Problems

Ted Eisenberg, Section Editor

$* *$

This section of the Journal offers readers an opportunity to exchange interesting mathematical problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics, Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions can be sent e-mail to eisenbt@013.net. Solutions to previously stated problems can be seen at http://ssmj.tamu.edu.

Solutions to the problems stated in this issue should be posted before October 15, 2011

- 5164: Proposed by Kenneth Korbin, New York, NY

A triangle has integer length sides (a, b, c) such that $a-b=b-c$. Find the dimensions of the triangle if the inradius $r=\sqrt{13}$.

- 5165: Proposed by Thomas Moore, Bridgewater, MA
"Dedicated to Dr. Thomas Koshy, friend, colleague and fellow Fibonacci enthusiast."
Let $\sigma(n)$ denote the sum of all the different divisors of the positive integer n. Then n is perfect, deficient, or abundant according as $\sigma(n)=2 n, \sigma(n)<2 n$, or $\sigma(n)>2 n$. For example, 1 and all primes are deficient; 6 is perfect, and 12 is abundant. Find infinitely many integers that are not the product of two deficient numbers.
- 5166: Proposed by José Luis Díaz-Barrero, Barcelona, Spain

Let a, b, c be lengths of the sides of a triangle $A B C$. Prove that

$$
\left(3^{a+b}+\frac{c}{b} 3^{-b}\right)\left(3^{b+c}+\frac{a}{c} 3^{-c}\right)\left(3^{c+a}+\frac{b}{a} 3^{-a}\right) \geq 8
$$

- 5167: Paolo Perfetti, Department of Mathematics, University "Tor Vergata," Rome, Italy

Find the maximum of the real valued function

$$
f(x, y)=x^{4}-2 x^{3}-6 x^{2} y^{2}+6 x y^{2}+y^{4}
$$

defined on the set $D=\left\{(x, y) \in \Re^{2}: x^{2}+3 y^{2} \leq 1\right\}$.

- 5168: Proposed by G. C. Greubel, Newport News, VA

Find the value of a_{n} in the series

$$
\frac{7 t+2 t^{2}}{1-36 t+4 t^{2}}=a_{0}+\frac{a_{1}}{t}+\frac{a_{2}}{t^{2}}+\cdots+\frac{a_{n}}{t^{n}}+\cdots
$$

- 5169: Proposed by Ovidiu Furdui, Cluj, Romania

Let $n \geq 1$ be an integer and let i be such that $1 \leq i \leq n$. Calculate:

$$
\int_{0}^{1} \cdots \int_{0}^{1} \frac{x_{i}}{x_{1}+x_{2}+\cdots+x_{n}} d x_{1} \cdots d x_{n}
$$

Solutions

- 5146: Proposed by Kenneth Korbin, New York, NY

Find the maximum possible value of the perimeter of an integer sided triangle with in-radius $r=\sqrt{13}$.

Solution 1 by Kee-Wai Lau, Hong Kong, China

Let the lengths of the sides of the triangle be a, b, and c with $c \leq b \leq a$.
Let $x=b+c-a, y=c+a-b, z=a+b-c$ so that x, y, z are integers and $0<x \leq y \leq z$.
It is well known that $\frac{1}{2} \sqrt{\frac{x y z}{x+y+z}}$ or $\frac{x y z}{x+y+z}=52$.
From $x y z<x y(x+y+z)$, we see that $x y>52$ and from $x y<\frac{3 x y z}{x+y+z}$, we have $x y \leq 156$. Since $a=\frac{y+z}{2}, b=\frac{z+x}{2}, c=\frac{x+y}{2}$, so we have to find positive integers x, y satisfying

$$
\left\{\begin{array}{l}
x \leq y \\
1 \leq x \leq 12 \\
52<x y \leq 156
\end{array}\right.
$$

such that $z=\frac{52(x+y)}{x y-52}$ is a positive integer greater than or equal to y and that x, y, z are of the same parity. With the help of a computer we find that
$(x, y, z)=(2,28,390),(2,30,208),(2,40,78),(2,52,54),(4,14,234),(4,26,30),(6,10,104),(6,16,26)$
are the only solutions. Since $a+b+c=x+y+z$, so the maximum possible value of the perimeter of an integer sided triangle with in-radius $r=\sqrt{13}$ is 420 .

Solution 2 by Brian D. Beasley, Clinton, SC

We designate the integer side lengths of the triangle by a, b, and c. We also let $x=a+b-c, y=c+a-b$, and $z=b+c-a$ and note that $x+y+z=a+b+c$. Then the formula for the in-radius r of a triangle becomes

$$
r=\frac{1}{2} \sqrt{\frac{(a+b-c)(c+a-b)(b+c-a)}{a+b+c}}=\frac{1}{2} \sqrt{\frac{x y z}{x+y+z}} .
$$

For the given triangle, we thus have $52(x+y+z)=x y z$. Then $x y z$ is even; combined with the fact that x, y, and z have the same parity, this implies that all three are even. Writing $x=2 u, y=2 v$, and $z=2 w$, we obtain $13(u+v+w)=u v w$. Then 13 divides $u v w$, so without loss of generality, we assume $w=13 k$ for some natural number k. This produces $v=(u+13 k) /(u k-1)$. Using this equation, a computer search reveals eight solutions for (u, v, w) (with $u \leq v$) and hence for (a, b, c) :

$$
\begin{aligned}
& (u, v, w)=(2,15,13) \quad \Longrightarrow \quad(a, b, c)=(17,15,28) \quad \Longrightarrow \quad \text { perimeter }=60 \\
& (u, v, w)=(3,8,13) \quad \Longrightarrow \quad(a, b, c)=(11,16,21) \quad \Longrightarrow \quad \text { perimeter }=48 \\
& (u, v, w)=(1,27,26) \quad \Longrightarrow \quad(a, b, c)=(28,27,53) \quad \Longrightarrow \quad \text { perimeter }=108 \\
& (u, v, w)=(1,20,39) \quad \Longrightarrow \quad(a, b, c)=(21,40,59) \quad \Longrightarrow \quad \text { perimeter }=120 \\
& (u, v, w)=(3,5,52) \quad \Longrightarrow \quad(a, b, c)=(8,55,57) \quad \Longrightarrow \quad \text { perimeter }=120 \\
& (u, v, w)=(1,15,104) \quad \Longrightarrow \quad(a, b, c)=(16,105,119) \quad \Longrightarrow \quad \text { perimeter }=240 \\
& (u, v, w)=(2,7,117) \quad \Longrightarrow \quad(a, b, c)=(9,119,124) \quad \Longrightarrow \quad \text { perimeter }=252 \\
& (u, v, w)=(1,14,195) \quad \Longrightarrow \quad(a, b, c)=(15,196,209) \quad \Longrightarrow \quad \text { perimeter }=420
\end{aligned}
$$

Thus the maximum value of the perimeter is 420 .

