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*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
October 15, 2013

• 5259: Proposed by Kenneth Korbin, New York, NY

Find a, b, and c such that with a < b < c,
ab+ bc+ ca = −2
a2b2 + b2c2 + c2a2 = 6
a3b3 + b3c3 + c3a3 = −11.

• 5260: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

Find all primes p and q such that apq−1 ≡ a (mod pq), for all a relatively prime to pq.

• 5261: Proposed by Michael Brozinsky, Central Islip, NY

Show without calculus or trigonometric functions that the shortest focal chord of an
ellipse is the latus rectum.

• 5262: Proposed by Pedro H.O. Pantoja, IMPA, Rio de Janeiro, Brazil

Prove that the equation ϕ(10x2) + ϕ(30x3) + ϕ(34x4) = y2 + y3 + y4 has infinitely many
solutions for x, y ∈ N where ϕ(x) is the Euler-ϕ function.

• 5263: Proposed by José Luis Dı́az-Barrero, Polytechnical University of Catalonia,
Barcelona, Spain

Let a, b, c be positive numbers lying in the interval (0, 1]. Prove that

a ·

√
bc

1 + c+ ab
+ b ·

√
ca

1 + a+ bc
+ c ·

√
ab

1 + b+ ca
≤
√

3.

• 5264: Proposed by Enkel Hysnelaj, University of Technology, Sydney, Australia

Let x, y, z, α be positive real numbers. Show that if∑
cyclic

(n+ 1)x3 + nx

x2 + 1
= α
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then ∑
cyclic

1

x
>

3n

α
+

(2n− 1)α

3n
+

3nα

9n2 + α2

where n is a positive integer. Cyclic means the cyclic permutation of x, y, z (and not
x, y, z and α).

Solutions

• 5242: Proposed by Kenneth Korbin, New York, NY

Let N be any positive integer, and let x = N(N + 1). Find the value of

x/2∑
K=0

(
x−K
K

)
xK .

Solution 1 by Anastasios Kotronis, Athens, Greece,

Using m instead of x for notation convenience we compute the generating function of
m/2∑
k=0

(
m− k
k

)
yk:

∑
m≥0

m/2∑
k=0

(
m− k
k

)
yktm =

∑
k≥0

yk
∑

m≥2k

(
m− k
k

)
tm

=
∑
k≥0

yk
∑
m≥0

(
m+ k

k

)
tm+2k

=
∑
k≥0

yk
∑
m≥0

(
m+ k

m

)
tm+2k

=
∑
k≥0

(yt2)k
∑
m≥0

(
−k − 1

m

)
(−t)m

=
∑
k≥0

(yt2)k(1− t)−k−1

=
1

1− t
∑
k≥0

(
yt2

1− t

)k

=
1

1− t− yt2
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It is easily shown, decomposing into partial fraction and expanding the geometric series,
that if ax2 + by + c has two distinct non negative roots ρ1, ρ2, then

1

ax2 + by + c
=
∑
m≥0

1

a(ρ1 − ρ2)

(
ρ−m−12 − ρ−m−11

)
xm,

so

∑
m≥0

m/2∑
k=0

(
m− k
k

)
yktm =

∑
m≥0

1√
1 + 4y

(( −2y

1−
√

1 + 4y

)m+1

−
( −2y

1 +
√

1 + 4y

)m+1
)
tm

and hence

m/2∑
k=0

(
m− k
k

)
yk =

1√
1 + 4y

(( −2y

1−
√

1 + 4y

)m+1

−
( −2y

1 +
√

1 + 4y

)m+1
)
.

Putting m in the place of y and then N(N + 1) in the place of m in the above relation,
and since N(N + 1) + 1 is odd, we get

N(N+1)/2∑
K=0

(
N(N + 1)−K

K

)
(N(N + 1))K =

1

2N + 1

(
(N + 1)N

2+N+1 +NN2+N+1
)
.

Solution 2 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX

We will attack this problem in four steps.

