
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
October 15, 2012

• 5212: Proposed by Kenneth Korbin, New York, NY

Solve the equation

2x+ y −
√

3x2 + 3xy + y2 = 2 +
√

2

if x and y are of the form a+ b
√

2 where a and b are positive integers.

• 5213: Proposed by Tom Moore, Bridgewater, MA

The triangular numbers Tn begin 1, 3, 6, 10, . . . and, in general,

Tn =
n(n+ 1)

2
, n = 1, 2, 3, . . ..

For every positive integer n > 1, prove that n4 is a sum of four triangular numbers.

• 5214: Proposed by Pedro H. O. Pantoja, Natal-RN, Brazil

Let a, b, c be positive real numbers. Prove that

a3(b+ c)2 + 1

1 + a+ 2b
+
b3(c+ a)2 + 1

1 + b+ 2c
+
c3(a+ b)2 + 1

1 + c+ 2a
≥ 4abc(ab+ bc+ ca) + 3

a+ b+ c+ 1
.

• 5215: Proposed by Neculai Stanciu, Buzău, Romania

Evaluate the integral ∫ 1

−1

2x1004 + x3014 + x2008 sinx2007

1 + x2010
dx.

• 5216: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let f : < → <+ be a function such that for all a, b ∈ <

f(ab) = f(a)bf(b)a
2

and f(3) = 64. Find all real solutions to the equation

f(x) + f(x+ 1)− 3x− 2 = 0.
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• 5217: Proposed by Ovidiu Furdui, Cluj-Napoca, Romania

Find the value of:

lim
n→∞

∫ 1

0

∫ 1

0

n
√

(xn + yn)kdxdy,

where k is a positive real number.

————————————————————–

Solutions

• 5194: Proposed by Kenneth Korbin, New York, NY

Find two pairs of positive integers (a, b) such that,

14

a
+
a

b
+

b

14
= 41.

Solution 1 by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie,
San Angelo, TX

Multiplying 14/a+ a/b+ b/14 = 41 by the LCM of the denominators, it follows that
14a2 + b(b− 574)a+ 196b = 0.

To get positive integer solutions, b− 574 < 0. Using MATLAB, we obtain the solutions
(252, 567) and (980, 25). It is easily checked that these are solutions.

Solution 2 by Albert Stadler, Herrliberg, Switzerland

If one intends to make the search amenable to a manual search then the search space
needs to be narrowed down by exploiting divisibility properties of the numbers a and b.

Equation (1)

(
14

a
+
a

b
+

b

14
= 41

)
is equivalent to

14a2 + 196b = ab(574− b). (2)

By (2), 14|ab2, which implies firstly that (2|a or 2|b) and secondly that (7|a or 7|b).
If 2|b, then, again by (2), 4|14a2, which implies that 2|a. So 2|a.

If 7|b, then, again by (2), 49|14a2, which implies that 7|a. So 7|a.

So a is a multiple of 14 and we write a = 14c. (2) then reads as

196c2 + 14b = bc(574− b). (3)

Let p be a prime different from 2 and 7. Let pβ||b, pγ ||c.
(
pf ||n means that pf |n and

pf+1 6 |n or in words: f is the exact exponent of p in the prime factorization of n.)

We claim that β = 2γ.

If pβ||b, then by (3), pβ|c2. So, γ ≥ dβ/2e.
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If pγ ||c, then by (3), pγ |b. Then, again by (3), p2γ |b. So β ≥ 2γ.

So γ ≥ dβ/2e ≥ γ which indeed implies that β = 2γ.

So b and c are of the form b = 2r7sk2, c = 2u7vk (4),
where r, s, u, v are nonnegative integers 0 ≤ r ≤ 9, 0 ≤ u ≤ 8, 0 ≤ s, v ≤ 3,
k ∈ {1, 3, 5, 9, 11, 13, 15, 17, 19, 23}, because b < 573, c < 421.

We plug (4) into (3) and get

14
(
21+2u71+2v + 2r7s

)
= 2r+u7s+vk

(
574− 2r7sk2

)
. (5).

A manual check reveals that (5) can hold only for k = 5 and k = 9. They give rise to the
two pairs (b, c) = (25, 70) and (b, c) = (567, 18) which in turn yield the two solutions
(a, b) ∈ {(980, 25), (252, 567)}.

Yet another approach to solve (1) consists in solving (3) for b. We find

b =
7

(
−1 + 41c±

√
(1− 41c)2 − 4c3

)
c

.

