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Solutions to the problems stated in this issue should be posted before
October 15, 2009

• 5068: Proposed by Kenneth Korbin, New York, NY

Find the value of √
1 + 2009

√
1 + 2010

√
1 + 2011

√
1 + · · ·.

• 5069: Proposed by Kenneth Korbin, New York, NY

Four circles having radii
1
14

,
1
15

,
1
x

and
1
y

respectively, are placed so that each of the circles is

tangent to the other three circles. Find positive integers x and y with 15 < x < y < 300.

• 5070: Proposed by Isabel Iriberri Dı́az and José Luis Dı́az-Barrero, Barcelona, Spain

Find all real solutions to the system

9(x2
1 + x2

2 − x2
3) = 6x3 − 1,

9(x2
2 + x2

3 − x2
4) = 6x4 − 1,

. . . . . . . . .
9(x2

n + x2
1 − x2

2) = 6x2 − 1.


• 5071: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let ha, hb, hc be the altitudes of 4ABC with semi-perimeter s, in-radius r and circum-radius R,
respectively. Prove that

1
4

(
s(2s− a)

ha
+

s(2s− b)
hb

+
s(2s− c)

hc

)
≤ R2

r

(
sin2 A + sin2 B + sin2 C

)
.

• 5072: Proposed by Panagiote Ligouras, Alberobello, Italy

Let a, b and c be the sides, la, lb, lc the bisectors, ma,mb,mc the medians, and ha, hb, hc the
heights of 4ABC. Prove or disprove that

a)
(−a + b + c)3

a
+

(a− b + c)3

b
+

(a + b− c)3

c
≥ 4

3

(
ma · la + lb · hb + hc ·mc

)
1



b) 3
∑
cyc

(−a + b + c)3

a
≥ 2

∑
cyc

[ma(la + ha)].

• 5073: Proposed by Ovidiu Furdui, Campia-Turzii, Cluj, Romania

Let m > −1 be a real number. Evaluate∫ 1

0
{lnx}xmdx,

where {a} = a− [a] denotes the fractional part of a.

Solutions

• 5050: Proposed by Kenneth Korbin, New York, NY

Given 4ABC with integer-length sides, and with 6 A = 120o, and with (a, b, c) = 1.
Find the lengths of b and c if side a = 19, and if a = 192, and if a = 194.

Solution 1 by Paul M. Harms, North Newton, KS

Using the law of cosines we have a2 = b2 + c2 − 2bc cos 120o = b2 + c2 + bc.

When a = 19 we have 192 = 361 = b2 + c2 + bc. The result b = 5, c = 16 with a = 19 satisfies
the problem.

Some books indicate that the Diophantine equation a2 = b2 + c2 + bc has solutions of the form

b = u2 − v2, c = 2uv + v2, and a = u2 + v2 + uv .

For the above u = 3, v = 2 and a = 19 = 32 + 22 + 2(3).

Let a2
1 = b2

1 + c2
1 + b1c1 be another Diophantine equation which has solutions of the form

b1 = u2
1 − v2

1, c1 = 2u1v1 + v2, and a1 = u1 + v2
1 + u1v1. Let u1 be the largest and v1 be the

smallest of the numbers {b, c}. If b = c, the Diophantine equation becomes a2
1 = 3b2

1 which has
no integer solutions. Suppose c > b. (If b > c, a procedure similar to that below can be used).

Let u1 = c and v1 = b. Then b1 = c2 − b2 and c1 = 2cb + b2. The expression
b2
1 + c2

1 + b1c1 = (c2 − b2)2 + (2cb + b2)2 + (c2 − b2)(2cb + b2) = (c2 + b2 + bc)2 = (a2)2 = a4 = a2
1.

In this case a1 = a2.

Now start with the above solution where a = 19, u = 3, v = 2, b = 5, and c = 16. For a = 192, let
u = 16 and v = 5. Then we have the solution b = 2312, c = 185 where
a2 = 194 = 231 + 1852 + 231(185).

For a = 194, let u = 231 and v = 185. Then b = 19136, c = 119695 and
a2 = 198 = 191362 + 1196952 + 19136(119695). Since 19 is not a factor of the b and c solutions
above, (a, b, c) = 1.

The solutions I have found are (19, 5, 16), (192, 231, 185), and (194, 19136, 119695).

