′s notes: Kenneth Korbin, proposer of problem 5469 stated the following:

Given the sequence t = (· · · , 33, 7, 2, 3, 13, · · · ) with 5tN = tN−1 + tN+1. Let a and b be a

pair of consecutive terms in this sequence with both odd. If x =
a+ b

2
, y =

a− b
2

then

3x2 = 7y2 + 17. Example : x =
33 + 7

2
, y =

33− 7

2
.

Brian D. Beasley of Presbyterian College in Clinton, SC noted that using

Brahmagupta’s identity (see [1]), which notes that if x21 −Ny21 = k1 and x22 −Ny22 = k2,
then

(x1x2 +Ny1y2)
2 −N(x1y2 + x2y1)

2 = k1k2.

Since 552 −
(
7
3

)
362 = 1, if x and y are positive integers with x2 −

(
7
3

)
y2 = 17

3 , then

(55x+ 7
3 · 36y)2 − 7

3 (55y + 36x)2 = 17
3 .

Hence the solution (x, y) produces the larger solution (55x+ 84y, 55y + 36x).

Reference:

[1] https://en.wikipedia.org/wiki/Brahmagupta%27s identity

David Stone and John Hawkins, both at Georgia Southern University in
Statesboro, GA approached the problem by looking at the graph of the given
statement as a hyperbola, with the question asking us to prove that this graph contains
infinitely many lattice points with both coordinates being integers. They did this and
then listed a few of the lattice points, two of them being (94592, 61925) and
(241100, 157837). They went on to state the following:

The asymptotes of the given hyperbola are y = ±
√

3

7
x ≈ 0.6546536707x. Our lattice

points demonstrate the closeness of the curve to the asymptote. We compute
y

x
:

6129

94592
≈ 0.6546536705

157837

241100
≈ 0.6546536707.

Very close! We’d need a piece of graph paper the size of a football field to see that these
points are on the hyperbola but not on the asymptote.

Also solved by Brian D. Beasley, Presbyterian College, Clinton, SC;
Anthony Bevelacqua, University of North Dakota, Grand Forks, ND;
Kee-Wai Lau, Hong Kong, China; Ioannis D. Sfikas, National and
Kapodistrian University of Athens, Athens, Greece; Trey Smith, Angelo
State University, San Angelo, TX; Albert Stadler, Herrliberg, Switzerland;
David Stone and John Hawkins, Georgia Southern University, Statesboro,
GA; Anna V. Tomova, Varna, Bulgaria, and the proposer.

5470: Proposed by Moshe Stupel, “Shaanan” Academic College of Education and
Gordon Academic College of Education, and Avi Sigler, “Shaanan” Academic College of
Education, Haifa, Israel
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Prove that there are an infinite number of Heronian triangles (triangles whose sides and
area are natural numbers), whose side lengths are three consecutive natural numbers.

Solution 1 by Kenneth Korbin, New York, NY

Given a Heronian Triangle with consecutive integer length sides (b− 1, b, b+ 1). Then, a
larger such triangle has sides (b2 − 3, b2 − 2, b2 − 1), and another such triangle has sides(
−1 + 2b+

√
3b2 − 12, 2b+

√
3b2 − 12, 1 + 2b+

√
3b2 − 12

)
.

Therefore there are infinitely many such triangle. Examples, (3, 4, 5), (13, 14, 15), etc.

Solution 2 by Albert Stadler, Herrliberg, Switzerland

Let (n− 1, n, n+ 1) be the sides of the triangle. Then the semiperimeter is s =
3n

2
. The

area is given by Heron’s formula as:√
s(s− n+ 1)(s− n)(s− n− 1) =

n

4

√
3(n+ 2)(n− 2). (1)

Clearly n must be even if (1) represents an integer. We must show that there are
infinitely many pairs of integers (m,n) such that 3(2n+ 2)(2n− 2) = 4m2 or
equivalently m2 − 3n2 = −3. We see that m must be divisible by 3 and we need
therefore to find pairs of integers (m,n) such that n2 − 3m2 = 1. This is Pell’s equation

whose general solution is given by n−
√

3m =
(
2−
√

3
)k

, where k is an integer. We

conclude that (1) is an integer if and one if n =
(
2−
√

3
)k

+
(
2 +
√

3
)k
, k = 0, 1, 2, etc.