Obviously 4c3 ≤
(
41c− 1)2 < (41c)2 . So c < 420 (as above). The term under the root

sign equals the square of an integer. We are left with a finite set of values of c for which
we need to check this condition. We find that the only values of c are c = 18 and c = 70.
They give rise to the solutions already mentioned.

Comment by editor: When Ken submitted this problem he accompanied it with the
following explanation.

Let K be a factor of 14, and let a = K2y and let b = y2. Then

K

a
+
a

b
+

b

K
=

1 +K3 + y3

Ky

which is equal to an integer if K is a factor of y3 + 1 and if y is a factor of K3 + 1.

Also solved by Brian D. Beasley, Clinton, SC; Pat Costello, Richmond, KY;
Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong, China;
David E. Manes, Oneonta, NY; Titu Zvonaru, Comănesti, Romania jointly
with Neculai Stanciu, Buzău, Romania; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposer.

• 5195: Proposed by Kenneth Korbin, New York, NY

If N is a prime number or a power of primes congruent to 1 (mod 6), then there are
positive integers a and b such that 3a2 + 3ab+ b2 = N with (a, b) = 1.

Find a and b if N = 2011, and if N = 20112, and if N = 20113.

Solution 1 by Kee-Wai Lau, Hong Kong, China

From 2a2 + 3ab+ b2 = N , we obtain b =

√
4N − 3a2 − 3a

2
, so that a <

√
N

3
.

A computer search yields the following results.

For N = 2011, we have (a, b) = (10, 29)
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For N = 20112, we have (a, b) = (880, 541)
For N = 20113, we have (a, b) = (46619, 10711)

Solution 2 by Albert Stadler, Herrliberg, Switzerland

This problem is best put in the context of Eisenstein integers. Let ω =
−1 + i

√
3

2
. The

set of Eisenstein integers Z[ω] = {a+ bω|a, b ∈ Z} has the following properties:

• (i) Z[ω] forms a commutative ring of algebraic integers in the real number field Q(ω)

• (ii) Z[ω] is an Euclidean domain whose norm N is given by N(a+ bω) = a2 − ab+ b2.
As a result of this Z[ω] is a factorial ring.

• (iii) The group of units in Z[ω] is the cyclic group formed by the sixth root of unity in
the complex plane. Specifically, they are {±1,±ω,±ω2}. These are just the Eisenstein
integers of norm one.

• (iv) An ordinary prime number (or rational prime) which is 3 or congruent to 1 (mod
3) is of the form x2 − xy + y2 for some integers x, y and may therefore be factored into
(x+ yω)(x+ yω2) and because of that it is not prime in the Eisenstein integers.
Ordinary primes congruent to 2 (mod 3) cannot be factored in this way and they are
primes in the Eisenstein integers as well.

So based on this, if p is a prime number congruent to 1 (mod 6) then p factors as
p = (c+ dω)(c+ dω2) where c+ dω and c+ dω2 are two Eisenstein primes that are
complex conjugates to each other. Of course (c, d) = 1, since c+ dω and c+ dω2 are
both Eisenstein primes. By assumption N = pk for some natural number k. Then
N = pk = (c+ dω)k(c+ dω2)k. Let (c+ dω)k = e+ fω. We claim that e and f are
coprime.

Assume that there is a prime q that divides both e and f . Then
q|(c+ dω)k|(c+ dω)k(c+ dω2)k = pk. So q = p and therefore q = (c+ dω)(c+ dω2).
Then (c+ dω2)|(c+ dω)k−1 which implies firstly that k > 1, (since an Eisenstein prime
cannot divide 1) and secondly that (c+ dω2)|(c+ dω), (since (c+ dω2) is an Eisenstein
prime). Because |c+ dω2| = |c+ dω| we conclude that there is a unit u such that
(c+ dω2) = u(c+ dω). So c, d ∈ {0,±1} which cannot be, since
N(c+ dω) = p ≡ 1 (mod 6).

So there is a factorization N = pk = (e+ fω)(e+ fω2), where e and f are coprime
integers. We claim that we can assume in addition that either (i) 0 < e < f < 2e or
(ii) 0 < e < −f .