1. If q > 0, let

xn =

bn2 c∑
k=0

(
n− k
k

)
qk

for n ≥ 1. Then, x1 = 1, x2 = 1 + q, and for n ≥ 1,

xn+1 + qxn =

bn+1
2 c∑

k=0

(
n+ 1− k

k

)
qk + q

bn2 c∑
k=0

(
n− k
k

)
qk

=

bn+1
2 c∑

k=0

(
n+ 1− k

k

)
qk +

bn2 c∑
k=0

(
n− k
k

)
qk+1

=

bn+1
2 c∑

k=0

(
n+ 1− k

k

)
qk +

bn2 c+1∑
k=1

(
n− k + 1

k − 1

)
qk.

Note that if n is odd, then

⌊
n+ 1

2

⌋
=

⌊
n+ 2

2

⌋
=

⌊
n

2

⌋
+ 1 =

n+ 1

2
, while if n is even,

then

⌊
n+ 1

2

⌋
=
n

2
and

⌊
n+ 2

2

⌋
=

⌊
n

2

⌋
+ 1 =

n

2
+ 1. It follows that if n is odd,

xn+1 + qxn =

n+1
2∑

k=0

(
n+ 1− k

k

)
qk +

n+1
2∑

k=1

(
n− k + 1

k − 1

)
qk
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= 1 +

n+1
2∑

k=1

[(
n+ 1− k

k

)
+

(
n+ 1− k
k − 1

)]
qk

= 1 +

n+1
2∑

k=1

(
n+ 2− k

k

)
qk

=

n+1
2∑

k=0

(
n+ 2− k

k

)
qk

=

bn+2
2 c∑

k=0

(
n+ 2− k

k

)
qk

= xn+2

while if n is even,

xn+1 + qxn =

n
2∑

k=0

(
n+ 1− k

k

)
qk +

n
2
+1∑

k=1

(
n− k + 1

k − 1

)
qk

= 1 +

n
2∑

k=1

[(
n+ 1− k

k

)
+

(
n+ 1− k
k − 1

)]
qk + q

n
2
+1

= 1 +

n
2∑

k=1

(
n+ 2− k

k

)
qk + q

n
2
+1

=

n
2
+1∑

k=0

(
n+ 2− k

k

)
qk

=

bn+2
2 c∑

k=0

(
n+ 2− k

k

)
qk

= xn+2.

Therefore, {xn} can also be described by the recursive definition x1 = 1, x2 = 1 + q, and
xn+2 = xn+1 + qxn for all n ≥ 1.

2. We can now find a closed form formula for {xn} by following the usual method for
solving homogeneous linear difference equations with constant coefficients. This entails
considering solutions of the form xn = tn for some t 6= 0. Then, the recurrence relation
xn+2 = xn+1 + qxn becomes

tn+2 = tn+1 + qtn

4



or

t2 = t+ q (1)

since t 6= 0. Further, q > 0 guarantees that (1) has two distinct real solutions

t1 =
1 +
√

1 + 4q

2
and t2 =

1−
√

1 + 4q

2
.

In this situation, the general solution is

xn = c1t
n
1 + c2t

n
2

for some constants c1 and c2. Finally, the initial conditions x1 = 1 and x2 = 1 + q imply
that

c1 =
t1√

1 + 4q
and c2 =

−t2√
1 + 4q

.

As a result, we have

xn =
tn+1
1 − tn+1

2√
1 + 4q

for n ≥ 1.

3. By Parts 1 and 2,

bn2 c∑
k=0

(
n− k
k

)
qk

=
1√

1 + 4q

(1 +
√

1 + 4q

2

)n+1

−
(

1−
√

1 + 4q

2

)n+1
 (2)

for all n ≥ 1. In particular, since n (n+ 1) is always even, we have⌊
n (n+ 1)

2

⌋
=
n (n+ 1)

2

and (2) yields

n(n+1)
2∑

k=0

(
n (n+ 1)− k

k

)
qk

=
1√

1 + 4q

(1 +
√

1 + 4q

2

)n(n+1)+1

−
(

1−
√

1 + 4q

2

)n(n+1)+1
 (3)

for n ≥ 1.