Also solved by Paul M. Harms, North Newton, KS; David Stone and John Hawkins (jointly), Statesboro, GA, and the proposer.

- 5147: Proposed by Kenneth Korbin, New York, NY

Let

$$
\left\{\begin{array}{l}
x=5 N^{2}+14 N+23 \text { and } \\
y=5(N+1)^{2}+14(N+1)+23
\end{array}\right.
$$

where N is a positive integer. Find integers a_{i} such that

$$
a_{1} x^{2}+a_{2} y^{2}+a_{3} x y+a_{4} x+a_{5} y+a_{6}=0
$$

Solution 1 by G. C. Greubel, Newport News, VA

The equations for x and y are given by $x=5 n^{2}+14 n+23$ and $y=5 n^{2}+24 n+42$. We are asked to find the values of a_{i} such that the equation

$$
a_{1} x^{2}+a_{2} y^{2}+a_{3} x y+a_{4} x+a_{5} y+a_{6}=0
$$

is valid. In order to do so we need to calculate the values of x^{2}, y^{2}, and $x y$. For this we have

$$
\begin{aligned}
x^{2} & =25 n^{4}+140 n^{3}+426 n^{2}+644 n+529 \\
y^{2} & =25 n^{4}+240 n^{3}+996 n^{2}+2016 n+1764 \\
x y & =25 n^{4}+190 n^{3}+661 n^{2}+1140 n+966 .
\end{aligned}
$$

Using the above results we then have the equation

$$
\begin{aligned}
0= & 25\left(a_{1}+a_{2}+a_{3}\right) n^{4}+10\left(14 a_{1}+24 a_{2}+19 a_{3}\right) n^{3} \\
& +\left(426 a_{1}+996 a_{2}+661 a_{3}+5 a_{4}+5 a_{5}\right) n^{2} \\
& +2\left(322 a_{1}+1008 a_{2}+570 a_{3}+7 a_{4}+12 a_{5}\right) n \\
& +\left(529 a_{1}+1764 a_{2}+966 a_{3}+23 a_{4}+42 a_{5}+a_{6}\right) .
\end{aligned}
$$

From this we have five equations for the coefficients a_{i} given by

$$
\begin{aligned}
& 0=a_{1}+a_{2}+a_{3} \\
& 0=14 a_{1}+24 a_{2}+19 a_{3} \\
& 0=426 a_{1}+996 a_{2}+661 a_{3}+5 a_{4}+5 a_{5} \\
& 0=322 a_{1}+1008 a_{2}+570 a_{3}+7 a_{4}+12 a_{5} \\
& 0=529 a_{1}+1764 a_{2}+966 a_{3}+23 a_{4}+42 a_{5}+a_{6} .
\end{aligned}
$$

From $0=14 a_{1}+24 a_{2}+19 a_{3}$ we have $0=14\left(a_{1}+a_{2}+a_{3}\right)+10 a_{2}+5 a_{3}=5\left(2 a_{2}+a_{3}\right)$, where we used the fact that $0=a_{1}+a_{2}+a_{3}$. This yields $a_{3}=-2 a_{2}$. Using this result in $0=a_{1}+a_{2}+a_{3}$ yields $a_{2}=a_{1}$. The three remaining equations can be reduced to

$$
\begin{aligned}
& 0=20 a_{1}+a_{4}+a_{5} \\
& 0=190 a_{1}+7 a_{4}+12 a_{5} \\
& 0=361 a_{1}+23 a_{4}+42 a_{5}+a_{6} .
\end{aligned}
$$

Solving this system we see that

$$
a_{1}=a_{1}, a_{2}=a_{1}, a_{3}=-2 a_{1}, a_{4}=-10 a_{1}, a_{5}=-10 a_{1}, a_{6}=289 a_{1} .
$$

We now verify that the above coefficients work.

$$
\begin{aligned}
a_{1} x^{2}+a_{2} y^{2}+a_{3} x y+a_{4} x+a_{5} y+a_{6} & =0, \text { becomes } \\
a_{1}\left(x^{2}+y^{2}-2 x y-10 x-10 y+289\right) & =0, \text { and since } a_{1} \neq 0 \\
x^{2}+y^{2}-2 x y-10 x-10 y+289 & =0, \text { and } \\
(x-y)^{2}-10(x+y)+289 & =0 .
\end{aligned}
$$

From the values of x and y presented to us in terms of n at the start of the problem, we see that $x-y=-(10 n+19)$ and $x+y=10 n^{2}+38 n+65$.
Substituting these values into the above equations we obtain:

$$
\begin{aligned}
0 & =(x-y)^{2}-10(x+y)+289 \\
& =(10 n+19)^{2}-10\left(10 n^{2}+38 n+65\right)+289 \\
& =\left(100 n^{2}+380 n+361\right)-\left(100 n^{2}+380 n+650\right)+289 \\
& =361-650+289 \\
& =0 .
\end{aligned}
$$

We have thus verified that for the coefficients we have obtained, and for the vaules of x and y that are given, $a_{1} x^{2}+a_{2} y^{2}+a_{3} x y+a_{4} x+a_{5} y+a_{6}=0$.