Indeed, since

(+1)(+1) = (−1)(−1) = (+ω)(+ω2) = (+ω2)(+ω) = (−ω)(−ω2) = (−ω2)(−ω)

we conclude that

N(e+ fω) = N(−e− fω) = N(f + eω) = N(−f − eω)

= N(f + (f − e)ω) = N(−f + (e− f)ω) = N(f − e+ fω) = N(e− f − fω).
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So if we consider the eight Eisenstein integers

e+ fω, −e− fω, f + eω, −f − eω, f + (f − e)ω, −f + (e− f)ω, f − e+ fω, e− f − fω

there is one among these of the form g + hω such that either 0 < g < h < 2g or
0 < g < −h, for if g and h have the same sign we can first assume that g > 0 and h > 0
(by replacing, if necessary g by −g and h by −h). Next we can assume that h > g (by
replacing, if necessary g by h and h by g). Next we can assume that h < 2g (by
replacing, if necessary, g by h− g). If g and h have different signs then we can first
assume that g > 0, h < 0 (by replacing , if necessary, g by −g and h by −h). Next we
can assume that g < −h (by replacing, if necessary g by −h and h by −g).

In case (i) we define: a := f − e > 0, b := 2e− f > 0. Then

N = pk = (e+ fω)(e+ fω2) = e2 − ef + f2 = (a+ b)2 − (a+ b)(2a+ b) + (2a+ b)2

= a2 + 2ab+ b2 − (2a2 + 3ab+ b2) + 4a2 + 4ab+ b2 = 3a2 + 3ab+ b2.

In case (ii) we define: a = e > 0, b := −e− f > 0. Then

N = pk = (e+ fω)(e+ fω2) = e2 − ef + f2 = a2 + a(a+ b) + (a+ b)2

= a2 + a2 + ab+ a2 + 2ab+ b2 = 3a2 + 3ab+ b2.

We find (upon using that ω3 = 1, ω2 + ω + 1 = 0),

2011 = (10 + 49ω)(10 + 49ω2), (1)

20112 = (10 + 49ω)2(10 + 49ω2)2 = (2301 + 1421ω)(2301 + 1421ω2), (2)

20113 = (10 + 49ω)3(10 + 49ω2)3 = (46619− 57330ω)(46619− 57330ω2). (3)

We note that 39 + 49ω2 is an associate of 10 + 49ω since
−(39 + 49ω2) = −(39− 49− 49ω) = 10 + 49ω.

So, 2011 = (39 + 49ω)(39 + 49ω2), and 0 < 39 < 49 < 78. We are in case (i) and find
a = 10, b = 29. Indeed, if we define f(a, b) = 3a2 + 3ab+ b2, then f(10, 29) = 2011.

We note that 2301 + 1421ω2 is an associate of 1421 + 2301ω since
ω(2301 + 1421ω2) = 1421 + 2301ω. So, 20112 = (1421 + 2301ω)(1421 + 2301ω2), and
0 < 1421 < 2301 < 2842. We are in case (i) and find a = 880, b = 541. Indeed,
f(880, 541) = 20112.

We note that 20113 = (46619− 57330ω)(46619− 57330ω2), and 0 < 46619 < 57330. We
are in case (ii) and find a = 46619, b = 10711. Indeed, f(46619, 10711) = 20113.

Also solved by Brian D. Beasley, Clinton, SC; Pat Costello, Richmond, KY;
Paul M. Harms, North Newton, KS; David E. Manes, Oneonta, NY; David
Stone and John Hawkins (jointly), Statesboro, GA, and the proposer.

• 5196: Proposed by Neculai Stanciu, Buzău, Romania

Determine the last six digits of the product (2010)
(
52014

)
.

Solution 1 by Robert Howard Anderson, Chesapeake, VA
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To determine the last six digits of a product you must know the last six digits of each
number you plan to multiply.

To do this the last six digits of 52014 we need to look at the patterns of the solutions to
lower powers.

All power of 5 end in 5, and all even powers of five end in 25, then all even powers
greater than 2 end in 625. The 4th digit is either 5 or 0; the digit can be determined by
using 2008 (mod 4) as 5.

The 5th digit is either 1,9,6, or 4; the digit can be determined by using 2008 (mod 8) as
1.

The 6th digit is either 3,7,1,5,8,2,6,or 0; the digit can be determined by using 2006 (mod
16) as 5.

The last six digits of 52014 are 515625.

The last six digits of (2010)(515625) are 406250; so the last six digits of (2010)52014 are
406250.

Solution 2 by Ercole Suppa, Teramo, Italy

Clearly the last digit of N = (2010)
(
52014

)
is 0. Therefore in order to find the last six

digits of N it is enough to calculate the last five digits of (201)
(
52014

)
.