Solution 2 by Bruno Salguerio Fanego, Viveiro, Spain

If 4ABC is such a triangle, by the cosine theorem a2 = b2 + c2 − 2bc cos A, that is

c2 + bc + b2 − a2 = 0, c =
−b±

√
4a2 − 3b2

2
and 4a2 − 3b2

2



must be positive integers and the latter a perfect square, with (a, b, c) = 1.

When a = 19, 0 < b ≤ 2 · 19/
√

3 ⇒ 0 < b ≤ 21; 4 · 192 − 3b2 is a positive perfect square for
b ∈ {24, 5} so c ∈ {5, 24}, and (a, b, c) = 1.

When a = 192, 0 < b ≤ 2 · 192/
√

3 ⇒ 0 < b ≤ 416; 4 · 194 − 3b2 is a positive perfect square
that is not a multiple of 19 for b ∈ {3 · 7 · 11, 5 · 37}, so c ∈ {5 · 37, 3 · 7 · 11}, and (a.b.c) = 1.

When a = 194, 0 < b ≤ 2 · 194/
√

3 ⇒ 0 < b ≤ 150481; 4 · 198 − 3b2 is a positive perfect square
that is not a multiple of 19 for b ∈ {5 · 37 · 647, 26 · 13 · 23}. So c ∈ {26 · 13 · 23, 5 · 37 · 647}, and
(a, b, c) = 1.

And reciprocally, the triangular inequalities are verified by a = 19, 16, 5, by a = 192, 231, 185,
and by a = 194, 119695, 19136, so there is a 4ABC with sides a, b and c with these integer
lengths, and with 6 A = 120o, and (a, b, c) = 1.

Thus, if a = 19, then {b, c} = {5, 16}; if a = 192, then {b, c} = {185, 231}, and if a = 194, then
{b, c} = {19136, 119695}.

Note: When a = 192, 4 · 194 − 3b2 is a perfect square for b ∈ {24 · 19, 3 · 7 · 11, 5 · 37, 5 · 19}.
When a = 194, 4 · 198 − 3b2 is a perfect square for
b ∈ {5 ·37 ·647, 24 ·193, 24 ·32 ·5 ·7 ·19, 3 ·7 ·11 ·192, 5 ·192 ·37, 17 ·19 ·163, 5 ·193, 26 ·13 ·23}.

Also solved by John Hawkins and David Stone (jointly), Statesboro, GA; David E.
Manes, Oneonta, NY; Boris Rays, Brooklyn, NY; David C.Wilson, Winston-Salem,
NC, and the proposer.

• 5051: Proposed by Kenneth Korbin, New York, NY

Find four pairs of positive integers (x, y) such that
(x− y)2

x + y
= 8 with x < y.

Find a formula for obtaining additional pairs of these integers.

Solution 1 by Charles McCracken, Dayton, OH

The given equation can be solved for y in term of x by expanding the numerator and
multiplying by the denominator to get

x2 − 2xy + y2 = 8((x + y) =⇒ y2 − (2x + 8)y + (x2 − 8x) = 0.

Solving this by the quadratic formula yields y = x + 4 + 4
√

x + 1.

Since the problem calls for integers we choose values of x that will make x + 1 a square.
Specifically

x = 3, 8, 15, 24, 35, · · · or
x = k2 + 2k, k ≥ 1

The first four pairs are (3, 15), (8, 24), (15, 35), (24, 48).

In general, x = k2 + 2k and y = k2 + 6k + 8, k ≥ 1.

Solution 2 by Armend Sh. Shabani, Republic of Kosova

The pairs are (3, 15), (8, 24), (15, 35), (24, 48). In order to find a formula for additional pairs we
write the given relation (y − x)2 = 8(x + y) in its equivalent form y − x = 2

√
2(x + y).

3



From this it is clear that x + y should be of the form 2s2, and this gives the system of equations:{
x + y = 2s2

y − x = 4s

The solutions to this system are x = s2 − 2s, y = s2 + 2s, and since the solutions should be
positive, we choose s ≥ 3.