Solution 2 by Kee-Wai Lau, Hong Kong, China

By putting $N=1,2,3,4,5$, we obtain the system of equations

$$
\left\{\begin{array}{l}
1764 a_{1}+5041 a_{2}+2982 a_{3}+42 a_{4}+71 a_{5}+a_{6}=0 \tag{1}\\
5041 a_{1}+12100 a_{2}+7810 a_{3}+71 a_{4}+110 a_{5}+a_{6}=0 \\
12100 a_{1}+25281 a_{2}+17490 a_{3}+110 a_{4}+159 a_{5}+a_{6}=0 \\
25281 a_{1}+47524 a_{2}+34662 a_{3}+159 a_{4}+218 a_{5}+a_{6}=0 \\
47524 a_{1}+82369 a_{2}+62566 a_{3}+218 a_{4}+287 a_{5}+a_{6}=0 .
\end{array}\right.
$$

If $a_{1}=0$, then (1) reduces to

$$
\left\{\begin{array}{l}
5041 a_{2}+2982 a_{3}+42 a_{4}+71 a_{5}+a_{6}=0 \tag{2}\\
12100 a_{2}+7810 a_{3}+71 a_{4}+110 a_{5}+a_{6}=0 \\
25281 a_{2}+17490 a_{3}+110 a_{4}+159 a_{5}+a_{6}=0 \\
47524 a_{2}+34662 a_{3}+159 a_{4}+218 a_{5}+a_{6}=0 \\
82369 a_{2}+62566 a_{3}+218 a_{4}+287 a_{5}+a_{6}=0
\end{array}\right.
$$

Since the determinant $\left|\begin{array}{ccccc}5041 & 2982 & 42 & 71 & 1 \\ 12100 & 7810 & 71 & 110 & 1 \\ 25281 & 17490 & 110 & 159 & 1 \\ 47524 & 34662 & 159 & 218 & 1 \\ 82369 & 62566 & 218 & 287 & 1\end{array}\right|=-18000000$, so (2) has the
unique solution $a_{2}=a_{3}=a_{4}=a_{5}=a_{6}=0$.

If $a_{1} \neq 0$, we write $a_{2}=a_{1} b_{2}, a_{3}=a_{1} b_{3}, a_{4}=a_{1} b_{4}, a_{5}=a_{1} b_{5}, a_{6}=a_{1} b_{6}$, so that (1) becomes

$$
\left\{\begin{array}{l}
1764+5041 b_{2}+2982 b_{3}+42 b_{4}+71 b_{5}+b_{6}=0 \tag{3}\\
5041+12100 b_{2}+7810 b_{3}+71 b_{4}+110 b_{5}+b_{6}=0 \\
12100+25281 b_{2}+17490 b_{3}+110 b_{4}+159 b_{5}+b_{6}=0 \\
25281+47524 b_{2}+34662 b_{3}+159 b_{4}+218 b_{5}+b_{6}=0 \\
47524+82369 b_{2}+62566 b_{3}+218 b_{4}+287 b_{5}+b_{6}=0 .
\end{array}\right.
$$

By Cramer's rule, we find the unique solution of (3) to be

$$
b_{2}=1, b_{3}=-2, b_{4}=-10, b_{5}=-10, b_{6}=289 .
$$

It follows that the general solution to (1) is

$$
\begin{equation*}
a_{1}=k, a_{2}=k, a_{3}=-2 k, a_{4}=-10 k, a_{5}=-10 k, a_{6}=289 k, \tag{4}
\end{equation*}
$$

where k is any integer. It can be checked readily by direct expansion that $k x^{2}+k y^{2}-2 k x y-10 k x-10 k y+289 k=0$ for any positive integer N, and so the general solution to the equation of the problem is given by (4).

Solution 3 by Bruno Salgueiro Fanego, Viveiro, Spain

As in the published solutions to SSMJ problem 5144, we first compute
$y-x=5\left[(N+1)^{2}-N^{2}\right]+14(N+1-N)+23-23=5(2 N+1)+14=10 N+19$
From $x=5 N^{2}+14 N+23$ that is $5 \mathrm{~N}^{2}+14 N+23-x=0$, one obtains

$$
\begin{equation*}
N_{1,2,}=\frac{-14 \pm \sqrt{14^{2}-20(23-x)}}{10}=\frac{-7 \pm \sqrt{5 x-66}}{5} \tag{2}
\end{equation*}
$$

and since N is a positive integer, we choose $N=\frac{-7+\sqrt{5 x-66}}{5}$
Substituting (2) into (1) gives

$$
\begin{equation*}
y-x=2(-7+\sqrt{5 x-66})+19=5+2 \sqrt{5 x-66} . \tag{3}
\end{equation*}
$$

From (3) one obtains

$$
\begin{align*}
& (y-x-5)^{2}=(2 \sqrt{5 x-66})^{2}, \text { that is } \\
& x^{2}+y^{2}-2 x y-10 x-10 y+289=0 \tag{4}
\end{align*}
$$

Relation (4) shows that it suffices to take the following integers for a_{i}

$$
a_{1}=a_{2}=1 ; \quad a_{3}=-2 ; \quad a_{4}=a_{5}=-10 ; \quad a_{6}=289
$$

Comment: Relation (4) shows that for any positive integer N, all of the points with coordinates $(x, y)=\left(u_{N}, u_{N+1}\right)$ for $u_{N}=5 N^{2}+14 N+23$, are points situated on the parabola $\left(^{*}\right)$ with equation

$$
\left(\begin{array}{llll}
1 & X & Y
\end{array}\right)\left(\begin{array}{ccc}
289 & -5 & -5 \\
-5 & 1 & -1 \\
-5 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
X \\
Y
\end{array}\right)=0
$$

$(*)$ Because $\operatorname{det}\left(\begin{array}{ccc}289 & -5 & -5 \\ -5 & 1 & -1 \\ -5 & -1 & 1\end{array}\right)=100 \neq 0$ and $\operatorname{det}\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right)=0$.

