Problems

$* *$

This section of the Journal offers readers an opportunity to exchange interesting mathematical problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics, Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions can be sent e-mail to eisenbt@013.net. Solutions to previously stated problems can be seen at http://www.ssma.org/publications.

Solutions to the problems stated in this issue should be posted before October 15, 2012

- 5212: Proposed by Kenneth Korbin, New York, NY

Solve the equation

$$
2 x+y-\sqrt{3 x^{2}+3 x y+y^{2}}=2+\sqrt{2}
$$

if x and y are of the form $a+b \sqrt{2}$ where a and b are positive integers.

- 5213: Proposed by Tom Moore, Bridgewater, MA

The triangular numbers T_{n} begin $1,3,6,10, \ldots$ and, in general, $T_{n}=\frac{n(n+1)}{2}, n=1,2,3, \ldots$.
For every positive integer $n>1$, prove that n^{4} is a sum of four triangular numbers.

- 5214: Proposed by Pedro H. O. Pantoja, Natal-RN, Brazil

Let a, b, c be positive real numbers. Prove that

$$
\frac{a^{3}(b+c)^{2}+1}{1+a+2 b}+\frac{b^{3}(c+a)^{2}+1}{1+b+2 c}+\frac{c^{3}(a+b)^{2}+1}{1+c+2 a} \geq \frac{4 a b c(a b+b c+c a)+3}{a+b+c+1}
$$

- 5215: Proposed by Neculai Stanciu, Buzău, Romania

Evaluate the integral

$$
\int_{-1}^{1} \frac{2 x^{1004}+x^{3014}+x^{2008} \sin x^{2007}}{1+x^{2010}} d x
$$

- 5216: Proposed by José Luis Díaz-Barrero, Barcelona, Spain

Let $f: \Re \rightarrow \Re^{+}$be a function such that for all $a, b \in \Re$

$$
f(a b)=f(a)^{b} f(b)^{a^{2}}
$$

and $f(3)=64$. Find all real solutions to the equation

$$
f(x)+f(x+1)-3 x-2=0
$$

- 5217: Proposed by Ovidiu Furdui, Cluj-Napoca, Romania

Find the value of:

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \int_{0}^{1} \sqrt[n]{\left(x^{n}+y^{n}\right)^{k}} d x d y
$$

where k is a positive real number.

Solutions

- 5194: Proposed by Kenneth Korbin, New York, NY

Find two pairs of positive integers (a, b) such that,

$$
\frac{14}{a}+\frac{a}{b}+\frac{b}{14}=41
$$

Solution 1 by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie, San Angelo, TX

Multiplying $14 / a+a / b+b / 14=41$ by the LCM of the denominators, it follows that $14 a^{2}+b(b-574) a+196 b=0$.

To get positive integer solutions, $b-574<0$. Using MATLAB, we obtain the solutions $(252,567)$ and $(980,25)$. It is easily checked that these are solutions.

Solution 2 by Albert Stadler, Herrliberg, Switzerland

If one intends to make the search amenable to a manual search then the search space needs to be narrowed down by exploiting divisibility properties of the numbers a and b. Equation (1) $\left(\frac{14}{a}+\frac{a}{b}+\frac{b}{14}=41\right)$ is equivalent to

$$
\begin{equation*}
14 a^{2}+196 b=a b(574-b) \tag{2}
\end{equation*}
$$

By (2), $14 \mid a b^{2}$, which implies firstly that $(2 \mid a$ or $2 \mid b)$ and secondly that $(7 \mid a$ or $7 \mid b)$. If $2 \mid b$, then, again by $(2), 4 \mid 14 a^{2}$, which implies that $2 \mid a$. So $2 \mid a$.
If $7 \mid b$, then, again by $(2), 49 \mid 14 a^{2}$, which implies that $7 \mid a$. So $7 \mid a$.
So a is a multiple of 14 and we write $a=14 c$. (2) then reads as

$$
\begin{equation*}
196 c^{2}+14 b=b c(574-b) \tag{3}
\end{equation*}
$$

Let p be a prime different from 2 and 7 . Let $p^{\beta}\left\|b, p^{\gamma}\right\| c .\left(p^{f} \| n\right.$ means that $p^{f} \mid n$ and $p^{f+1} \not \backslash n$ or in words: f is the exact exponent of p in the prime factorization of n.)
We claim that $\beta=2 \gamma$.
If $p^{\beta} \| b$, then by $(3), p^{\beta} \mid c^{2}$. So, $\gamma \geq\lceil\beta / 2\rceil$.