Solution 3 by Boris Rays, Brooklyn, NY

Let {
x + y = a
y − x = b

Since x < y and a and b are positive integers, it follows that b2 = 8a and that b=2
√

2a. Since b
is a positive integer we may choose values of a so that 2a is a perfect square. Specifically, let
a = 22n−1, where n = 1, 2, 3, · · ·. Therefore, 2a = 2 · 22n−1 = 22n = (2n)2, where n = 1, 2, 3, · · · .
Similarly, b = 2n+1 n = 1, 2, 3, · · ·.
Substituting these values of a and of b into the original system gives:

x =
22n−1 − 2n+1

2
= 2n(2n−2 − 1)

y =
22n−1 + 2n+1

2
= 2n(2n−2 + 1)

and since we want x, y > 0 we choose n = 3, 4, 5, · · ·. The ordered triplets

(n, x, y) : (3, 8, 24), (4, 48, 80), (5, 224, 288), (6, 960, 1088).

satisfy the problem. It can also be easily shown that our general values of x and y also satisfy
the original equation.

Also solved by Brian D. Beasley, Clinton, SC; Elsie M. Campbell, Dionne T.
Bailey, and Charles Diminnie (jointly), San Angelo, TX; Pat Costello, Richmond,
KY; Michael C. Faleski, University Center, MI; Bruno Salgueiro Fanego, Viveiro,
Spain; Paul M. Harms, North Newton, KS; Jahangeer Kholdi (with John Viands
and Tyler Winn (students),Western Branch High School, Chesapeake, VA),
Portsmouth, VA; Tuan Le (student, Fairmont, High School), Anaheim, CA; David
E. Manes, Oneonta, NY; Melfried Olson, Honolulu, HI; Jaquan Outlaw (student,
Heritage High School) Newport News, VA and Robert H. Anderson (jointly),
Chesapeake, VA; Boris Rays, Brooklyn, NY; Vicki Schell, Pensacola, FL; David
Stone and John Hawkins (jointly), Statesboro, GA; David C. Wilson,
Winston-Salem, NC, and the proposer.

• 5052: Proposed by Juan-Bosco Romero Márquez, Valladolid, Spain

If a ≥ 0, evaluate: ∫ +∞

0
arctg

2a(1 + ax)
x2(1 + a2) + 2ax + 1− a2

dx

1 + x2
.

Solution by Kee-Wai Lau, Hong Kong, China

4



Denote the integral by I. We show that

I =



π

4
arctg

2a

1− a2
, 0 ≤ a < 1;

π2

8
, a = 1; (1)

π

4

(
π − arctg

2a

a2 − 1
− 4arctg

√
a4 + a2 − 1− a

1 + a2

)
, a > 1.

Let J =
∫ +∞

0

2a(ax2 + 2x + a)arctg(x)

(1 + x2)
(

(a2 + 1)x2 + 4ax + a2 + 1
)dx. Integrating by parts, we see that for

0 ≤ a < 1,

I =
∫ +∞

0
arctg

2a(1 + ax)
x2(1 + a2) + 2ax + 1− a2

d(arctg(x))

=
[
arctg

2a(1 + ax)
x2(1 + a2) + 2ax + 1− a2

arctg(x)
]+∞
0

−
∫ +∞

0
arctg(x)d

(
arctg

2a(1 + ax)
x2(1 + a2) + 2ax + 1− a2

)
= J.

For a ≥ 1, let ra =
√

a4 + a2 − 1− a

1 + a2
be the non-negative root of the quadratic equation

(1 + a2)x2 + 2ax + 1− a2 = 0 so that

I =
[
arctg

2a(1 + ax)
x2(1 + a2) + 2ax + 1− a2

arctg(x)
]ra

0

+
[
arctg

2a(1 + ax)
x2(1 + a2) + 2ax + 1− a2

arctg(x)
]+∞
ra

+ J

= −πarctg(ra) + J.

By substituting x =
1
y

and making use of the fact that arctg(1/y) =
π

2
− arctg(y) we obtain

J = 2a

∫ +∞

0

(ay2 + 2y + a)arctg(1/y)

(1 + y2)
(

(a2 + 1)y2 + 4ay + a2 + 1
)dy

5



= 2a

(
π

2

∫ +∞

0

(ay2 + 2y + a)

(1 + y2)
(

(a2 + 1)y2 + 4ay + a2 + 1
)dy

)
− J

so that J =
πa

2

∫ +∞

0

(ay2 + 2y + a)

(1 + y2)
(

(a2 + 1)y2 + 4ay + a2 + 1
)dy. Resolving into partial fractions

we obtain
J =

π

4

(∫ +∞

0

dy

1 + y2
+ (a2 − 1)

∫ +∞

0

dy

(1 + a2)y2 + 4ay + 1 + a2

)
.