Solution 3 by Ioannis D. Sfikas, National and Kapodistrian University of
Athens, Athens, Greece

A triangle whose sides and area are rational numbers is called a rational triangle. If the
rational triangle is right-angled, it is called a right-angled rational triangle or a rational
Pythagorean triangle or a numerical right triangle. If the sides of a rational triangle is of
integer length, it is called an integer triangle. If further these sides have no common
factor greater than unity, the triangle called primitive integer triangle. If the integer
triangle is right-angled, it is called a Pythagorean triangle. A Heronian triangle (named
after Heron of Alexandria) is an integer triangle with the additional property that its
area is also an integer. A Heronian triangle is called a primitive Heronian triangle if
sides have no common factor greater than unity. In the 7th century, the Indian
mathematician Brahmagupta studied the special case of triangles with consecutive
integer sides.

Assume that the consecutive sides of a Brahmagupta triangle are d− 1, d, d+ 1 , where

d > 4 is a positive integer. The semiperimeter is s =
3d

2
, and by Heron’s formula the

area A is

A =
d

2

√√√√3

[(
d

2

)2

− 1

]
. (1)

But A must also be an integer, then the base d of the triangle must be even and the
altitude h of the triangle must be an integer multiple of 3 since 16A2 = 3d2(d2 − 4).

Since A =
dh

2
, this equation reduces to
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4h2 = 3(d2 − 4). (2)

If d were odd, then the factors on the right side of (2) would all be odd, a contradiction.
Thus d is even and we may write d = 2y (y is a positive integer). The area of the
triangle is then A = hy , and it follows that h is a rational number. But

h2 = 3(y2 − 4). (3)

is an integer and h itself has to be an integer and hence a multiple of 3. If h = 3x, we
reduce (3) to the Pell equation y2 − 3x2 = 1. The Pell equation has an infinity of integer
solutions. If (x, y) = (U, T ), where T > 0, U > 0 the solution with least positive x, all
the solutions are given by

xy
√

3 = ±
(
T + U

√
3
)n
,

where n is an arbitrary integer (Mordell, 1969, p. 53).

[1] Mordell, L.J. (1969). Diophantine equations. London Academic Press, Inc.

Solution 4 by Paul M. Harms, North Newton, KS

Let n be a natural number and let n− 1 and n+ 1 be the sides of the triangle. To be a
triangle, n must be at least 3. If s is the semi-perimeter, the area of this triangle is

√
s(s− (n− 1))(s− n)(s− (n+ 1)) =

√
3n

2

(n
2
− 1
)(n

2
+ 1
)

=
n

22

√
3 (n2 − 4).

For area to be a natural number one requirement is that 3
(
n2 − 4

)
be the square of a

natural number. Since 3 is a factor inside the square root we need 3
(
n2 − 4

)
= (3t)2 for

some natural number t. The last equation is equivalent to n2 − 3t2 = 4. Letting n = 2x
and t = 2y where x and y are natural numbers, the equation becomes x2 − 3y3 = 1
which is a Pell equation. One solution is x = x1 = 2 and y = y1 = 1. There exist an
infinite number of solutions of natural numbers found by equating coefficients of the

equation xk + yk
√

3 =
(
2 +
√

3
)k

for k = 1, 2, 3, 4, etc.

For example, when k = 3, x3 = 26 and y3 = 15. In this case, the n for the triangle given
above is n = 2x3 = 52. We n = 2xk we need to make sure that the area is a natural
number. Replacing n by 2xk in the area formula, we obtain

xk
2

√
4(3)

(
x2k − 1

)
= xk

√
3
(
x2k − 1

)
= xk (3yk) .

Thus the area is the product of natural numbers so it is a natural number.

Editor ′s comments: Bruno Salgueiro Fanego of Viveiro, Spain mentioned in his
solution that:
“Discussions of the more general problem of finding all the Heronian triangles whose
side lengths are in arithmetic progression can be found, for example, in the articles
Heron Triangles with Sides in Arithmetic Progression and Heronian Triangles with Sides
in Arithmetic Progression: An Inradius Perspective by J. A. MacDougall and by Herb
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Bailey and William Gosnell, respectively.”(
http://www.jstor.org/stable/10.4169/math.mag.85.4.290

)
;

Mathematics Magazine Vol. 85, No. 4 (October 2012), pp. 290-294.