If $p^{\gamma} \| c$, then by (3), $p^{\gamma} \mid b$. Then, again by (3), $p^{2 \gamma} \mid b$. So $\beta \geq 2 \gamma$.
So $\gamma \geq\lceil\beta / 2\rceil \geq \gamma$ which indeed implies that $\beta=2 \gamma$.
So b and c are of the form $b=2^{r} 7^{s} k^{2}, c=2^{u} 7^{v} k \quad$ (4),
where r, s, u, v are nonnegative integers $0 \leq r \leq 9,0 \leq u \leq 8,0 \leq s, v \leq 3$, $k \in\{1,3,5,9,11,13,15,17,19,23\}$, because $b<573, c<421$.
We plug (4) into (3) and get

$$
\begin{equation*}
14\left(2^{1+2 u} 7^{1+2 v}+2^{r} 7^{s}\right)=2^{r+u} 7^{s+v} k\left(574-2^{r} 7^{s} k^{2}\right) \tag{5}
\end{equation*}
$$

A manual check reveals that (5) can hold only for $k=5$ and $k=9$. They give rise to the two pairs $(b, c)=(25,70)$ and $(b, c)=(567,18)$ which in turn yield the two solutions $(a, b) \in\{(980,25),(252,567)\}$.

Yet another approach to solve (1) consists in solving (3) for b. We find

$$
b=\frac{7\left(-1+41 c \pm \sqrt{(1-41 c)^{2}-4 c^{3}}\right)}{c} .
$$

Obviously $4 c^{3} \leq(41 c-1)^{2}<(41 c)^{2}$. So $c<420$ (as above). The term under the root sign equals the square of an integer. We are left with a finite set of values of c for which we need to check this condition. We find that the only values of c are $c=18$ and $c=70$. They give rise to the solutions already mentioned.

Comment by editor: When Ken submitted this problem he accompanied it with the following explanation.
Let K be a factor of 14 , and let $a=K^{2} y$ and let $b=y^{2}$. Then

$$
\frac{K}{a}+\frac{a}{b}+\frac{b}{K}=\frac{1+K^{3}+y^{3}}{K y}
$$

which is equal to an integer if K is a factor of $y^{3}+1$ and if y is a factor of $K^{3}+1$.
Also solved by Brian D. Beasley, Clinton, SC; Pat Costello, Richmond, KY; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong, China; David E. Manes, Oneonta, NY; Titu Zvonaru, Comănesti, Romania jointly with Neculai Stanciu, Buzău, Romania; David Stone and John Hawkins (jointly), Statesboro, GA, and the proposer.

- 5195: Proposed by Kenneth Korbin, New York, NY

If N is a prime number or a power of primes congruent to $1(\bmod 6)$, then there are positive integers a and b such that $3 a^{2}+3 a b+b^{2}=N$ with $(a, b)=1$.
Find a and b if $N=2011$, and if $N=2011^{2}$, and if $N=2011^{3}$.

Solution 1 by Kee-Wai Lau, Hong Kong, China

From $2 a^{2}+3 a b+b^{2}=N$, we obtain $b=\frac{\sqrt{4 N-3 a^{2}}-3 a}{2}$, so that $a<\sqrt{\frac{N}{3}}$.
A computer search yields the following results.

$$
\text { For } N=2011 \text {, we have }(a, b)=(10,29)
$$

$$
\begin{aligned}
& \text { For } N=2011^{2} \text {, we have }(a, b)=(880,541) \\
& \text { For } N=2011^{3} \text {, we have }(a, b)=(46619,10711)
\end{aligned}
$$

Solution 2 by Albert Stadler, Herrliberg, Switzerland

This problem is best put in the context of Eisenstein integers. Let $\omega=\frac{-1+i \sqrt{3}}{2}$. The set of Eisenstein integers $Z[\omega]=\{a+b \omega \mid a, b \in Z\}$ has the following properties:

- (i) $Z[\omega]$ forms a commutative ring of algebraic integers in the real number field $Q(\omega)$
- (ii) $Z[\omega]$ is an Euclidean domain whose norm N is given by $N(a+b \omega)=a^{2}-a b+b^{2}$. As a result of this $Z[\omega]$ is a factorial ring.
- (iii) The group of units in $Z[\omega]$ is the cyclic group formed by the sixth root of unity in the complex plane. Specifically, they are $\left\{ \pm 1, \pm \omega, \pm \omega^{2}\right\}$. These are just the Eisenstein integers of norm one.
- (iv) An ordinary prime number (or rational prime) which is 3 or congruent to 1 (mod 3) is of the form $x^{2}-x y+y^{2}$ for some integers x, y and may therefore be factored into $(x+y \omega)\left(x+y \omega^{2}\right)$ and because of that it is not prime in the Eisenstein integers.
Ordinary primes congruent to $2(\bmod 3)$ cannot be factored in this way and they are primes in the Eisenstein integers as well.