Let us first calculate a few powers of 5, and to do it we need to know just the last five
digits of the previous power of 5:

51 = 5 52 = 25 53 = 25 54 = 625
55 = 3125 56 = 15625 57 = 78125 58 = · · · 90625
59 = · · · 53125 510 = · · · 65625 511 = · · · 28125 512 = · · · 40625
513 = · · · 03125 514 = · · · 15625

Observe that the last five digits of 514 are the same as those of 56. Therefore, starting
with 56 the last five digits of powers of 5 will repeat periodically:

15625, 78125, 90625, 53125, 65625, 28125, 40625, 0325, 15625, · · · .

This means that increasing the exponent of eight does not change the last five digits of
powers of 5. Since 2014 = 6 + 8 · 251, it follows that 56 and 52014 have the same last five
digits, so

201 · 52014 ≡ 201 · 56 ≡ 201 · 15625 ≡ 40625 (mod 105)

and this implies that the last six digits of (2010)
(
52014

)
are 406250.

Solution 3 by Albert Stadler, Herrliberg, Switzerland

By Fermat’s Little Theorem, 5ϕ(32) = 516 ≡ 1(mod 32). So,

52009 ≡ 52009−16·125 ≡ 59 ≡ (−3)3 ≡ 5(mod 32),

which means that there is an integer k such that

52009 − 5 = 32k.

We multiply this equation by 2010 · 55 and get

2010 · 52014 − 2010 · 56 = 201 · 106k.
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But
2010 · 56 = 31406250.

So the last six digits are 406250.

Solution 4 by Kee-Wai Lau, Hong Kong, China

We show that (2010)
(
52014

)
= · · · 406250.

It is easy to check that

(2010)
(
52014

)
= 406250 +

(
24
) (

56
) (

52011 − 1
)

+ (2)
(
57
) (

52008 − 1
)
.

Hence to prove our result, we need only show that 52011 − 1 is a multiple of 4 and
52008 − 1 is a multiple of 32.

In fact,

52011 − 1 ≡ 12011 − 1 ≡ 0 (mod 4), and

52008 − 1 = 390625251 − 1 ≡ 1251 − 1 ≡ 0 (mod 32),

and this completes the solution.

Also solved by Daniel Lopez Aguayo, UNAM Morelia, Mexico; Brian D.
Beasley, Clinton, SC; Pat Costello, Richmond, KY; Bruno Salgueiro Fanego,
Viveiro Spain; Paul M. Harms, North Newton, KS; David E. Manes,
Oneonta, NY; Boris Rays, Brooklyn, NY; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposer.

• 5197: Proposed by Pedro H. O. Pantoja, UFRN, Brazil

Let x, y, z be positive real numbers such that x2 + y2 + z2 = 4. Prove that,

1

6− x2
+

1

6− y2
+

1

6− z2
≤ 1

xyz
.

Solution 1 by Paolo Perfetti, Department of Mathematics, “Tor Vergata”
University, Rome, Italy

The inequality is evidently

∑
cyc

1

2 + x2 + y2
≤ 1

xyz
.

a2 + 1 ≥ 2|a| yields

∑
cyc

1

2 + x2 + y2
≤
∑
cyc

1

2x+ 2y
≤ 1

xyz

and (
√
x−√y)2 ≥ 0 yields

∑
cyc

1

2x+ 2y
≤
∑
cyc

1

4
√
xy
≤ 1

xyz
⇐⇒

∑
cyc

z
√
xy ≤ 4

7



which is implied by

∑
cyc

z
1

2
(x+ y) ≤ 4 ⇐⇒ xy + yz + zx ≤ 4.

But this follows by the well known xy + yz + zx ≤ x2 + y2 + z2, thus concluding the
proof.

Soluiton 2 by David E. Manes, Oneonta, NY

Let L =
1

6− x2
+

1

6− y2
+

1

6− z2
. Since x2 + y2 + z2 = 4, it follows that

6− x2 = 2 + y2 + z2, 6− y2 = 2 + x2 + z2, 6− z2 = 2 + x2 + y2.

Therefore,

L =
1

6− x2
+

1

6− y2
+

1

6− z2
=

1

2 + y2 + z2
+

1

2 + x2 + z2
+

1

2 + x2 + y2
.