This generalization was also mentioned in the solution submitted by David Stone and
John Hawkins both of Georgia Southern University in Statesboro, GA. They
showed in their solution that all primitive Heronian triangles with sides in arithmetic
progression had to have one as the difference in the side lengths. Having a common
difference greater than 1 produced a Heronian Triangle, but not a primitive one.

Brian D. Beasley of Presbyterian College in Clinton, SC also stated that this
problem is well-known, as noted in [1] (below), and that the sequence {ni} (giving the
infinitely many Heronian triangles with side lengths (ni − 1, ni, ni + 1), where {ni} is
defined by

n1 = 4, n2 = 14, and ni+2 = 4ni+1 − ni for i ≥ 1

may also be given in the closed form

ni = (2 +
√

3)i + (2−
√

3)i.

Reference:

[1] H. W. Gould, A Triangle with Integral Sides and Area, The Fibonacci Quarterly, Vol.
11(1) 1973, 27-39.

Also solved by Brian D. Beasley, Presbyterian College, Clinton, SC; Bruno
Salgueiro Fanego of Viveiro, Spain; Ed Gray, Highland Beach, FL; Kee-Wai
Lau, Hong Kong, China; David E. Manes, Oneonta, NY; Trey Smith, Angelo
State University, San Angelo, TX; David Stone and John Hawkins, Georgia
Southern University, Statesboro, GA, and the proposers.

5471: Proposed by Arkady Alt, San Jose, CA

For natural numbers p and n where n ≥ 3 prove that

n
1
np > (n+ p)

1
(n+1)(n+2)(n+3)···(n+p) .

Solution 1 by Moti Levy, Rehovot, Israel

The function f (x) = x
1
x is strictly monotone decreasing for x ≥ 3 > e, since

f
′
(x) = x

1
x

1
x2 (1− lnx) < 0, for x > e. Hence n+ p > n implies

n
1
n > (n+ p)

1
(n+p) .

It follows that (
n

1
n

) 1
np−1

>
(

(n+ p)
1

(n+p)

) 1
np−1

,

or (
n

1
n

) 1
np−1

= n
1
np > (n+ p)

1
(n+p)np−1 .

To complete the solution, we note that

(n+ p)
1

np−1(n+p) > (n+ p)
1

(n+1)(n+2)···(n+p) .
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Solution 2 by Kee-Wai Lau, Hong Kong, China

We prove the equivalent inequality

lnn

np
>

ln(n+ p)

(n+ 1)(m+ 2) · · · (n+ p)
, (1)

by induction on p.

For x ≥ 3 let f(x) =
lnx

x
. Since f ′(x) =

1− lnx

x2
< 0, so f(x) is strictly decreasing.

Hence f(n) > f(n+ 1) and so (1) is true for p = 1. Suppose that (1) is true for

p = k ≥ 1. By the induction assumption, we have

lnn

nk+1
=

1

n

(
lnn

nk

)
>

ln(n+ k)

n(n+ 1)(n+ 2) · · · (n+ k)
=

=
ln(n+ k + 1)

(n+ 1)(n+ 2) · · · (n+ k)(n+ k + 1)
+

k ln(n+ k)

n(n+ 1)(n+ 2) · · · (n+ k)2
+

+
1

(n+ 1)(n+ 2) · · · (n+ k)
(f(n+ k)− f(n+ k + 1))

>
ln(n+ k + 1)

(n+ 1)(n+ 2) · · · )n+ k)(n+ k + 1)
.

Thus (1) is true for p = k + 1 as well and hence true for all positive integers p.

Also solved by Ed Gray, Highland Beach, FL; Paolo Perfetti, Department of
Mathematics, Tor Vergata University, Rome, Italy; Ioannis D. Sfikas,
National and Kapodistrian University of Athens, Athens, Greece; Albert
Stadler, Herrliberg, Switzerland, and the proposer.