4. Finally, if we substitute q = n (n+ 1) in (3), then
√

1 + 4q = 2n+ 1 and for all n ≥ 1,
we get

n(n+1)
2∑

k=0

(
n (n+ 1)− k

k

)
[n (n+ 1)]k =

(n+ 1)n(n+1)+1 − (−n)n(n+1)+1

2n+ 1
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=
(n+ 1)n(n+1)+1 + nn(n+1)+1

2n+ 1

(since n (n+ 1) + 1 is odd for all n ≥ 1).

Solution 3 by Adrian Naco, Polytechnic University, Tirana, Albania

Based on the Solution by Dionne Bailey, Elsie Campbell, and Charles
Diminnie (jointly), San Angelo, TX. to problem 4919, SSMA,
February 2007 ,for n ∈ Z∗+ and 0 ≤ k ≤ n+ 2, we have that(

2n+ 4− k
k

)
=

(
2n+ 2− k

k

)
+ 2

(
2n+ 3− k
k − 1

)
−
(

2n+ 2− k
k − 2

)
.

Let S(n) =
n∑

k=0

(
2n− k
k

)
zk, (z is constant) ∀n ≥ 1. Then we have that,

S(n+ 2) =
n+2∑
k=0

(
2n+ 4− k

k

)
zk = 1 + (2n+ 3)z +

n+1∑
k=2

(
2n+ 4− k

k

)
zk + zn+2

= 1 + (2n+ 3)z +
n+1∑
k=2

[(
2n+ 2− k

k

)
+ 2

(
2n+ 3− k
k − 1

)
−
(

2n+ 2− k
k − 2

)]
zk + zn+2

= 2z +
n+1∑
k=0

(
2n+ 2− k

k

)
zk + 2

n+1∑
k=2

(
2n+ 3− k
k − 1

)
zk −

n+1∑
k=2

(
2n+ 2− k
k − 2

)
zk + zn+2

= 2z + S(n+ 1) + 2
n∑

k=1

(
2n+ 2− k

k

)
zk+1 −

n−1∑
k=0

(
2n− k
k

)
zk+2 + zn+2

= 2z + S(n+ 1) + 2z
n∑

k=1

(
2n+ 2− k

k

)
zk − z2

n−1∑
k=0

(
2n− k
k

)
zk + zn+2

= 2z + S(n+ 1) + 2z [S(n+ 1)− 1− zn+1 ]− z2 [S(n)− zn ] + zn+2

= (1 + 2z)S(n+ 1)− z2S(n).

As a result, we get the following homogeneous linear difference equation with constant
coefficients,

S(n+ 2)− (1 + 2z)S(n+ 1) + z2S(n) = 0.

Solving the respective characteristic equation (considering z as constant),

r2 − (1 + 2z)r + z2 = 0

we get the solutions

r1 =
(1 + 2z) +

√
1 + 4z

2
, and r2 =

(1 + 2z )−
√

1 + 4z

2
.
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The general formula for S(n) is

S(n) = C1r
n
1 + C2r

n
2 , n ∈ Z∗+.

Considering the fact that S(1) = 1 + z and S(2) = 1 + 3z + z2 we have that

S(1) = C1r1 + C2r2 = 1 + z =
1∑

k=0

(
2− k
k

)
zk and

S(2) = C1r
2
1 + C2r

2
2 = 1 + 3z + z2 =

2∑
k=0

(
4− k
k

)
zk

from where it implies that

C1 =
(1 + 3z + z2)− r2(1 + z)

r1(r1 − r2)
and C2 =

(1 + 3z + z 2)− r1(1 + z )

r2(r2 − r1)
.

Finally,

S(n) =
n∑

k=0

(
2n− k
k

)
zk = C1 · rn1 + C2 · rn2

=
(1 + z)

√
1 + 4z + (1 + 3z)

2
√

1 + 4z
· rn−11 +

(1 + z)
√

1 + 4z − (1 + 3z)

2
√

1 + 4z
· rn−12

=
1

2
√

1 + 4z

{
[(1 + z)

√
1 + 4z + (1 + 3z)]rn−11 + [(1 + z)

√
1 + 4z − (1 + 3z)]rn−12

}
.