Using the Arithmetic Mean-Geometric Mean Inequality twice, one obtains

L =
1

2 + (y2 + z2)
+

1

2 + (x2 + z2)
+

1

2 + (x2 + y2)

≤ 1

2 + (2yz)
+

1

2 + (2xz)
+

1

2 + (2xy)

=
1

2

(
1

1 + yz
+

1

1 + xz
+

1

1 + xy

)

≤ 1

2

(
1

2
√
yz

+
1

2
√
xz

+
1

2
√
xy

)

=
1

4

(√
x+
√
y +
√
z

√
xyz

)
.

As a result, to show that L ≤ 1

xyz
it suffices to show that

1

4

(√
x+
√
y +
√
z

√
xyz

)
≤ 1

xyz
, if and only if

1

4

(√
x+
√
y +
√
z
)
≤ 1
√
xyz

, if and only if

1

4

(
x
√
yz + y

√
xz + z

√
xy
)
≤ 1.

However, the Cauchy-Schwarz inequality, and the inequality xy + yz + zx ≤ x2 + y2 + z2

(which also follows from the C-S inequality; editor’s comment) imply that

1

4

(
x
√
yz + y

√
xz + z

√
xy
)
≤ 1

4

√
x2 + y2 + z2

√
yz + xz + xy
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≤ 1

4

√
x2 + y2 + z2

√
x2 + y2 + z2 = 1.

Accordingly, if x, y, z > 0, and x2 + y2 + z2 = 4, then

1

6− x2
+

1

6− y2
+

1

6− z2
≤ 1

xyz
.

Solution 3 by Arkady Alt, San Jose, CA

Let a :=
x2

4
b :=

y2

4
, c :=

z2

4
then inequality becomes

1

6− 4a
+

1

6− 4b
+

1

6− 4c
≤ 1

8
√
abc

,

where a+ b+ c = 1.

Let E = E (a, b, c) :=
√
abc

∑
cyc

1

3− 2a
, p := ab+ bc+ ca, q := abc.

Since
∑
cyc

(3− 2b) (3− 2c) =
∑
cyc

(9− 6 (b+ c) + 4bc) = 15 + 4p,

(3− 2a) (3− 2b) (3− 2c) = 9 + 12p− 8q then E =
(15 + 4p)

√
q

9 + 12p− 8q
.

Since q ≤ p2

3

∗
and E is increasing in q then

E√
3
≤ (15 + 4p) p

27 + 36p− 8p2

≤

(
15 + 4 · 13

)
· 13

27 + 36 · 13 − 8 · 19
=

1

7

because
(15 + 4p) p

27 + 36p− 8p2
is increasing in positive p and

p ≤ 1

3
⇐⇒ ab+ bc+ ca ≤ (a+ b+ c)2

3
.

Thus,

E ≤
√

3

7
⇐⇒ 4E ≤ 4

√
3

7

⇐⇒ 8
√
abc

∑
cyc

1

6− 4a
≤ 4
√

3

7

⇐⇒ xyz
∑
cyc

1

6− x2
≤ 4
√

3

7
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⇐⇒
∑
cyc

1

6− x2
≤ 4
√

3

7xyz
.

1

6− x2
+

1

6− y2
+

1

6− z2
≤ 4

√
3

7xyz
.

Remark: Since
4
√

3

7
< 1 we have

1

6− x2
+

1

6− y2
+

1

6− z2
≤ 4
√

3

7xyz
<

1

xyz
.

So, the inequality in the formulation of problem could have been stated with the
stronger statement

1

6− x2
+

1

6− y2
+

1

6− z2
≤ 4

√
3

7xyz
, instead of with the weaker one of

1

6− x2
+

1

6− y2
+

1

6− z2
≤ 1

xyz
.

∗ Editor’s comment: The inequality q ≤ p2

3
is equivalent to

3abc(a+ b+ c) ≤ (ab+ bc+ ca)2 which is equivalent to abc(a+ b+ c) ≤ a2b2 + b2c2 + c2a2

which is implied by adding up a2bc ≤ 0.5a2(b2 + c2) and its cyclic variants.

Also solved by Kee-Wai Lau∗, Hong Kong, China; Ecole Suppa, Teramo,
Italy; Albert Stadler∗, Herrliberg, Switzerland; Titu Zvonaru, Comănesti,
Romania jointly with Neculai Stanciu, Buzău, Romania, and the proposer.
(∗ Observed, specifically stated and proved the stricter inequality.)