5472: Proposed by Francisco Perdomo and Ángel Plaza, both at Universidad Las Palmas
de Gran Canaria, Spain

Let α, β, and γ be the three angles in a non-right triangle. Prove that

1 + sin2 α

cos2 α
+

1 + sin2 β

cos2 β
+

1 + sin2 γ

cos2 γ
≥ 1 + sinα sinβ

1− sinα sinβ
+

1 + sinβ sin γ

1− sinβ sin γ
+

1 + sin γ sinα

1− sin γ sinα.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

We prove more generally that

1 + a2

1− a2
+

1 + b2

1− b2
+

1 + c2

1− c2
≥ 1 + ab

1− ab
+

1 + bc

1− bc
+

1 + ca

1− ca
, if 0 ≤ a, b, c < 1.

The special case follows by putting a = sinα, b = sinβ, c = sin γ, with α+ β + γ = π.
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Indeed,

1

2
· 1 + x2

1− x2
+

1

2
· 1 + y2

1− y2
− 1 + xy

1− xy
=

(x− y)2(1 + xy)

(1− x2)(1− y2)(1− xy)
≥ 0.

So

1 + a2

1− a2
+

1 + b2

1− b2
+

1 + c2

1− c2
−1 + ab

1− ab
−1 + bc

1− bc
−1 + ca

1− ca
=

(
1

2
· 1 + a2

1− a2
+

1

2
· 1 + b2

1− b2
− 1

2
· 1 + ab

1− ab

)
+(

1

2
· 1 + b2

1− b2
+

1

2
· 1 + c2

1− c2
− 1

2
· 1 + bc

1− bc

)
+

(
1

2
· 1 + c2

1− c2
+

1

2
· 1 + a2

1− a2
− 1

2
· 1 + ca

1− ca

)
≥ 0.

Solution 2 by Moti Levy, Rehovot, Israel

Let a = sinα, b = sinβ and c = sin γ.

Then the inequality becomes

1 + a2

1− a2
+

1 + b2

1− b2
+

1 + c2

1− c2
≥ 1 + ab

1− ab
+

1 + bc

1− bc
+

1 + ca

1− ca
,

and since 1 +
2x

1− x2
=

1 + x2

1− x2
, then it is equivalent to the following inequality,

a2

1− a2
+

b2

1− b2
+

c2

1− c2
≥ ab

1− ab
+

bc

1− bc
+

ca

1− ca
, 0 ≤ a, b, c, < 1.

The function

f (x) :=
x2

1− x2
(1)

is monotone increasing and convex in 0 ≤ x < 1, since f
′
(x) =

2x

(1− x2)2
≥ 0, and

f
′′

(x) = 2
3x2 + 1

(1− x2)3
> 0 for 0 ≤ x < 1.

By definition (1) the right hand side is

ab

1− ab
+

ca

1− ca
+

bc

1− bc
= f

(√
ab
)

+ f
(√
ca
)

+ f
(√

bc
)
,

and the left hand side is

a2

1− a2
+

b2

1− b2
+

c2

1− c2
= f (a) + f (b) + f (c) .

Without loss of generality, we may assume that a ≥ b ≥ c. Then the vector (a, b, c)

majorizes the vector

(
a+ b

2
,
c+ a

2
,
b+ c

2

)
.

By the Majorizing Inequality,

f (a) + f (b) + f (c) ≥ f
(
a+ b

2

)
+ f

(
c+ a

2

)
+ f

(
b+ c

2

)
. (2)

By the AM-GM inequality
a+ b

2
≥
√
ab,

c+ a

2
≥
√
ca and

b+ c

2
≥
√
bc. The function

f (x) is monotone increasing, hence

f

(
a+ b

2

)
+ f

(
c+ a

2

)
+ f

(
b+ c

2

)
≥ f

(√
ab
)

+ f
(√
ca
)

+ f
(√

bc
)
. (3)
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Inequalities (2) and (3) imply the required result.
In order to make this solution self-contained, the definition of majorizing and the
Majorizing Inequality are explained here.
The explanations are excerpted from a nice short article by Murray S. Klamkin
(1921-2004) who was one of the greatest problems composer.
M. S. Klamkin, On a “Problem of the Month”, Crux Mathematicorum, Volume 28,
Number 2, page 86, 2002.
“If A and B are vectors (a1, a2, . . . , an) , (b1, b2, . . . , bn) where a1 ≥ a2 ≥ . . . ≥ an,
b1 ≥ b2 ≥ . . . ≥ bn, and a1 ≥ b1, a1 + a2 ≥ b1 + b2,
a1 + a2 + · · ·+ an−1 ≥ b1 + b2 + · · ·+ bn−1, a1 + a2 + · · ·+ an = b1 + b2 + · · ·+ bn, we say
that A majorizes B and write it as A � B. Then, if F is a convex function,

F (a1) + F (a2) + · · ·+ F (an) ≥ F (b1) + F (b2) + · · ·+ F (bn) .”