So based on this, if p is a prime number congruent to $1(\bmod 6)$ then p factors as $p=(c+d \omega)\left(c+d \omega^{2}\right)$ where $c+d \omega$ and $c+d \omega^{2}$ are two Eisenstein primes that are complex conjugates to each other. Of course $(c, d)=1$, since $c+d \omega$ and $c+d \omega^{2}$ are both Eisenstein primes. By assumption $N=p^{k}$ for some natural number k. Then $N=p^{k}=(c+d \omega)^{k}\left(c+d \omega^{2}\right)^{k}$. Let $(c+d \omega)^{k}=e+f \omega$. We claim that e and f are coprime.

Assume that there is a prime q that divides both e and f. Then $q\left|(c+d \omega)^{k}\right|(c+d \omega)^{k}\left(c+d \omega^{2}\right)^{k}=p^{k}$. So $q=p$ and therefore $q=(c+d \omega)\left(c+d \omega^{2}\right)$. Then $\left(c+d \omega^{2}\right) \mid(c+d \omega)^{k-1}$ which implies firstly that $k>1$, (since an Eisenstein prime cannot divide 1) and secondly that $\left(c+d \omega^{2}\right) \mid(c+d \omega)$, (since $\left(c+d \omega^{2}\right)$ is an Eisenstein prime). Because $\left|c+d \omega^{2}\right|=|c+d \omega|$ we conclude that there is a unit u such that $\left(c+d \omega^{2}\right)=u(c+d \omega)$. So $c, d \in\{0, \pm 1\}$ which cannot be, since $N(c+d \omega)=p \equiv 1(\bmod 6)$.
So there is a factorization $N=p^{k}=(e+f \omega)\left(e+f \omega^{2}\right)$, where e and f are coprime integers. We claim that we can assume in addition that either (i) $0<e<f<2 e$ or (ii) $0<e<-f$.

Indeed, since

$$
(+1)(+1)=(-1)(-1)=(+\omega)\left(+\omega^{2}\right)=\left(+\omega^{2}\right)(+\omega)=(-\omega)\left(-\omega^{2}\right)=\left(-\omega^{2}\right)(-\omega)
$$

we conclude that

$$
\begin{aligned}
N(e+f \omega) & =N(-e-f \omega)=N(f+e \omega)=N(-f-e \omega) \\
& =N(f+(f-e) \omega)=N(-f+(e-f) \omega)=N(f-e+f \omega)=N(e-f-f \omega) .
\end{aligned}
$$

So if we consider the eight Eisenstein integers
$e+f \omega,-e-f \omega, f+e \omega,-f-e \omega, f+(f-e) \omega,-f+(e-f) \omega, f-e+f \omega, e-f-f \omega$
there is one among these of the form $g+h \omega$ such that either $0<g<h<2 g$ or $0<g<-h$, for if g and h have the same sign we can first assume that $g>0$ and $h>0$ (by replacing, if necessary g by $-g$ and h by $-h$). Next we can assume that $h>g$ (by replacing, if necessary g by h and h by g). Next we can assume that $h<2 g$ (by replacing, if necessary, g by $h-g$). If g and h have different signs then we can first assume that $g>0, h<0$ (by replacing, if necessary, g by $-g$ and h by $-h$). Next we can assume that $g<-h$ (by replacing, if necessary g by $-h$ and h by $-g$).
In case (i) we define: $a:=f-e>0, b:=2 e-f>0$. Then

$$
\begin{aligned}
N=p^{k} & =(e+f \omega)\left(e+f \omega^{2}\right)=e^{2}-e f+f^{2}=(a+b)^{2}-(a+b)(2 a+b)+(2 a+b)^{2} \\
& =a^{2}+2 a b+b^{2}-\left(2 a^{2}+3 a b+b^{2}\right)+4 a^{2}+4 a b+b^{2}=3 a^{2}+3 a b+b^{2}
\end{aligned}
$$

In case (ii) we define: $a=e>0, b:=-e-f>0$. Then

$$
\begin{aligned}
N=p^{k} & =(e+f \omega)\left(e+f \omega^{2}\right)=e^{2}-e f+f^{2}=a^{2}+a(a+b)+(a+b)^{2} \\
& =a^{2}+a^{2}+a b+a^{2}+2 a b+b^{2}=3 a^{2}+3 a b+b^{2}
\end{aligned}
$$