• 5198: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let m,n be positive integers. Calculate,

2n∑
k=1

m∏
i=0

(
bk + 1

2
c+ a+ i

)−1
,

where a is a nonnegative number and bxc represents the greatest integer less than or
equal to x.

Solution 1 by Arkady Alt, San Jose, CA

2n∑
k=1

m∏
i=0

(⌊
k + 1

2

⌋
+ a+ i

)−1

=
n∑
k=1

m∏
i=0

(⌊
2k − 1 + 1

2

⌋
+ a+ i

)−1
+

n∑
k=1

m∏
i=0

(⌊
2k + 1

2

⌋
+ a+ i

)−1

= 2
n∑
k=1

m∏
i=0

(k + a+ i)−1
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= 2
n∑
k=1

1

(k + a) (k + 1 + a) ... (k +m+ a)

=
2

m

n∑
k=1

(
1

(k + a) (k + 1 + a) ... (k +m− 1 + a)
− 1

(k + 1 + a) (k + 2 + a) ... (k +m+ a)

)

=
2

m

(
1

(1 + a) (2 + a) ... (m+ a)
− 1

(n+ 1 + a) (n+ 2 + a) ... (n+m+ a)

)
.

Solution 2 by Anastasios Kotronis, Athens, Greece

By a direct calculation, using the identity Γ(x+ 1) = xΓ(x), x > 0 for the Γ function,
we can see that

m∏
i=0

1

b+ i
=

Γ(b)

Γ(b+m+ 1)
=

1

m

(
Γ(b)

Γ(b+m)
− Γ(b+ 1)

Γ(b+m+ 1)

)
b > 0. (1)

Now

2n∑
k=1

m∏
i=0

([
k + 1

2

]
+ a+ i

)−1

=
∑

k=1,3,...,2n−1

m∏
i=0

(
k + 1

2
+ a+ i

)−1
+

∑
k=2,4,...,2n

m∏
i=0

(
k

2
+ a+ i

)−1

= 2
n∑
k=1

m∏
i=0

(k + a+ i)−1

(1)
=

2

m

n∑
k=1

(
Γ(a+ k)

Γ(a+ k +m)
− Γ(a+ k + 1)

Γ(a+ k +m+ 1)

)

=
2

m

(
Γ(a+ 1)

Γ(a+ 1 +m)
− Γ(a+ n+ 1)

Γ(a+ n+m+ 1)

)
.

Also solved by Albert Stadler, Herrliberg, Switzerland and the proposer.

• 5199: Proposed by Ovidiu Furdui, Cluj, Romania

Let k > 0 and n ≥ 0 be real numbers. Calculate,∫ 1

0
xn ln

(√
1 + xk −

√
1− xk

)
dx.

Solution by Anastasios Kotronis, Athens, Greece
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I =
xn+1 ln

(√
1 + xk −

√
1− xk

)
n+ 1

∣∣∣∣∣
1

0

− k

2(n+ 1)

∫ 1

0

xn+k
(

1√
1+xk

+ 1√
1−xk

)
√

1 + xk −
√

1− xk
dx

=
ln 2

2(n+ 1)
− k

2(n+ 1)

∫ 1

0

xn+k
(√

1− xk +
√

1 + xk
)

(√
1 + xk −

√
1− xk

)√
1− x2k

dx

=
ln 2

2(n+ 1)
− k

4(n+ 1)

∫ 1

0

xn
(√

1− xk +
√

1 + xk
)2

√
1− x2k

dx

=
ln 2

2(n+ 1)
− k

2(n+ 1)

∫ 1

0

(
xn√

1− x2k
+ xn

)
dx

=
ln 2

2(n+ 1)
− k

2(n+ 1)2
− k

2(n+ 1)

∫ 1

0

xn√
1− x2k

dx

x2k=u
=====

ln 2

2(n+ 1)
− k

2(n+ 1)2
− 1

4(n+ 1)
B

(
n + 1

2k
,
1

2

)
(B(u, v) denotes the Euler beta function)

=
ln 2

2(n+ 1)
− k

2(n+ 1)2
− 1

4(n+ 1)

√
πΓ
(
n+1
2k }

)
Γ
(
n+k+1

2k

) .

Also solved by Kee-Wai Lau, Hong Kong, China; Paolo Perfetti, Department
of Mathematics, “Tor Vergata” University, Rome, Italy; Albert Stadler,
Herrliberg, Switzerland; David Stone and John Hawkins (jointly),
Statesboro, GA, and the proposer.
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