Also solved by Arkady Alt, San Jose, CA; Hatef I. Arshagi, Guilford
Technical Community College, Jamestown, NC; Soumava Chakraborty,
Kolkata, India; Pedro Acosta De Leon, Massachusetts Institute of
Technology Cambridge, MA; Bruno Salgueiro Fanego, Viveiro, Spain. Ed
Gray, Highland Beach, FL; Kee-Wai Lau, Hong Kong, China; Ioannis D.
Sfikas, National and Kapodistrian University of Athens, Athens, Greece, and
the proposers.

5473: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let x1, · · · , xn be positive real numbers. Prove that for n ≥ 2, the following inequality
holds: (

n∑
k=1

sinxk

((n− 1)xk + xk+1)
1/2

)(
n∑

k=1

cosxk

((n− 1)xk + xk+1)
1/2

)
≤ 1

2

n∑
k=1

1

xk.

(Here the subscripts are taken modulo n.)

Solution 1 by Moti Levy, Rehovot, Israel

The following three facts will be used in this solution:
1) (

n∑
k=1

ak sinxk

)(
n∑

k=1

ak cosxk

)
≤ 1

2

(
n∑

k=1

ak

)2

. (4)

This can be shown by expanding the left hand side and using the facts that
sinxk cosxk ≤ 1

2 and sinxj cosxk + cosxj sinxk ≤ 1.
2) (

n∑
k=1

√
ak
n

)2

≤
n∑

k=1

ak
n
. (5)

This is implied from M 1
2
≤M1 where Mk are power means.

3)
1

px+ qy
≤ 1

2

(
1

x
+

1

y

)
, p, q ≥ 0 and p+ q = 1. (6)

This can be shown by Jensen’s inequality.

12



Now let

ak :=
1

((n− 1)xk + xk+1)
1
2

.

Then

LHS :=

(
n∑

k=1

sinxk

((n− 1)xk + xk+1)
1
2

)(
n∑

k=1

cosxk

((n− 1)xk + xk+1)
1
2

)

=

(
n∑

k=1

ak sinxk

)(
n∑

k=1

ak cosxk

)
≤ 1

2

(
n∑

k=1

ak

)2

.

By (5),

LHS ≤ 1

2

(
n∑

k=1

ak

)2

≤ n

2

n∑
k=1

ak =
n

2

n∑
k=1

1

(n− 1)xk + xk+1

=
1

2

n∑
k=1

1
n−1
n xk + 1

nxk+1

.

Set p = n−1
n and q = 1

n , then by (6)

1

2

n∑
k=1

1
n−1
n xk + 1

nxk+1

≤ 1

4

n∑
k=1

(
1

xk
+

1

xk+1

)
=

1

2

n∑
k=1

1

xk
.

Solution to 2 by Kee-Wai Lau, Hong Kong, China

Since 2ab ≤ a2 + b2 for any real numbers a and b, so by the Cauchy-Schwarz inequality,
we have

2

(
n∑

k=1

sinxk

((n− 1)xk + xk+1)
1/2

)(
n∑

k=1

cosxk

((n− 1)xk + xk+1)
1/2

)

≤

(
n∑

k=1

sinxk

((n− 1)xk + xk+1)
1/2

)2

+

(
n∑

k=1

cosxk

((n− 1)xk + xk+1)
1/2

)2

≤

(
n

n∑
k=1

sin2 xk
(n− 1)xk + xk+1

+
n∑

k=1

cos2 xk
(n− 1)xk + xk+1

)

= n

n∑
k=1

1

(n− 1)xk + xk+1
.