Clearly, J =
π2

8
for a = 1. For p > 0, pr > q2, we have the well know result

∫ +∞

0

dy

py2 + 2qy + r
=

1√
pr − q2

arctg
q√

pr − q2
,

so that for a ≥ 0, a 6= 1

J =
π

4

(
π

2
+

a2 − 1
|a2 − 1|

arctg
2a

|a2 − 1|

)
.

Hence (1) follows and this completes the solution.

Also solved by Paolo Perfetti, Mathematics Department, University “Tor Vergata”,
Rome, Italy, and the proposer.

• 5053: Proposed by Panagiote Ligouras, Alberobello, Italy

Let a, b and c be the sides, r the in-radius, and R the circum-radius of 4ABC. Prove or
disprove that

(a + b− c)(b + c− a)(c + a− b)
a + b + c

≤ 2rR.

Solution by Dionne Bailey, Elsie Campbell, Charles Diminnie, and Roger
Zarnowski (jointly), San Angelo, TX

The given inequality is essentially the same as Padoa’s Inequality which states that

abc ≥ (a + b− c) (b + c− a) (c + a− b) ,

with equality if and only if a = b = c. We will prove this using the approach presented in [1].

Let x =
a + b− c

2
, y =

b + c− a

2
, and z =

c + a− b

2
. Then, x, y, z > 0 by the Triangle

Inequality and a = x + z, b = x + y, c = y + z. By the Arithmetic - Geometric Mean Inequality,

abc = (x + z)(x + y)(y + z)

≥ (2
√

xz)(2
√

xy)(2
√

yz)

= (2x)(2y)(2z)

= (a + b− c)(b + c− a)(c + a− b),

with equality if and only if x = y = z, i.e., if and only if a = b = c.

6



If A = Area(4ABC) and s =
a + b + c

2
, then

R =
abc

4A
and A = rs = r

(
a + b + c

2

)
,

which imply that 2rR =
abc

a + b + c
. Hence, the problem reduces to Padoa’s Inequality.

Reference:
[1] R. B. Nelsen, Proof Without Words: Padoa’s Inequality, Mathematics Magazine 79
(2006) 53.

Also solved by Scott H. Brown, Montgomery, AL; Michael Brozinsky, Central Islip,
NY; Bruno Salgueiro Fanego, Viveiro, Spain; Paul M. Harms, North Newton, KS;
Kee-Wai Lau, Hong Kong, China; Tuan Le (student, Fairmont High School),
Anaheim, CA; David E. Manes, Oneonta, NY; Manh Dung Nguyen (student,
Special High School for Gifted Students), HUS, Vietnam; Boris Rays, Brooklyn,
NY; David Stone and John Hawkins (jointly), Statesboro, GA, and the proposer.)

• 5054: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let x, y, z be positive numbers such that xyz = 1. Prove that

x3

x2 + xy + y2
+

y3

y2 + yz + z2
+

z3

z2 + zx + x2
≥ 1.

Solution 1 by Ovidiu Furdui, Campia Turzii, Cluj, Romania

First we note that if a and b are two positive numbers then the following inequality holds

a2 − ab + b2

a2 + ab + b2
≥ 1

3
(1).

Let

S =
x3

x2 + xy + y2
+

y3

y2 + yz + z2
+

z3

z2 + zx + x2
.

We have,

S =
x3 − y3 + y3

x2 + xy + y2
+

y3 − z3 + z3

y2 + yz + z2
+

z3 − x3 + x3

z2 + zx + x2

= (x− y) +
y3

x2 + xy + y2
+ (y − z) +

z3

y2 + yz + z2
+ (z − x) +

x3

z2 + zx + x2

=
y3

x2 + xy + y2
+

z3

y2 + yz + z2
+

x3

z2 + zx + x2
.

It follows, based on (1), that

S =
1
2

(S + S)

=
1
2

(
x3 + y3

x2 + xy + y2
+

y3 + z3

y2 + yz + z2
+

z3 + x3

z2 + zx + x2

)
=

1
2

(
(x + y)

x2 − xy + y2

x2 + xy + y2
+ (y + z)

y2 − yz + z2

y2 + yz + z2
+ (z + x)

z2 − xz + x2

z2 + zx + x2

)
7



≥ 1
2

(
x + y

3
+

y + z

3
+

z + x

3

)
=

x + y + z

3
≥ 3
√

xyz = 1, and the problem is solved.

Solution 2 by Manh Dung Nguyen (student, Special High School for Gifted
Students) HUS, Vietnam

Firstly, we have,

∑ x3 − y3

(x2 + xy + y2)
=
∑ (x− y)(x2 + xy + y2)

(x2 + xy + y2)
=
∑

(x− y) = 0.