Thus, the general formula is,

S(n) =
1

2
√

1 + 4z

{
[(1 + z)

√
1 + 4z + (1 + 3z)]rn−11 + [(1 + z)

√
1 + 4z − (1 + 3z)]rn−12

}
.

Applying the above formula for z = x = 2n = N(N + 1), (since N(N + 1) is an
even number for N ∈ Z∗+), and after making some manipulations, we have that,

r1 = (N + 1)2, r2 = N2, C1 =
N + 1

2N + 1
, C2 =

N

2N + 1
, N =

√
1 + 4x− 1

2

⇒
x/2∑
k=0

(
x− k
k

)
xk =

N + 1

2N + 1
· (N + 1)N(N+1) +

N

2N + 1
·NN(N+1)

⇒
x/2∑
k=0

(
x− k
k

)
xk =

1

2N + 1

[
(N + 1)N(N+1)+1 +NN(N+1)+1

]

or related to x , (x = N (N + 1)), we get the formula,
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⇒
x/2∑
k=0

(
x− k
k

)
xk =

1

2x+1
√

1 + 4x

[
(
√

1 + 4x+ 1)x+1 + (
√

1 + 4x− 1)x+1
]
.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Kee-Wai Lau, Hong
Kong, China, and the proposer.

• 5243: Proposed by Neculai Stanciu, “George Emil Palade” Secondary School,
Buzău, Romania

If a, b, c are consecutive Pythagorean numbers, then solve in the integers the equation:

x2 + bx

ay − 1
= c.

(A consecutive Pythagorean triple is a Pythagorean triple that is composed of
consecutive integers.)

Solution by David E. Manes, SUNY College at Oneonta, Oneonta, NY

There are no solutions to the equation for a consecutive Pythagorean triple.

Assume that a is a positive integer and b = a+ 1, c = a+ 2 so that a, b, c is a consecutive
Pythagorean triple. Then a2 + (a+ 1)2 = (a+ 2)2 reduces to the quadratic equation
a2 − 2a− 3 = 0 whose only positive integer solution is a = 3. Therefore
a = 3, b = 4, c = 5 is the only positive consecutive Pythagorean triple and the given
equations becomes

x2 + 4x

3y − 1
= 5.

Note that if y = 0 the the equation is undefined. If y < 0, then y = −n for some positive
integer n. The equation then reduces to 3n(x2 + 4x) = 5(1− 3n). Since 3 is a prime, it
follows that either 3 divides 5 or 3 divides 1− 3n, both contradictions.

Hence, y > 0 and x2 + 4x = 5(3y − 1) or x2 + 4x+ 5 = 3y = 5. Let p(x) = x2 + 4x+ 5. If
x ≡ 0(mod 3), then p(x) ≡ 2(mod 3). Therefore, p(x) = x2 + 4x+ 5 is never congruent
to 0 module 3 for any integer x. However, 3y5 ≡ 0(mod 3) for each integer y > 0. Hence,
there are no nonzero solutions, where y 6= 0 to the equation x2 + 4x+ 5 = 3y5 and this
completes the solution.

Editor’s comment: Some readers gave (0, 0) and (−4, 0) as solutions to the equation
x2 + 4x+ 5 = 3y5. This certainly true, but the expression x2 + 4x+ 5 = 3y5 was
obtained from the original statement of the problem under the assumption that y 6= 0.(

x2 + 4x

3y − 1
= 5

)
⇐⇒

(
x2 + 4x+ 5 = 3y5

)
if, and only if y 6= 0.

In this case, multiplication by the denominator is not valid. Stated otherwise, the

equation
x2 + 4x

3y − 1
= 5 has no solution, but the equation x2 + 4x+ 5 = 3y5 has two
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integer solutions, (0, 0) and (−4, 0). The two equations are not equivalent to one
another because they have different domains of definition.

Also solved by Brian D. Beasley, Presbyterian College, Clinton, SC; Ed
Gray, Highland Beach, FL; David Stone and John Hawkins (jointly),
Georgia Southern University, Statesboro, GA, and the proposer.

• 5244: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

Let Ta and Sb denote the ath triangular and the bth square number, respectively. Find
explicit instances of such numbers to prove that every Fibonacci number Fn occurs
among the values gcd(Ta, Sb).