Solution 4 by David Stone and John Hawkins, Statesboro, GA

We will show that the proscribed points (x, y) lie on the conic

$$
x^{2}+y^{2}-2 x y-10 x y-10 y+289=0 .
$$

This is a parabola. In fact, it is the parabola $x=\frac{1}{2 \sqrt{2}} y^{2}$ roatated counterclockwise $\frac{\pi}{4}$ and translated "up the diagonal $y=x$ " by a distance $\frac{289}{20} \sqrt{2}$, having its vertex at $\left(\frac{289}{20}, \frac{289}{20}\right)$.
We will actually consider the more general problem

$$
\left\{\begin{array}{l}
x=a N^{2}+b N+c \\
y=a(N+1)^{2}+b(N+1)+c
\end{array}\right.
$$

with the restrictions on N removed.
Treating these as parametric equations, we can eliminate the parameter N (without getting bogged down in the quadratic formula).
Expanding the expression for y gives

$$
\begin{aligned}
y & =a N^{2}+2 a N+a+b N+b+c \\
& =\left(a N^{2}+b N+c\right)+2 a N+a+b \\
& =x+2 a N+a+b
\end{aligned}
$$

Solving for N gives $N=\frac{y-x-(a+b)}{2 a}$.
Substituting back into the expression for x :

$$
x=a\left(\frac{y-x-a-b}{2 a}\right)^{2}+b\left(\frac{y-x-a-b}{2 a}\right)+c,
$$

which simplifies to

$$
\text { (1) } x^{2}+y^{2}-2 x y-2 a x-2 a y+\left(a^{2}-b^{2}+4 a c\right)=0 \text {. }
$$

This is our solution for the general problem. So we do indeed have a quadratic equation for our figure; the discriminate equals zero.

From calculus, we know that a 45° rotation will remove the $x y$ term. The transformation equations are

$$
x=\frac{1}{\sqrt{2}}\left(x^{\prime}-y^{\prime}\right) \quad \text { and } \quad y=\frac{1}{\sqrt{2}}\left(x^{\prime}+y^{\prime}\right)
$$

Substituting these into Equation (1), we get

$$
\frac{\left(x^{\prime}-y^{\prime}\right)^{2}}{2}+\frac{\left(x^{\prime}+y^{\prime}\right)^{2}}{2}-2 \frac{\left(x^{\prime}-y^{\prime}\right)\left(x^{\prime}+y^{\prime}\right)}{2}-\frac{2 a}{\sqrt{2}}\left(x^{\prime}-y^{\prime}\right)-\frac{2 a}{\sqrt{2}}\left(x^{\prime}+y^{\prime}\right)+\left(a^{2}-b^{2}+4 a c\right)=0 .
$$

This simplifies to

$$
2\left(y^{\prime}\right)^{2}-\frac{4 a}{\sqrt{2}} x^{\prime}+\left(a^{2}-b^{2}+4 a c\right)=0 .
$$

This becomes more familiar as

$$
x^{\prime}-\frac{a^{2}-b^{2}+4 a c}{2 a \sqrt{2}}=\frac{1}{a \sqrt{2}}\left(y^{\prime}\right)^{2} .
$$

We recognize a nice parabola in the x^{\prime}, y^{\prime} plane. In fact, if we translate to the new origin, $\left(\frac{a^{2}-b^{2}+4 a c}{2 a \sqrt{2}}, 0\right)$ (in the x^{\prime}, y^{\prime} plane) and let

$$
x^{\prime \prime}=x^{\prime}-\frac{a^{2}-b^{2}+4 a c}{2 a \sqrt{2}} \text { and } y^{\prime \prime}=y^{\prime}
$$

our equation becomes

$$
x^{\prime \prime}=\frac{1}{a \sqrt{2}}\left(y^{\prime \prime}\right)^{2} .
$$

Substituting the values $a=5, b=14, c=23$ produces the solution to the given problem.
Comment 1: We see that x and y are interchangeable in Equation (1), reflecting the fact that the line $y=x$ is the axis of symmetry of our parabola. Therefore, more lattice points than originally mandated fall on the parabola.

For convenience, let $u_{n}=a N^{2}+b N+c$. By the given condition, for any integer N, the point (u_{N}, u_{N+1}) lies on the parabola. By symmetry, $\left(u_{N+1}, u_{N}\right)$ also lies on the parabola.

Comment 2: We see that this sequence satisfies the first order non-linear recurrence: $u_{N+1}=u_{N}+(2 N+1) a+b$. We have shown that the points $\left(u_{N}, u_{N+1}\right), N \in Z$, lie on the parabola given by Equation (1) (as do the points $\left(u_{N+1}, u_{N}\right)$). This is reminiscent of the result that pairs of Fibonacci numbers (F_{N}, F_{N+1}) lie on the hyperbolas $y^{2}-x y-x^{2}= \pm 1$. In fact, such pairs are the only lattice points on these hyperbolas.
So we wonder if the points $\left(u_{N}, u_{N+1}\right)$ and $\left(u_{N+1}, u_{N}\right)$ are the only lattice points on the parabola given by Equation (1).

Also solved by Brian D. Beasley, Clinton, SC; Edwin Gray, Highland Beach, FL; Paul M. Harms, North Newton, KS; David E. Manes, Oneonta, NY; Boris Rays, Brooklyn, NY; Raúl A. Simón, Santiago, Chile, and the proposer.

- 5148: Proposed by Pedro Pantoja (student, UFRN), Natal, Brazil

Let a, b, c be positive real numbers such that $a b+b c+a c=1$. Prove that

$$
\frac{a^{2}}{\sqrt[3]{b(b+2 c)}}+\frac{b^{2}}{\sqrt[3]{c(c+2 a)}}+\frac{c^{2}}{\sqrt[3]{a(a+2 b)}} \geq 1
$$

Solution 1 by David E. Manes, Oneonta, NY
Let $L=\frac{a^{2}}{\sqrt[3]{b(b+2 c)}}+\frac{b^{2}}{\sqrt[3]{c(c+2 a)}}+\frac{c^{2}}{\sqrt[3]{a(a+2 b)}}$. To prove that $L \geq 1$, we will use

Jensen's inequality that states if $\lambda_{1}, \lambda_{2} \ldots, \lambda_{n}$ are positive numbers satisfying
$\lambda_{1}+\lambda_{2}+\ldots+\lambda_{n}=1$, and $x_{1}, x_{2}, \ldots, x_{n}$ are any n points in an interval where f is continuous and convex, then

$$
\lambda_{1} f\left(x_{1}\right)+\lambda_{2} f\left(x_{2}\right)+\cdots+\lambda_{n} f\left(x_{n}\right) \geq f\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}+\cdots+\lambda_{n} x_{n}\right)
$$