We find (upon using that $\omega^{3}=1, \omega^{2}+\omega+1=0$),

$$
\begin{align*}
2011 & =(10+49 \omega)\left(10+49 \omega^{2}\right) \tag{1}\\
2011^{2} & =(10+49 \omega)^{2}\left(10+49 \omega^{2}\right)^{2}=(2301+1421 \omega)\left(2301+1421 \omega^{2}\right) \tag{2}\\
2011^{3} & =(10+49 \omega)^{3}\left(10+49 \omega^{2}\right)^{3}=(46619-57330 \omega)\left(46619-57330 \omega^{2}\right) \tag{3}
\end{align*}
$$

We note that $39+49 \omega^{2}$ is an associate of $10+49 \omega$ since
$-\left(39+49 \omega^{2}\right)=-(39-49-49 \omega)=10+49 \omega$.
So, $2011=(39+49 \omega)\left(39+49 \omega^{2}\right)$, and $0<39<49<78$. We are in case (i) and find $a=10, b=29$. Indeed, if we define $f(a, b)=3 a^{2}+3 a b+b^{2}$, then $f(10,29)=2011$.
We note that $2301+1421 \omega^{2}$ is an associate of $1421+2301 \omega$ since
$\omega\left(2301+1421 \omega^{2}\right)=1421+2301 \omega$. So, $2011^{2}=(1421+2301 \omega)\left(1421+2301 \omega^{2}\right)$, and $0<1421<2301<2842$. We are in case (i) and find $a=880, b=541$. Indeed, $f(880,541)=2011^{2}$.
We note that $2011^{3}=(46619-57330 \omega)\left(46619-57330 \omega^{2}\right)$, and $0<46619<57330$. We are in case $(i i)$ and find $a=46619, b=10711$. Indeed, $f(46619,10711)=2011^{3}$.

Also solved by Brian D. Beasley, Clinton, SC; Pat Costello, Richmond, KY; Paul M. Harms, North Newton, KS; David E. Manes, Oneonta, NY; David Stone and John Hawkins (jointly), Statesboro, GA, and the proposer.

- 5196: Proposed by Neculai Stanciu, Buzău, Romania

Determine the last six digits of the product $(2010)\left(5^{2014}\right)$.
Solution 1 by Robert Howard Anderson, Chesapeake, VA

To determine the last six digits of a product you must know the last six digits of each number you plan to multiply.
To do this the last six digits of 5^{2014} we need to look at the patterns of the solutions to lower powers.
All power of 5 end in 5 , and all even powers of five end in 25 , then all even powers greater than 2 end in 625 . The 4 th digit is either 5 or 0 ; the digit can be determined by using $2008(\bmod 4)$ as 5.
The 5 th digit is either $1,9,6$, or 4 ; the digit can be determined by using $2008(\bmod 8)$ as 1.

The 6 th digit is either $3,7,1,5,8,2,6$,or 0 ; the digit can be determined by using 2006 (mod 16) as 5.

The last six digits of 5^{2014} are 515625 .
The last six digits of $(2010)(515625)$ are 406250 ; so the last six digits of (2010)5 ${ }^{2014}$ are 406250.

Solution 2 by Ercole Suppa, Teramo, Italy

Clearly the last digit of $N=(2010)\left(5^{2014}\right)$ is 0 . Therefore in order to find the last six digits of N it is enough to calculate the last five digits of $(201)\left(5^{2014}\right)$.
Let us first calculate a few powers of 5 , and to do it we need to know just the last five digits of the previous power of 5 :

$$
\begin{array}{llll}
5^{1}=5 & 5^{2}=25 & 5^{3}=25 & 5^{4}=625 \\
5^{5}=3125 & 5^{6}=15625 & 5^{7}=78125 & 5^{8}=\cdots 90625 \\
5^{9}=\cdots 53125 & 5^{10}=\cdots 65625 & 5^{11}=\cdots 28125 & 5^{12}=\cdots 40625 \\
5^{13}=\cdots 03125 & 5^{14}=\cdots 15625 & &
\end{array}
$$

Observe that the last five digits of 5^{14} are the same as those of 5^{6}. Therefore, starting with 5^{6} the last five digits of powers of 5 will repeat periodically:

$$
15625,78125,90625,53125,65625,28125,40625,0325,15625, \cdots
$$

This means that increasing the exponent of eight does not change the last five digits of powers of 5 . Since $2014=6+8 \cdot 251$, it follows that 5^{6} and 5^{2014} have the same last five digits, so

$$
201 \cdot 5^{2014} \equiv 201 \cdot 5^{6} \equiv 201 \cdot 15625 \equiv 40625 \quad\left(\bmod 10^{5}\right)
$$

and this implies that the last six digits of $(2010)\left(5^{2014}\right)$ are 406250.