Hence, ∑ x3

x2 + xy + y2
=
∑ y3

x2 + xy + y2
.

So it suffices to show that, ∑ x3 + y3

x2 + xy + y2
≥ 2.

On the other hand,

3(x2 − xy + y2)− (x2 + xy + y2) = 2(x− y)2 ≥ 0.

Thus, ∑ x3 + y3

x2 + xy + y2
=
∑ (x + y)(x2 − xy + y2)

x2 + xy + y2
=
∑ x + y

3
=

2(x + y + z)
3

.

By the AM-GM Inequality, we have,

x + y + z ≥ 3 3
√

xyz = 3,

so we are done.
Equality hold if and only if x = y = z = 1.

Solution 3 by Kee-Wai Lau, Hong Kong, China

It can be checked readily that,

x3

x2 + xy + y2
=

(2x− y)
3

+
(x + y)(x− y)2

3(x2 + xy + y2)
≥ (2x− y)

3
.

Similarly,
y3

y2 + yz + z2
≥ (2y − z)

3
,

z3

z2 + zx + x2
≥ (2z − x)

3
.

Hence by the arithmetic mean-geometric mean inequality, we have:

x3

x2 + xy + y2
+

y3

y2 + yz + z2
+

z3

z2 + zx + x2

≥ x + y + z

3

8



≥ 3
√

xyz

= 1.

Also solved by Dionne Bailey, Elsie Campbell and Charles Diminnie (jointly), San
Angelo, TX; Scott H. Brown, Montgomery, AL; Michael Brozinsky, Central Islip,
NY; Bruno Salgueiro Fanego, Viveiro, Spain; Tuan Le (student, Fairmont High
School), Anaheim, CA; Paolo Perfetti, Mathematics Department, University “Tor
Vergata”, Rome, Italy; Boris Rays, Brooklyn, NY; Armend Sh. Shabani, Republic
of Kosova, and the proposer.

• 5055: Proposed by Ovidiu Furdui, Campia Turzii, Cluj, Romania

Let α be a positive real number. Find the limit

lim
n→∞

n∑
k=1

1
n + kα

.

Solution 1 by Paolo Perfetti, Mathematics Department, University “Tor Vergata”,
Rome, Italy

Answer:

The limit is


0, if α > 1;
1, if 0 < α < 1;
ln 2, if α = 1.

Proof: Let α > 1.

Writing kα =
N∑

i=1

kα

N
, by the AGM we have

1
n + kα

=
1

n
2 + n

2 + kα

N + . . . + kα

N

≤ 1

n
2 +

(
n

2
kαN

NN

) 1
N+1

=
1

n
2 +

n
1

N+1 k
αN

N+1

2
1

N+1 N
N

N+1

≤ 1

n
1

N+1

1
2 +

k
αN

N+1

2
1

N+1 N
N

N+1



and we observe that αN/(N + 1) > 1 if N > 1/(α− 1). Thus we write

0 <
n∑

k=1

1
n + kα

≤ n−1/(N+1)
∞∑

k=1

1(
1
2 + k

αN
N+1

2
1

N+1 N
N

N+1

)
The series converges and the limit is zero.

Let α < 1. Trivially we have
n∑

k=1

1
n + kα

≤
n∑

k=1

1
n

= 1.

Moreover,
n∑

k=1

1
n + kα

≥
n∑

k=1

1
n

1
1 + kα

n

≥
n∑

k=1

1
n

(1− kα

n
) = 1−

n∑
k=1

kα

n2
≥ 1− n1+α

n2
,

9



1 ≥ (1− x2) has been used. By comparison the limit equals one since

1 ≤
n∑

k=1

1
n + kα

≤ 1− n1+α

n2

The last step is α = 1. We need the well known equality Hn ≈
n∑

k=1

1
k

= ln n + γ + o(1) and then

n∑
k=1

1
n + k

=
2n∑

k=n+1

(H2n −Hn) = ln(2n)− lnn + o(1) → ln 2

The proof is complete.

Solution 2 by David Stone and John Hawkins, Statesboro, GA

Below we show that for 0 < α < 1, the limit is 1; for α = 1, the limit is ln 2; and for α > 1, the
limit is 0.

For α = 1 we get ∫ 1

0

1
1 + u

du ≥
n∑

k=1

1
n + k

≥
∫ (n+1)/n

1/n

1
1 + u

du.