Applying Jensen’s inequality to the convex function
1

x
for x > 0, we have

n− 1

xk
+

1

xk+1
≥ n

(
1

(n−1)xk+xk+1

n

)
=

n2

(n− 1)xk + xk+1
.
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It follows that n
n∑

k=1

1

(n− 1)xk + xk+1
≤ 1

n

(
n∑

k=1

n− 1

xk
+

n∑
k=1

1

xk+1

)
=

n∑
k=1

1

x
.

Thus the inequality of the problem holds.

Solution 3 by Arkady Alt , San Jose, CA

By Cauchy Inequality
n∑

k=1

sinxk

((n− 1)xk + xk+1)
1/2
≤
√

n∑
k=1

1

(n− 1)xk + xk+1
·
√

n∑
k=1

sin2 xk

and
n∑

k=1

cosxk

((n− 1)xk + xk+1)
1/2
≤
√

n∑
k=1

1

(n− 1)xk + xk+1
·
√

n∑
k=1

cos2 xk.

Also by AM-GM inequality√
n∑

k=1

sin2 xk ·
√

n∑
k=1

cos2 xk ≤
1

2

(
n∑

k=1

sin2 xk +
n∑

k=1

cos2 xk

)
=

1

2

n∑
k=1

(
sin2 xk + cos2 xk

)
=
n

2
.

Thus,

(
n∑

k=1

sinxk

((n− 1)xk + xk+1)
1/2

)(
n∑

k=1

cosxk

((n− 1)xk + xk+1)
1/2

)
≤ n

2

n∑
k=1

1

(n− 1)xk + xk+1

and it remains to prove the inequality

n

2

n∑
k=1

1

(n− 1)xk + xk+1
≤ 1

2

n∑
k=1

1

xk
⇐⇒

n∑
k=1

1

(n− 1)xk + xk+1
≤ 1

n

n∑
k=1

1

xk
.

By the Cauchy Inequality

((n− 1)xk + xk+1)

(
n− 1

xk
+

1

xk+1

)
≥ n2 ⇐⇒ 1

(n− 1)xk + xk+1
≤ 1

n2

(
n− 1

xk
+

1

xk+1

)
then

n∑
k=1

1

(n− 1)xk + xk+1
≤ 1

n2

n∑
k=1

(
n− 1

xk
+

1

xk+1

)
=

1

n

n∑
k=1

1

xk
.

Also solved by Ed Gray, Highland Beach, FL; Ioannis D. Sfikas, National and
Kapodistrian University of Athens, Athens, Greece; Albert Stadler, Herrliberg,
Switzerland, and the proposer.

5474: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

Let a, b ∈ <, b 6= 0. Calculate

lim
n→∞


1− a

n2
b

n

b

n
1 +

a

n2
.


n

.

Solution 1 by Bruno Salgueiro Fanego, Viveiro, Spain
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Let M =


1− a

n2
b

n

b

n
1 +

a

n2

. The eigenvalues of M are 1∓
√
b2n2 + a2

n2
.

Since they are distinct, M is diagonalizable. It can be obtained by following the

diagonalization of M : M = PDP−1, where D =


1−
√
b2n2 + a2

n2
0

0 1 +

√
b2n2 + a2

n2

 is the

diagonal matrix whose principal diagonal are its eigenvalues and

P =


−a−

√
b2n2 + a2

bn

−a+
√
b2n2 + a2

bn

1 1

 is the matrix whose columns are the

respective eigenvectors which form a basis of R2. Hence,

Mn = P ·Dn · P−1

=

−a−
√
b2n2+a2

bn
−a+

√
b2n2+a2

bn

1 1

 ·

(

1−
√
b2n2+a2

n2

)n
0

0
(

1 +
√
b2n2+a2

n2

)n
 ·

·


−bn

2
√
b2n2+a2

−a+
√
b2n2+a2

2
√
b2n2+a2

bn
2
√
b2n2+a2

a+
√
b2n2+a2

2
√
b2n2+a2

, that is Mn =

(
m11 m12

m21 m22

)
where

m11 = m22 =
an2

2
√
b2n6 + a2n4

((
1−

√(
b
n

)2
+
(

a
n2

)2)n

−
(

1 +

√(
b
n

)2
+
(

a
n2

)2)n)
+1

2

((
1−

√(
b
n

)2
+
(

a
n2

)2)n

+

(
1 +

√(
b
n

)2
+
(

a
n2

)2)n)
and

m12 = m21 =
bn3

2
√
b2n6 + a2n4

((
1 +

√(
b
n

)2
+
(

a
n2

)2)n

−
(

1−
√(

b
n

)2
+
(

a
n2

)2)n)
.