Solution 3 by Albert Stadler, Herrliberg, Switzerland

By Fermat's Little Theorem, $5^{\varphi(32)}=5^{16} \equiv 1(\bmod 32)$. So,

$$
5^{2009} \equiv 5^{2009-16 \cdot 125} \equiv 5^{9} \equiv(-3)^{3} \equiv 5(\bmod 32)
$$

which means that there is an integer k such that

$$
5^{2009}-5=32 k
$$

We multiply this equation by $2010 \cdot 5^{5}$ and get

$$
2010 \cdot 5^{2014}-2010 \cdot 5^{6}=201 \cdot 10^{6} k
$$

But

$$
2010 \cdot 5^{6}=31406250
$$

So the last six digits are 406250 .

Solution 4 by Kee-Wai Lau, Hong Kong, China

We show that $(2010)\left(5^{2014}\right)=\cdots 406250$.
It is easy to check that

$$
(2010)\left(5^{2014}\right)=406250+\left(2^{4}\right)\left(5^{6}\right)\left(5^{2011}-1\right)+(2)\left(5^{7}\right)\left(5^{2008}-1\right)
$$

Hence to prove our result, we need only show that $5^{2011}-1$ is a multiple of 4 and $5^{2008}-1$ is a multiple of 32 .

In fact,

$$
\begin{aligned}
5^{2011}-1 \equiv 1^{2011}-1 & \equiv 0(\bmod 4), \text { and } \\
5^{2008}-1=390625^{251}-1 & \equiv 1^{251}-1 \equiv 0(\bmod 32),
\end{aligned}
$$

and this completes the solution.
Also solved by Daniel Lopez Aguayo, UNAM Morelia, Mexico; Brian D. Beasley, Clinton, SC; Pat Costello, Richmond, KY; Bruno Salgueiro Fanego, Viveiro Spain; Paul M. Harms, North Newton, KS; David E. Manes, Oneonta, NY; Boris Rays, Brooklyn, NY; David Stone and John Hawkins (jointly), Statesboro, GA, and the proposer.

- 5197: Proposed by Pedro H. O. Pantoja, UFRN, Brazil

Let x, y, z be positive real numbers such that $x^{2}+y^{2}+z^{2}=4$. Prove that,

$$
\frac{1}{6-x^{2}}+\frac{1}{6-y^{2}}+\frac{1}{6-z^{2}} \leq \frac{1}{x y z}
$$

Solution 1 by Paolo Perfetti, Department of Mathematics, "Tor Vergata" University, Rome, Italy

The inequality is evidently

$$
\sum_{\text {cyc }} \frac{1}{2+x^{2}+y^{2}} \leq \frac{1}{x y z} .
$$

$a^{2}+1 \geq 2|a|$ yields

$$
\sum_{\text {cyc }} \frac{1}{2+x^{2}+y^{2}} \leq \sum_{\text {cyc }} \frac{1}{2 x+2 y} \leq \frac{1}{x y z}
$$

and $(\sqrt{x}-\sqrt{y})^{2} \geq 0$ yields

$$
\sum_{\text {cyc }} \frac{1}{2 x+2 y} \leq \sum_{\text {cyc }} \frac{1}{4 \sqrt{x y}} \leq \frac{1}{x y z} \Longleftrightarrow \sum_{\text {cyc }} z \sqrt{x y} \leq 4
$$

which is implied by

$$
\sum_{\text {cyc }} z \frac{1}{2}(x+y) \leq 4 \Longleftrightarrow x y+y z+z x \leq 4
$$

But this follows by the well known $x y+y z+z x \leq x^{2}+y^{2}+z^{2}$, thus concluding the proof.