The function $f(x)=\frac{1}{\sqrt[3]{x}}$ is continuous and convex on the interval $(0, \infty)$. Let

$$
\begin{array}{lccc}
\alpha=a^{2}+b^{2}+c^{2} & \lambda_{1}=\frac{a^{2}}{\alpha} & \lambda_{2}=\frac{b^{2}}{\alpha} & \lambda_{3}=\frac{c^{2}}{\alpha} \\
x_{1}=b^{2}+2 b c & x_{2}=c^{2}+2 a c & x_{3}=a^{2}+2 a b &
\end{array}
$$

Then $\lambda_{1}+\lambda_{2}+\lambda_{3}=1$ and Jensen's inequality implies

$$
\begin{aligned}
\frac{1}{\alpha} L & =\frac{a^{2}}{\alpha} f\left(b^{2}+2 b c\right)+\frac{b^{2}}{\alpha} f\left(c^{2}+2 a c\right)+\frac{c^{2}}{\alpha} f\left(a^{2}+2 a b\right) \\
& \geq f\left(\frac{a^{2}\left(b^{2}+2 b c\right)+b^{2}\left(c^{2}+2 a c\right)+c^{2}\left(a^{2}+2 a b\right)}{\alpha}\right) \\
& =\sqrt[3]{\frac{\alpha}{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}+2 a^{2} b c+2 a b^{2} c+2 a b c^{2}}} \\
& =\sqrt[3]{\frac{\alpha}{(a b+b c+a c)^{2}}}=\sqrt[3]{\alpha}
\end{aligned}
$$

Hence, $L \geq \alpha^{4 / 3}=\left(a^{2}+b^{2}+c^{2}\right)^{4 / 3} \geq 1$ since the inequality $(a-b)^{2}+(b-c)^{2}+(c-a)^{2} \geq 0$ with the constraint $a b+b c+a c=1$ implies $\mathrm{a}^{2}+b^{2}+c^{2} \geq 1$. Note that equality occurs if and only if $a=b=c=\frac{1}{\sqrt{3}}$.

Solution 2 by Enkel Hysnelaj, University of Technology, Sydney, Australia and Elton Bojaxhiu, Kriftel, Germany

Using Cauchy-Schwarz inequality we have,

$$
(\sqrt[3]{b(b+2 c)}+\sqrt[3]{c(c+2 a)}+\sqrt[3]{a(a+2 b)})\left(\frac{a^{2}}{\sqrt[3]{b(b+2 c)}}+\frac{b^{2}}{\sqrt[3]{c(c+2 a)}}+\frac{c^{2}}{\sqrt[3]{a(a+2 b)}}\right) \geq(a+b+c)^{2}
$$

which implies that,

$$
\frac{a^{2}}{\sqrt[3]{b(b+2 c)}}+\frac{b^{2}}{\sqrt[3]{c(c+2 a)}}+\frac{c^{2}}{\sqrt[3]{a(a+2 b)}} \geq \frac{(a+b+c)^{2}}{\sqrt[3]{b(b+2 c)}+\sqrt[3]{c(c+2 a)}+\sqrt[3]{a(a+2 b)}} .
$$

Using the fact that the function $f(x)=\sqrt[3]{x}$ is a concave function, since the second derivative is negative, we have that any three numbers x, y, z, according to Jensen's
inequality, satisfy the inequality $f(x)+f(y)+f(z) \leq 3 f\left(\frac{x+y+z}{3}\right)$ and applying this we have

$$
\begin{aligned}
\frac{a^{2}}{\sqrt[3]{b(b+2 c)}}+\frac{b^{2}}{\sqrt[3]{c(c+2 a)}}+\frac{c^{2}}{\sqrt[3]{a(a+2 b)}} & \geq \frac{(a+b+c)^{2}}{\sqrt[3]{b(b+2 c)}+\sqrt[3]{c(c+2 a)}+\sqrt[3]{a(a+2 b)}} \\
& \geq \frac{(a+b+c)^{2}}{3 \sqrt[3]{\left(\frac{b(b+2 c)+c(c+2 a)+a(a+2 b)}{3}\right)}} \\
& =\frac{(a+b+c)^{2}}{\frac{3}{\sqrt[3]{3}} \sqrt[3]{(a+b+c)^{2}}}
\end{aligned}
$$

So it is enough to prove that

$$
\begin{aligned}
\frac{(a+b+c)^{2}}{\frac{3}{\sqrt[3]{3}} \sqrt[3]{(a+b+c)^{2}}} & \geq 1, \text { which implies } \\
\frac{(a+b+c)^{2}}{\sqrt[3]{(a+b+c)^{2}}} & \geq \frac{3}{\sqrt[3]{3}} \\
(a+b+c)^{2} & \geq 3
\end{aligned}
$$

Using the given condition and the AM-GM inequality we have

$$
\begin{aligned}
(a+b+c)^{2} & =a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 a c \\
& \geq 3 a b+3 b c+3 a c \\
& =3(a b+b c+a c) \\
& =3
\end{aligned}
$$

and this is the end of the proof.