Since
1
2
≤ 1

1 + u
≤ 1, we know that the limit exists as n approaches infinity and is given by

lim
n→∞

n∑
k=1

1
n + kα

=
∫ 1

0

1
1 + u

du = ln(1 + u)
∣∣∣∣1
0

= ln 2− ln 1 = ln 2.

Next suppose α < 1. Then
0 < kα ≤ nα for 1 ≤ k≤n, so

n < n + kα ≤ n + nα and

1
n + nn

≤ 1
n + kα

<
1
n

. Thus,

n∑
k=1

1
n + nα

≤
n∑

k=1

1
n + kα

<
n∑

k=1

1
n

= 1, or

n

n + nα
≤

n∑
k=1

1
n + kα

< 1. Hence,

lim
n→∞

n

n + nα
≤ lim

n→∞

n∑
k=1

1
n + kα

≤ 1

lim
n→∞

1
1 + αnα−1

≤ lim
n→∞

n∑
k=1

1
n + kα

≤ 1. But,

lim
n→∞

1
1 + αnα−1

= 1, since α− 1 < 0. Therefore,

lim
n→∞

n∑
k=1

1
n + kα

= 1.

Finally, suppose α > 1.

10



We note that
1

n + kα
is a decreasing function of k and as a result we can write

0 ≤
∞∑

k=1

1
n + kα

≤
∫ n

0

1
n + kα

dk =
1
n

∫ 1

0

1

1 +
kn

nα/α

dk.

Using the substitution u =
k

u1/α
with du =

1
n1/α

dk, the above becomes,

0 ≤
n∑

k=1

1
n + kα

≤ n1/α

n

∫ n(n−1)/n

0

1
1 + uα

du =
1

n(α−1)/α

∫ n(n−1)/α

0

1
1 + uα

du

≤ 1
n(α−1)/α

∫ n

0

1
1 + uα

du

≤ 1
n(α−1)α

∫ 1

0

1
1 + uα

du +
1

n(α−1)/α

∫ n

1

1
1 + uα

du

≤ 1
n(α−1)/α

(1) +
1

n(α−1)/α

∫ n

1

1
1 + u

du

=
1

n(α−1)/α
(1) +

1
n(α−1)/α

(1)
[
ln(1 + n)− ln 2

]
.

That is,

0 ≤ lim
n→∞

n∑
k=1

1
n + kα

≤ lim
n→∞

1
n(α−1)/α

+ lim
n→∞

ln
(

n+1
2

)
n(α−1)/α

.

Using L’Hospital’s rule repeatedly we get,

lim
n→∞

1
n(α−1)/α

+ lim
n→∞

ln
(

n+1
2

)
n(α−1)/α

= 0 + lim
n→∞

2
n+1(

α−1
α

)
n−1/α

= lim
n→∞

2αn1/α

(α− 1)(n + 1)

= lim
n→∞

2
(α− 1)(n)1−1/α

= 0.

Thus, lim
n→∞

n∑
k=1

1
n + kα

= 0 for α > 1.

Solution 3 by Kee-Wai Lau, Hong Kong, China

We show that lim
n→∞

n∑
k=1

1
n + kα

=


1, 0 < α < 1;
ln 2, α = 1;
0, α > 1.

For 0 < α < 1, we have
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1
1 + nα−1

=
n∑

k=1

1
n + nα

≤
n∑

k=1

1
n + kα

<
n∑

k=1

1
n

= 1 and so lim
n→∞

n∑
k=1

1
n + kα

= 1.

For α = 1 we have

lim
n→∞

n∑
k=1

1
n + kα

= lim
n→∞

n∑
k=1

1
n + k

= lim
n→∞

n∑
k=1

1
n

1
(1 + k/n)

=
∫ 1

0

dx

1 + x
= ln 2.

For α > 1, let t be any real number satisfying
1
α

< t < 1 and let m = bntc.

We have

0 <
n∑

k=1

1
n + kα

=
m∑

k=1

1
n + kα

+
n∑

k=m+1

1
n + kα

<
m

n
+

n−m

(m + 1)α
≤ 1

n1−t
+

1
nαt−1

,

which tends to 0 as n tends to infinity. It follows that lim
n→∞

n∑
k=1

1
n + kα

= 0.

This completes the solution.

Also solved by Valmir Krasniqi, Prishtina, Kosova, and the proposer.
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