Soluiton 2 by David E. Manes, Oneonta, NY

Let $L=\frac{1}{6-x^{2}}+\frac{1}{6-y^{2}}+\frac{1}{6-z^{2}}$. Since $x^{2}+y^{2}+z^{2}=4$, it follows that

$$
6-x^{2}=2+y^{2}+z^{2}, 6-y^{2}=2+x^{2}+z^{2}, 6-z^{2}=2+x^{2}+y^{2}
$$

Therefore,

$$
L=\frac{1}{6-x^{2}}+\frac{1}{6-y^{2}}+\frac{1}{6-z^{2}}=\frac{1}{2+y^{2}+z^{2}}+\frac{1}{2+x^{2}+z^{2}}+\frac{1}{2+x^{2}+y^{2}}
$$

Using the Arithmetic Mean-Geometric Mean Inequality twice, one obtains

$$
\begin{aligned}
L & =\frac{1}{2+\left(y^{2}+z^{2}\right)}+\frac{1}{2+\left(x^{2}+z^{2}\right)}+\frac{1}{2+\left(x^{2}+y^{2}\right)} \\
& \leq \frac{1}{2+(2 y z)}+\frac{1}{2+(2 x z)}+\frac{1}{2+(2 x y)} \\
& =\frac{1}{2}\left(\frac{1}{1+y z}+\frac{1}{1+x z}+\frac{1}{1+x y}\right) \\
& \leq \frac{1}{2}\left(\frac{1}{2 \sqrt{y z}}+\frac{1}{2 \sqrt{x z}}+\frac{1}{2 \sqrt{x y}}\right) \\
& =\frac{1}{4}\left(\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x y z}}\right) .
\end{aligned}
$$

As a result, to show that $L \leq \frac{1}{x y z}$ it suffices to show that

$$
\begin{aligned}
\frac{1}{4}\left(\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x y z}}\right) & \leq \frac{1}{x y z}, \text { if and only if } \\
\frac{1}{4}(\sqrt{x}+\sqrt{y}+\sqrt{z}) & \leq \frac{1}{\sqrt{x y z}}, \text { if and only if } \\
\frac{1}{4}(x \sqrt{y z}+y \sqrt{x z}+z \sqrt{x y}) & \leq 1
\end{aligned}
$$

However, the Cauchy-Schwarz inequality, and the inequality $x y+y z+z x \leq x^{2}+y^{2}+z^{2}$ (which also follows from the C - S inequality; editor's comment) imply that

$$
\frac{1}{4}(x \sqrt{y z}+y \sqrt{x z}+z \sqrt{x y}) \leq \frac{1}{4} \sqrt{x^{2}+y^{2}+z^{2}} \sqrt{y z+x z+x y}
$$

$$
\leq \frac{1}{4} \sqrt{x^{2}+y^{2}+z^{2}} \sqrt{x^{2}+y^{2}+z^{2}}=1
$$

Accordingly, if $x, y, z>0$, and $x^{2}+y^{2}+z^{2}=4$, then

$$
\frac{1}{6-x^{2}}+\frac{1}{6-y^{2}}+\frac{1}{6-z^{2}} \leq \frac{1}{x y z} .
$$

Solution 3 by Arkady Alt, San Jose, CA

Let $a:=\frac{x^{2}}{4} b:=\frac{y^{2}}{4}, c:=\frac{z^{2}}{4}$ then inequality becomes

$$
\frac{1}{6-4 a}+\frac{1}{6-4 b}+\frac{1}{6-4 c} \leq \frac{1}{8 \sqrt{a b c}},
$$

where $a+b+c=1$.
Let $E=E(a, b, c):=\sqrt{a b c} \sum_{c y c} \frac{1}{3-2 a}, p:=a b+b c+c a, q:=a b c$.
Since $\sum_{\text {cyc }}(3-2 b)(3-2 c)=\sum_{\text {cyc }}(9-6(b+c)+4 b c)=15+4 p$,
$(3-2 a)(3-2 b)(3-2 c)=9+12 p-8 q$ then $E=\frac{(15+4 p) \sqrt{q}}{9+12 p-8 q}$.
Since $q \leq \frac{p^{2}}{3}$ and E is increasing in q then

$$
\begin{aligned}
\frac{E}{\sqrt{3}} & \leq \frac{(15+4 p) p}{27+36 p-8 p^{2}} \\
& \leq \frac{\left(15+4 \cdot \frac{1}{3}\right) \cdot \frac{1}{3}}{27+36 \cdot \frac{1}{3}-8 \cdot \frac{1}{9}}=\frac{1}{7}
\end{aligned}
$$

because $\frac{(15+4 p) p}{27+36 p-8 p^{2}}$ is increasing in positive p and
$p \leq \frac{1}{3} \Longleftrightarrow a b+b c+c a \leq \frac{(a+b+c)^{2}}{3}$.
Thus,