Solution 3 by Andrea Fanchini, Cantú, Italy

Recall Holder's inequality that states that if $a_{i j}, 1 \leq i \leq m, 1 \leq j \leq n$ are positive real numbers, then:

$$
\prod_{i=1}^{m}\left(\sum_{j=1}^{n} a_{i j}\right) \geq\left(\sum_{j=1}^{n} \sqrt[m]{\prod_{i=1}^{m} a_{i j}}\right)^{m}
$$

Setting $n=3$ and $m=4$ and using this inequality we have

$$
\left(\sum_{c y c} \frac{a^{2}}{\sqrt[3]{b^{2}+2 b c}}\right)\left(\sum_{c y c} \frac{a^{2}}{\sqrt[3]{b^{2}+2 b c}}\right)\left(\sum_{c y c} \frac{a^{2}}{\sqrt[3]{b^{2}+2 b c}}\right)\left(\sum_{c y c} a^{2}\left(b^{2}+2 b c\right)\right) \geq\left(a^{2}+b^{2}+c^{2}\right)^{4}
$$

and being that $a^{2}+b^{2}+c^{2} \geq a b+b c+c a$,

$$
\left(\sum_{c y c} \frac{a^{2}}{\sqrt[3]{b^{2}+2 b c}}\right)\left(\sum_{c y c} \frac{a^{2}}{\sqrt[3]{b^{2}+2 b c}}\right)\left(\sum_{c y c} \frac{a^{2}}{\sqrt[3]{b^{2}+2 b c}}\right)\left(\sum_{c y c} a^{2}\left(b^{2}+2 b c\right)\right) \geq(a b+b c+c a)^{4}=1
$$

because

$$
\left(\sum_{c y c} a^{2}\left(b^{2}+2 b c\right)\right)=(a b+b c+c a)^{2}=1,
$$

and so the proposed inequality holds.
Also solved by Arkady Alt, San Jose, CA; Kee-Wai Lau, Hong Kong, China; Paolo Perfetti, Department of Mathematics, University "Tor Vergata," Rome, Italy, and the proposer.

- 5149: Proposed by José Luis Díaz-Barrero, Barcelona, Spain

A regular n-gon $A_{1}, A_{2} \cdots, A_{n}(n \geq 3)$ has center F, the focus of the parabola $y^{2}=2 p x$, and no one of its vertices lies on the x axis. The rays $F A_{1}, F A_{2}, \cdots, F A_{n}$ cut the parabola at points $B_{1}, B_{2}, \cdots, B_{n}$.

Prove that

$$
\frac{1}{n} \sum_{k=1}^{n} F B_{k}^{2}>p^{2}
$$

Solution by Ángel Plaza (University of Las Palmas de Gran Canaria) and Javier Sánchez-Reyes (University of Castilla-La Mancha), Spain

In polar coordinates (r, θ) centered at the focus the parabola is given by $r=p /(1+\cos \theta)$. Defining the arguments $\theta_{k}=\theta_{n}+2 k \pi / n$ for $k=1,2, \ldots, n$ corresponding to the vertices A_{k} of the polygon, we have to prove that

$$
\begin{aligned}
& \frac{1}{n} \sum_{k=1}^{n} \frac{p^{2}}{\left(1+\cos \theta_{k}\right)^{2}}>p^{2}, \\
& \frac{1}{n} \sum_{k=1}^{n} \frac{1}{\left(1+\cos \theta_{k}\right)^{2}}>1,
\end{aligned}
$$

where $\theta_{k} \neq 0$ and $\theta_{k} \neq \pi$. Since the function $f(x)=1 / x^{2}$ is strictly convex and $\sum_{k=1}^{n} \cos \theta_{k}=0$, for example because the sum of all the nth complex roots of unity is zero, it follows that

$$
\frac{1}{n} \sum_{k=1}^{n} \frac{1}{\left(1+\cos \theta_{k}\right)^{2}}>\left(1+\frac{\sum_{k=1}^{n} \cos \theta_{k}}{n}\right)^{-2}=1
$$

Also solved by Raúl A. Simón, Santiago, Chile; David Stone and John Hawkins (jointly), Statesboro, GA and the proposer.

- 5150: Proposed by Mohsen Soltanifar (student, University of Saskatchewan), Saskatoon, Canada

Let $\left\{A_{n}\right\}_{n=1}^{\infty},\left(A_{n} \in M_{n \times n}(C)\right)$ be a sequence of matrices such that $\operatorname{det}\left(A_{n}\right) \neq 0,1$ for all $n \in N$. Calculate:

$$
\lim _{n \rightarrow \infty} \frac{n^{n} \ln \left(\left|\operatorname{det}\left(A_{n}\right)\right|\right)}{\ln \left(\left|\operatorname{det}\left(\operatorname{adj} j^{\circ n}\left(A_{n}\right)\right)\right|\right)}
$$

where $a d j^{\circ n}$ refers to $a d j \circ a d j \circ \cdots \circ a d j, n$ times, the $n^{t h}$ iterate of the classical adjoint.

Solved 1 by the proposer

A simple calculation of $a d j^{\circ n}(A), m=1,2, \cdots, 5$ using equalities:
(i) $\operatorname{adj}(A) \cdot A=A \cdot \operatorname{adj}(A)=\operatorname{det}(A) \cdot I_{n \times n}$.
(ii) $\operatorname{det}\left(A^{-1}\right)=(\operatorname{det}(A))^{-1}$
(iii) $\operatorname{det}(k A)=k^{n} \operatorname{det}(A)$
suggests the following conjecture:

$$
\begin{equation*}
\operatorname{adj} j^{o m}(A)=\operatorname{det}(A)^{P_{m}(n)} A^{(-1)^{m}} ; \quad P_{m}(n)=\frac{(n-1)^{m}+(-1)^{m-1}}{n}, m, n \in N \tag{**}
\end{equation*}
$$

We prove the conjecture by induction on the positive integer m. The assertion trivially holds for the case $m=1$. Let it hold for some positive integer $m>1$. Then

$$
\begin{aligned}
a d j^{o m+1}(A) & =\operatorname{adj}\left(a d j^{o m}(A)\right) \\
& =\operatorname{det}\left(a d j^{o m}(A)\right)\left(a d j^{o m}(A)\right)^{-1} \\
& =\operatorname{det}\left(\operatorname{det}(A)^{P_{m}(n)} A^{(-1)^{m}}\right)\left(\operatorname{det}(A)^{P_{m}(n)} A^{(-1)^{m}}\right)^{-1} \\
& =\operatorname{det}(A)^{(n-1) P_{m}(n)+(-1)^{m}}(A)^{(-1)^{m+1}}
\end{aligned}
$$