Thus, as n→∞,

m11 = m22 ∼
an2

2|b|n3

(
e
−n

√
( b
n)

2
+
(

a
n2

)2
− e

n

√
( b
n)

2
+
(

a
n2

)2)
+

1

2

(
e
−n

√
( b
n)

2
+
(

a
n2

)2
+ e

n

√
( b
n)

2
+
(

a
n2

)2)
∼

n→∞
a

2|b|n

(
e−|b| − e|b|

)
+

1

2

(
e−|b| + e|b|

) ∼
n→∞

0 +
1

2

(
e−|b| + e|b|

)
= cosh |b|

and as n→∞
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m12 = m21 ∼ bn3

2|b|n3

(
e

n

√
( b
n)

2
+
(

a
n2

)2
− e

−n

√
( b
n)

2
)+
(

a
n2

)2)

∼ b

2|b|n

(
e|b| − e−|b|

)
=

b

|b|
sinh |b|, so,

lim
n→∞

Mn =

 cosh |b| b
|b| sinh |b|

b
|b| sinh |b| cosh |b|

 .

Solution 2 by Brian Bradie, Christopher Newport University, Newport News, VA

Let

A =

 1− a

n2
b

n
b

n
1 +

a

n2

 .

The eigenvalues of A are

λ+ = 1 +
1

n2

√
a2 + n2b2 and λ− = 1− 1

n2

√
a2 + n2b2.

Because b 6= 0, these two eigenvalues are distinct, which implies that A is diagonalizable. An
eigenvector associated with λ+ is (

b
1

n
(a+

√
a2 + n2b2)

)
,

and an eigenvector associated with λ− is(
b

1

n
(a−

√
a2 + n2b2)

)
.

Thus, if we set

P =

(
b b

1

n
(a+

√
a2 + n2b2)

1

n
(a−

√
a2 + n2b2)

)
and

D =

 1 +
1

n2

√
a2 + n2b2 0

0 1− 1

n2

√
a2 + n2b2

 ,

then A = PDP−1 and An = PDnP−1. Now,

lim
n→∞

P =

(
b b
|b| −|b|

)
and lim

n→∞
P−1 = − 1

2b|b|

(
−|b| −b
−|b| b

)
.
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Moreover,

Dn =


(

1 +
1

n2

√
a2 + n2b2

)n

0

0

(
1− 1

n2

√
a2 + n2b2

)n

 ,

so

lim
n→∞

Dn =

(
e|b| 0

0 e−|b|

)
.

Thus,

lim
n→∞

An = − 1

2b|b|

(
b b
|b| −|b|

) (
e|b| 0

0 e−|b|

) (
−|b| −b
−|b| b

)
=

(
cosh |b| b

|b| sinh |b|
b
|b| sinh |b| cosh |b|

)

=

(
cosh b sinh b
sinh b cosh b

)
.

Remark: This problem is very similar to Problem 1113 from the November 2017 issue of The
College Mathematics Journal.

Editor′s comment : David Stone and John Hawkins both at Georgia Southern Uni-
versity in Statesboro, GA accompanied their solution with the following comment: “At

first, we accidentally used 1− a

n2
in the (2, 2) spot of the matrix and the limit was the same.

Perhaps there is a lot of flexibility about this term (since the limit does not depend upon a).”

Also solved by Ulich Abel, Technische Hochschule Mittelhessen, Germany; Hatef
I. Arshagi, Guilford Technical Community College, Jamestown, NC; Kee-Wai Lau,
Hong Kong, China; Moti Levy, Rehovot, Israel; Ioannis D. Sfikas, National and
Kapodistrian University of Athens, Greece; Francisco Perdomo and Ángel Plaza,
Universidad de Las Palmas de Gran Canaria, Spain; Albert Stadler, Herrliberg,
Switzerland; David Stone and John Hawkins, Georgia Southern University, States-
boro, GA; Anna V. Tomova, Varna, Bulgaria, and the proposer.

Late Solutions

A late solution was received from Paul M. Harms of Newton, KS to problem 5467.
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