$$
\begin{aligned}
E \leq \frac{\sqrt{3}}{7} & \Longleftrightarrow 4 E \leq \frac{4 \sqrt{3}}{7} \\
& \Longleftrightarrow 8 \sqrt{a b c} \sum_{\text {cyc }} \frac{1}{6-4 a} \leq \frac{4 \sqrt{3}}{7} \\
& \Longleftrightarrow x y z \sum_{\text {cyc }} \frac{1}{6-x^{2}} \leq \frac{4 \sqrt{3}}{7}
\end{aligned}
$$

$$
\begin{aligned}
& \Longleftrightarrow \sum_{c y c} \frac{1}{6-x^{2}} \leq \frac{4 \sqrt{3}}{7 x y z} . \\
\frac{1}{6-x^{2}}+\frac{1}{6-y^{2}}+\frac{1}{6-z^{2}} & \leq \frac{4 \sqrt{3}}{7 x y z} .
\end{aligned}
$$

Remark: Since $\frac{4 \sqrt{3}}{7}<1$ we have $\frac{1}{6-x^{2}}+\frac{1}{6-y^{2}}+\frac{1}{6-z^{2}} \leq \frac{4 \sqrt{3}}{7 x y z}<\frac{1}{x y z}$.
So, the inequality in the formulation of problem could have been stated with the stronger statement

$$
\begin{aligned}
& \frac{1}{6-x^{2}}+\frac{1}{6-y^{2}}+\frac{1}{6-z^{2}} \leq \frac{4 \sqrt{3}}{7 x y z} \text {, instead of with the weaker one of } \\
& \frac{1}{6-x^{2}}+\frac{1}{6-y^{2}}+\frac{1}{6-z^{2}} \leq \frac{1}{x y z} .
\end{aligned}
$$

* Editor's comment: The inequality $q \leq \frac{p^{2}}{3}$ is equivalent to
$3 a b c(a+b+c) \leq(a b+b c+c a)^{2}$ which is equivalent to $a b c(a+b+c) \leq a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}$ which is implied by adding up $a^{2} b c \leq 0.5 a^{2}\left(b^{2}+c^{2}\right)$ and its cyclic variants.

Also solved by Kee-Wai Lau*, Hong Kong, China; Ecole Suppa, Teramo, Italy; Albert Stadler*, Herrliberg, Switzerland; Titu Zvonaru, Comănesti, Romania jointly with Neculai Stanciu, Buzău, Romania, and the proposer. (* Observed, specifically stated and proved the stricter inequality.)

- 5198: Proposed by José Luis Díaz-Barrero, Barcelona, Spain

Let m, n be positive integers. Calculate,

$$
\sum_{k=1}^{2 n} \prod_{i=0}^{m}\left(\left\lfloor\frac{k+1}{2}\right\rfloor+a+i\right)^{-1}
$$

where a is a nonnegative number and $\lfloor x\rfloor$ represents the greatest integer less than or equal to x.

Solution 1 by Arkady Alt, San Jose, CA

$$
\begin{aligned}
& \sum_{k=1}^{2 n} \prod_{i=0}^{m}\left(\left\lfloor\frac{k+1}{2}\right\rfloor+a+i\right)^{-1} \\
= & \sum_{k=1}^{n} \prod_{i=0}^{m}\left(\left\lfloor\frac{2 k-1+1}{2}\right\rfloor+a+i\right)^{-1}+\sum_{k=1}^{n} \prod_{i=0}^{m}\left(\left\lfloor\frac{2 k+1}{2}\right\rfloor+a+i\right)^{-1} \\
= & 2 \sum_{k=1}^{n} \prod_{i=0}^{m}(k+a+i)^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& =2 \sum_{k=1}^{n} \frac{1}{(k+a)(k+1+a) \ldots(k+m+a)} \\
& =\frac{2}{m} \sum_{k=1}^{n}\left(\frac{1}{(k+a)(k+1+a) \ldots(k+m-1+a)}-\frac{1}{(k+1+a)(k+2+a) \ldots(k+m+a)}\right) \\
& =\frac{2}{m}\left(\frac{1}{(1+a)(2+a) \ldots(m+a)}-\frac{1}{(n+1+a)(n+2+a) \ldots(n+m+a)}\right) .
\end{aligned}
$$

Solution 2 by Anastasios Kotronis, Athens, Greece

By a direct calculation, using the identity $\Gamma(x+1)=x \Gamma(x), \quad x>0$ for the Γ function, we can see that

$$
\begin{equation*}
\prod_{i=0}^{m} \frac{1}{b+i}=\frac{\Gamma(b)}{\Gamma(b+m+1)}=\frac{1}{m}\left(\frac{\Gamma(b)}{\Gamma(b+m)}-\frac{\Gamma(b+1)}{\Gamma(b+m+1)}\right) \quad b>0 \tag{1}
\end{equation*}
$$