Besides,

$$
P_{m+1}(n)=(n-1) P_{m}(n)+(-1)^{m}=\frac{(n-1)^{m+1}+(-1)^{m}}{n}
$$

proving the assertion for positive integer $m+1$. Accordingly, using ($* *$) we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{n^{n} \ln \left(\left|\operatorname{det}\left(A_{n}\right)\right|\right)}{\ln \left(\left|\operatorname{det}\left(\operatorname{adj} j^{o n}\left(A_{n}\right)\right)\right|\right)} & =\lim _{n \rightarrow \infty} \frac{n^{n} \ln \left(\left|\operatorname{det}\left(A_{n}\right)\right|\right)}{\ln \left(\left|\operatorname{det}\left(\operatorname{det}\left(A_{n}\right)^{P_{n}(n)} A_{n}^{(-1)^{n}}\right)\right|\right)} \\
& =\lim _{n \rightarrow \infty} \frac{n^{n} \ln \left(\left|\operatorname{det}\left(A_{n}\right)\right|\right)}{\ln \left(\mid\left(\operatorname{det}\left(A_{n}\right)^{n P_{n}(n)} \operatorname{det}\left(A_{n}{ }^{(-1)^{n}}\right) \mid\right)\right.} \\
& =\lim _{n \rightarrow \infty} \frac{n^{n} \ln \left(\left|\operatorname{det}\left(A_{n}\right)\right|\right)}{\ln \left(\mid\left(\operatorname{det}\left(A_{n}\right)^{n P_{n}(n)+(-1)^{n} \mid}\right)\right.}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \frac{n^{n}}{n P_{n}(n)+(-1)^{n}} \\
& =\lim _{n \rightarrow \infty}\left(\frac{n}{n-1}\right)^{n} \\
& =e .
\end{aligned}
$$

Solution 2 by David Stone and John Hawkins, Statesboro, GA

We shall find a formula for $\operatorname{adj}^{\circ n}(n A)$ and then show the limit is e.
First recall some properties of the inverse and the classical adjoint, where A is $n \times n$ and invertible and c a non-zero scalar.
(1) $\operatorname{adj}(A)=\operatorname{det}(A) A^{-1}$
(2) $\quad \operatorname{adj}(A)^{-1}=\frac{1}{\operatorname{det}(A)} A=\operatorname{adj}\left(A^{-1}\right)$
(3) $\quad \operatorname{det}[\operatorname{adj}(A)]=[\operatorname{det} A)]^{n-1}$
(4) $\operatorname{det}(c A)=c^{n} \operatorname{det}(A)$
(5) $\quad(c A)^{-1}=\frac{1}{c} A^{-1}$
(6) $\operatorname{adj}(c A)=c^{n-1} \operatorname{adj}(A)$

Then we see

$$
\text { (7) } \begin{aligned}
\operatorname{adj}^{\circ 2}(A) & =\operatorname{adj}[\operatorname{adj}(A)] \\
& =\operatorname{det}[\operatorname{adj}(A)][\operatorname{adj}(A)]^{-1} \text { by (1) } \\
& =[\operatorname{det}(A)]^{n-1} \frac{1}{\operatorname{det}(A)} A \text { by (3) and (2) } \\
& =[\operatorname{det}(A)]^{n-2} A
\end{aligned}
$$

Continuing with our calculations, we have

$$
\text { (8) } \begin{aligned}
\operatorname{adj}^{\circ 3}(A) & =\operatorname{adj}\left[a d j j^{\circ 2}(A)\right] \\
& =\operatorname{adj}\left[[\operatorname{det}(A)]^{n-2} A\right] \text { by (7) } \\
& =\left\{[\operatorname{det}(A)]^{n-2}\right\}^{n-1} \operatorname{adj}(A) \text { by (6) } \\
& =[\operatorname{det}(A)]^{(n-1)(n-2)} \operatorname{det}(A) A^{-1} \text { by (1) } \\
& =[\operatorname{det}(A)]^{n^{2}-3 n+3} A^{-1}
\end{aligned}
$$

We observe that repeated applications of $a d j$ will produce terms of the form $[\operatorname{det}(A)]^{\left[p_{k}(n)\right.} A^{(-1) k}$, where $p_{i}(n)$ is a polynomial of degree $k-1$ in n.
Specifically, for $k=1,2,3, \ldots, n-1$, we have

$$
\text { (9) } \begin{aligned}
\operatorname{adj}^{\circ(k+1)}(A) & =\operatorname{adj}\left[\operatorname{adj}{ }^{\circ k}(A)\right] \\
& =\operatorname{adj}\left[[\operatorname{det}(A)]^{p_{k}(n)} A^{(-1)^{k}}\right] \text { by induction } \\
& =\left\{[\operatorname{det}(A)]^{p_{k}(n)}\right\}^{n-1} \operatorname{adj}\left(A^{(-1)^{k}}\right) \text { by }(6) \\
& =[\operatorname{det}(A)]^{(n-1) p_{k}(n)} \operatorname{det}\left(A^{(-1)^{k}}\right)\left[A^{(-1)^{k}}\right]^{-1} \text { by }(1) \\
& =[\operatorname{det}(A)]^{(n-1) p_{k}(n)+(-1)^{k}} A^{(-1)^{k+1}}
\end{aligned}
$$

Therefore, we can recursively compute the polynomials which give the exponent on $\operatorname{det}(A)$ and obtain a concrete formula for $\operatorname{adj}(A): p_{k+1}(n)=(n-1) p_{k}(n)+(-1)^{k}$.
$\operatorname{By}(1) \operatorname{adj}(A)=\operatorname{det}(A) A^{-1}$, so $p_{1}(n)=1$.
By (7) $\operatorname{adj}^{22}(A)=[\operatorname{det}(A)]^{n-2} A$, so $p_{2}(n)=n-2$.
Then $p_{3}(n)=(n-1) p_{2}(n)+(-1)^{2}=(n-1)(n-2)+1=n^{2}-3 n+3$, agreeing with (8).
Continuing, we find that
$p_{4}(n)=n^{3}-4 n^{2}+6 n-4$ and
$p_{5}(n)=n^{4}-5 n^{3}+10 n^{2}-10 n+5$.
The appearance of the binomial coefficients is unmistakable. We deduce that, for $k=1,2,3, \ldots, n$,
$p_{k}(n)=\frac{(n-1)^{k}+(-1)^{k-1}}{n}$, a polynomial of degree $k-1$.
The capstone of this sequence of polynomials: $p_{n}(n)=\frac{(n-1)^{n}+(-1)^{n-1}}{n}$, allows us to calculate $a d j{ }^{\circ n}(A)$ as:

$$
\begin{equation*}
a d j^{\circ n}(A)=[\operatorname{det}(A)] \frac{(n-1)^{n}+(-1)^{n-1}}{n} A^{(-1)^{n}} . \tag{10}
\end{equation*}
$$