Solution 1 by David Diminnie, Texas Instruments, Inc., Dallas, TX

Recall that Ta =
a (a+ 1)

2
and Sb = b2. If we set a = 2Fn and b = Fn then by applying

the identity gcd (p, q) = gcd (p− q, q) , p > q we may evaluate gcd (Ta, Sb) as follows:

gcd (T2Fn , SFn) = gcd

(
2Fn (2Fn + 1)

2
, F 2

n

)
= gcd

(
2F 2

n + Fn, F
2
n

)
= gcd

(
F 2
n + Fn, F

2
n

)
= gcd

(
Fn, F

2
n

)
= Fn.

Solution 2 by Dionne Bailey, Elsie Campbell, and Charles Diminnie,
(jointly), Angelo State University, San Angelo, TX

More generally, we will show that for every positive integer n,
gcd (T2n, S2n) = n. The desired result then follows as an easy application of this
property. To do so, we will use the following elementary results from number theory.

Lemma 1. If m and n are positive integers and d is a positive common divisor of m and

n such that gcd

(
m

d
, nd

)
= 1, then d = gcd (m,n).

Proof. Since gcd (md, nd) = 1, there are integers a and b such that

1 = a

(
m

d

)
+ b

(
n

d

)
or

d = am+ bn.

Then, any positive common divisor of m and n must also divide d and it follows that
d = gcd (m,n).

Lemma 2. For every positive integer n, gcd (2n+ 1, 4n) = 1.

Proof. If d = gcd (2n+ 1, 4n), then d divides (2n+ 1) and hence, d is odd. Further, since
d is odd and d divides 4n, d must divide n. Finally, d is a common divisor of n and
(2n+ 1) implies that d divides (2n+ 1)− 2n = 1. Therefore, d = 1.

9



For any positive integer n,

T2n =
2n (2n+ 1)

2
= n (2n+ 1) and S2n = 4n2.

Then, n is a positive common divisor of T2n and S2n and Lemma 2 implies that

gcd

(
T2n
n
,
S2n
n

)
= gcd (2n+ 1, 4n) = 1.

By Lemma 1, we have gcd (T2n, S2n) = n and our solution is complete.

Solution 3 by Paul M. Harms, North Newton, KS

We have Ta = a(a+ 1)/2 and Sb = b2. When the Fibonacci number Fn is an odd integer
let a = Fn = b. Then a+ 1 is even and the number a = Fn does not have any common
factor (except 1) with a+ 1 or (a+ 1)/2.

With Sb = b2 = F 2
n , the gcd(Ta, Sb) =gcd

(
Fn (Fn + 1) , F 2

n

)
= Fn. When Fn is an even

integer let a = 2Fn and b = Fn. Then a+ 1 is odd and has no common factors with
a/2 = Fn. Again we have gcd(Ta, Sb) =gcd

(
Fn (2Fn + 1) , F 2

n

)
= Fn.

Also solved by Brian D. Beasley, Presbyterian College, Clinton, SC; David
E. Manes, SUNY College at Oneonta, Oneonta, NY; David Stone and John
Hawkins, Georgia Southern University, Statesboro, GA and the proposer.

• 5245: Proposed by Enkel Hysnelaj, University of Technology, Sydney, Australia and
Elton Bojaxhiu, Kriftel, Germany

Determine all real valued functions f : <− {−2,−1

2
,−1, 0,

1

2
, 1, 2} → <, which satisfy

the relation

f(x) + f

(−x− 5

2x+ 1

)
+ f

(
4x+ 5

−2x+ 2

)
= ax+ b

where a, b,∈ <.