Now

$$
\begin{aligned}
& \sum_{k=1}^{2 n} \prod_{i=0}^{m}\left(\left[\frac{k+1}{2}\right]+a+i\right)^{-1} \\
= & \sum_{k=1,3, \ldots, 2 n-1} \prod_{i=0}^{m}\left(\frac{k+1}{2}+a+i\right)^{-1}+\sum_{k=2,4, \ldots, 2 n} \prod_{i=0}^{m}\left(\frac{k}{2}+a+i\right)^{-1} \\
= & 2 \sum_{k=1}^{n} \prod_{i=0}^{m}(k+a+i)^{-1} \\
\stackrel{(1)}{=} & \frac{2}{m} \sum_{k=1}^{n}\left(\frac{\Gamma(a+k)}{\Gamma(a+k+m)}-\frac{\Gamma(a+k+1)}{\Gamma(a+k+m+1)}\right) \\
= & \frac{2}{m}\left(\frac{\Gamma(a+1)}{\Gamma(a+1+m)}-\frac{\Gamma(a+n+1)}{\Gamma(a+n+m+1)}\right) .
\end{aligned}
$$

Also solved by Albert Stadler, Herrliberg, Switzerland and the proposer.

- 5199: Proposed by Ovidiu Furdui, Cluj, Romania

Let $k>0$ and $n \geq 0$ be real numbers. Calculate,

$$
\int_{0}^{1} x^{n} \ln \left(\sqrt{1+x^{k}}-\sqrt{1-x^{k}}\right) d x
$$

Solution by Anastasios Kotronis, Athens, Greece

$$
\begin{aligned}
I & =\frac{\left.x^{n+1} \ln \left(\sqrt{1+x^{k}}-\sqrt{1-x^{k}}\right)\right|_{0} ^{1}-\frac{k}{2(n+1)} \int_{0}^{1} \frac{x^{n+k}\left(\frac{1}{\sqrt{1+x^{k}}}+\frac{1}{\sqrt{1-x^{k}}}\right)}{\sqrt{1+x^{k}}-\sqrt{1-x^{k}}} d x}{} \begin{aligned}
&=\frac{\ln 2}{2(n+1)}-\frac{k}{2(n+1)} \int_{0}^{1} \frac{x^{n+k}\left(\sqrt{1-x^{k}}+\sqrt{1+x^{k}}\right)}{\left(\sqrt{1+x^{k}}-\sqrt{1-x^{k}}\right) \sqrt{1-x^{2 k}}} d x \\
&=\frac{\ln 2}{2(n+1)}-\frac{k}{4(n+1)} \int_{0}^{1} \frac{x^{n}\left(\sqrt{1-x^{k}}+\sqrt{1+x^{k}}\right)^{2}}{\sqrt{1-x^{2 k}}} d x \\
&=\frac{\ln 2}{2(n+1)}-\frac{k}{2(n+1)} \int_{0}^{1}\left(\frac{x^{n}}{\sqrt{1-x^{2 k}}}+x^{n}\right) d x \\
&=\frac{\ln 2}{2(n+1)}-\frac{k}{2(n+1)^{2}}-\frac{k}{2(n+1)} \int_{0}^{1} \frac{x^{n}}{\sqrt{1-x^{2 k}}} d x \\
& \xlongequal{x^{2 k}=u} \frac{\ln 2}{2(n+1)}-\frac{k}{2(n+1)^{2}}-\frac{1}{4(n+1)} B\left(\frac{n+1}{2 k}, \frac{1}{2}\right)(B(u, v) \text { denotes the Euler beta function) } \\
&=\frac{\ln 2}{2(n+1)}-\frac{k}{2(n+1)^{2}}-\frac{1}{4(n+1)} \frac{\left.\sqrt{\pi} \Gamma\left(\frac{n+1}{2 k}\right\}\right)}{\Gamma\left(\frac{n+k+1}{2 k}\right)} .
\end{aligned} .
\end{aligned}
$$

Also solved by Kee-Wai Lau, Hong Kong, China; Paolo Perfetti, Department of Mathematics, "Tor Vergata" University, Rome, Italy; Albert Stadler, Herrliberg, Switzerland; David Stone and John Hawkins (jointly), Statesboro, GA, and the proposer.