Therefore, $A_{n} \in M_{n \times n}(\mathbf{C})$,

$$
\begin{aligned}
\operatorname{det}\left(a d j^{\circ n}\left(A_{n}\right)\right) & =\operatorname{det}\left\{[\operatorname{det}(A)] \frac{(n-1)^{n}+(-1)^{n-1}}{n} A^{(-1)^{n}}\right\} \operatorname{by}(10) \\
& =\left([\operatorname{det}(A)] \frac{(n-1)^{n}+(-1)^{n-1}}{n}\right)^{n} \operatorname{det}\left[A^{(-1)^{n}}\right] \text { by }(4) \\
& =[\operatorname{det}(A)]]^{(n-1)^{n}+(-1)^{n-1}} \operatorname{det}\left[A^{(-1)^{n}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =[\operatorname{det}(A)]^{(n-1)^{n}}+(-1)^{n-1}+(-1)^{n} \\
& =[\operatorname{det}(A)]^{(n-1)^{n}} .
\end{aligned}
$$

Thus,

$$
\ln \left(\left|\operatorname{det}\left(a d j^{\circ n}\left(A_{n}\right)\right)\right|\right)=\ln \left|\left[\operatorname{det}\left(A_{n}\right)\right]^{(n-1)^{n}}\right|=(n-1)^{n} \ln \left|\operatorname{det}\left(A_{n}\right)\right|,
$$

so, for $n \geq 2$,

$$
\frac{n^{n} \ln \left(\left|\operatorname{det}\left(A_{n}\right)\right|\right)}{\ln \left(\left|\operatorname{det}\left(a d j^{\circ n}\left(A_{n}\right)\right)\right|\right)}=\frac{n^{n} \ln \left(\left|\operatorname{det}\left(A_{n}\right)\right|\right)}{(n-1)^{n} \ln \left(\mid \operatorname{det}\left(A_{n}\right)\right) \mid}=\frac{n^{n}}{(n-1)^{n}}=\left(\frac{n}{n-1}\right)^{n} .
$$

That is, the individual A_{n} has disappeared and our complex fraction has become very simple.
Now it is easy to show by calculus that the limit is e.

- 5151: Proposed by Ovidiu Furdui, Cluj, Romania

Find the value of

$$
\prod_{n=1}^{\infty}\left(\sqrt{\frac{\pi}{2}} \cdot \frac{(2 n-1)!!\sqrt{2 n+1}}{2^{n} n!}\right)^{(-1)^{n}}
$$

More generally, if $x \neq n \pi$ is a real number, find the value of

$$
\prod_{n=1}^{\infty}\left(\frac{x}{\sin x}\left(1-\frac{x^{2}}{\pi^{2}}\right) \cdots\left(1-\frac{x^{2}}{(n \pi)^{2}}\right)\right)^{(-1)^{n}}
$$

Solution by the proposer

The first product equals $\sqrt{\frac{2 \sqrt{2}}{\pi}}$ and the second one equals $\frac{2 \sin \frac{x}{2}}{x}$. Recall the infinite product representation for the sine function

$$
\sin x=x \prod_{n=1}^{\infty}\left(1-\frac{x^{2}}{n^{2} \pi^{2}}\right)
$$

Since the first product can be obtained from the second one, when $x=\pi / 2$, we concentrate on the calculation of the second product. Let

$$
\begin{aligned}
S_{2 n} & =\sum_{k=1}^{2 n}(-1)^{k}\left(\ln \left(1-\frac{x^{2}}{\pi^{2}}\right)+\cdots+\ln \left(1-\frac{x^{2}}{k^{2} \pi^{2}}\right)+\ln \frac{x}{\sin x}\right) \\
& =-\left(\ln \left(1-\frac{x^{2}}{\pi^{2}}\right)+\ln \frac{x}{\sin x}\right)+\left(\ln \left(1-\frac{x^{2}}{\pi^{2}}\right)+\ln \left(1-\frac{x^{2}}{2^{2} \pi^{2}}\right)+\ln \frac{x}{\sin x}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\left(\ln \left(1-\frac{x^{2}}{\pi^{2}}\right)+\ln \left(1-\frac{x^{2}}{2^{2} \pi^{2}}\right)+\cdots+\ln \left(1-\frac{x^{2}}{(2 n-1)^{2} \pi^{2}}\right)+\ln \frac{x}{\sin x}\right) \\
& +\left(\ln \left(1-\frac{x^{2}}{\pi^{2}}\right)+\ln \left(1-\frac{x^{2}}{2^{2} \pi^{2}}\right)+\cdots+\ln \left(1-\frac{x^{2}}{(2 n-1)^{2} \pi^{2}}\right)+\ln \left(1-\frac{x^{2}}{(2 n)^{2} \pi^{2}}\right)+\ln \frac{x}{\sin x}\right) \\
= & \ln \left(\left(1-\frac{x^{2}}{(2 \pi)^{2}}\right)\left(1-\frac{x^{2}}{(4 \pi)^{2}}\right) \cdots\left(1-\frac{x^{2}}{(2 n \pi)^{2}}\right)\right) \\
= & \ln \left(\left(1-\frac{(x / 2)^{2}}{\pi^{2}}\right)\left(1-\frac{(x / 2)^{2}}{(2 \pi)^{2}}\right) \cdots\left(1-\frac{(x / 2)^{2}}{(n \pi)^{2}}\right)\right) .
\end{aligned}
$$

Letting n tend to infinity in the preceding equality we get that $\lim _{n \rightarrow \infty} S_{2 n}=\ln \frac{2 \sin (x / 2)}{x}$, and the problem is solved

Also solved by Paolo Perfetti, Department of Mathematics, University "Tor Vergata," Rome, Italy.