Solution 1 by Adrian Naco, Polytechnic University, Tirana, Albania

If we let, g(x) =
−x− 5

2x+ 1
, h(x) =

4x+ 5

−2x+ 2
, then we have that,

(g ◦ g)(x) = x (1)

(g ◦ h)(x) = (h ◦ g)(x) (2)

and (h ◦ h)(x ) = g(x) (3)

Thus the given problem can be expressed as,

f(x) + (f ◦ g)(x) + (f ◦ h)(x) = ax+ b, (4)
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Considering equation (4) and applying for g(x), it implies that,

(f ◦ g)(x) + [f ◦ (g ◦ g)](x) + (f ◦ h ◦ g)(x) = ag(x) + b, or equvalently

(f ◦ g)(x) + f(x) + (f ◦ h ◦ g)(x) = ag(x) + b, (5)

Considering typos (4) and applying for h(x), it implies that,

(f ◦ h)(x) + [f ◦ (g ◦ h)](x) + (f ◦ h ◦ h)(x) = ah(x) + b, or equivalently

(f ◦ h)(x) + [f ◦ (g ◦ h)](x) + (f ◦ g)(x) = ah(x) + b, (6)

Considering equation (5) and applying for h(x), it implies that,

(f ◦ g ◦ h)(x) + (f ◦ h)(x) + (f ◦ h ◦ g ◦ h)(x) = a(g ◦ h)(x) + b, or equivalently

(f ◦ g ◦ h)(x) + (f ◦ h)(x) + f(x) = a(g ◦ h)(x) + b, (7)

Adding (simultaneously) side by side equations in (4), (5), and (6) to equation (7), results in,

3[f(x) + (f ◦ g)(x) + (f ◦ h)(x) + (f ◦ g ◦ h)(x)] = ax+ ag(x) + ah(x) + a(g ◦ h)(x) + 4b,

f(x) + (f ◦ g)(x) + (f ◦ h)(x) + (f ◦ g ◦ h)(x) =
1

3
[ax+ ag(x) + ah(x) + a(g ◦ h)(x) + 4b], (8)

Finally, if we subtract equation (6) from equation (8), then,

f(x) =
1

3
a[x+ g(x)− 2h(x) + (g ◦ h)(x)] +

1

3
b

⇔ f(x) =
1

3
a

[
x+
−x− 5

2x+ 1
− 2

4x+ 5

−2x+ 2
+

2x− 5

2x+ 4

]
+

1

3
b

⇔ f(x) =
1

3
a

[
x− x+ 5

2x+ 1
+

4x+ 5

x− 1
+

2x− 5

2(x+ 2)

]
+

1

3
b

⇔ f(x) =
a

3
· 4x4 + 24x3 + 30x2 + 59x+ 45

2(2x3 + 3x2 − 3x− 2)
+

1

3
b

Solution 2 by David Diminnie, Texas Instruments, Inc., Dallas, TX, and Charles
Diminnie, Angelo State University, San Angelo, TX
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The restrictions on the domain and range in the problem statement appear to be swapped,
and the domain restriction appears to be both overly stringent and missing a critical value.

For the discussion below we will assume that f : <−
{
−2, −1

2 , 1
}
→ < satisfies

f(x) + f

(−x− 5

2x+ 1

)
+ f

(
4x+ 5

−2x+ 2

)
= ax+ b (1)

for given a, b ∈ <. 8pt

Consider the function g : <−
{
−2, −1

2
, 1

}
→ < with definition

g(x) =
4x+ 5

−2x+ 2
.

Since g(x) 6= −2, −1
2 , 1 when x 6= −2, −1

2 , 1 it follows that

g2(x) = (g ◦ g)(x) =
4g(x) + 5

−2g(x) + 2
=
−x− 5

2x+ 1
.

Similarly, g2(x) 6= −2, −1

2
, 1 when x 6= −2, −1

2
, 1 and we see that

g3(x) = (g ◦ g ◦ g)(x) =
−g(x)− 5

2g(x) + 1
=

2x− 5

2x+ 4
.

Finally, g3(x) 6= −2, −1

2
, 1 when x 6= −2, −1

2
, 1 implies that

g4(x) = (g ◦ g ◦ g ◦ g)(x) =
2g(x)− 5

2g(x) + 4
= x.

As a result, we can see (by Comment 1) that gn(x) = gnmod4(x) may therefore be
re-expressed as

f(x) + f
(
g2(x)

)
+ f (g(x)) = ax+ b. (2)

If we substitute g(x), g2(x), g3(x) into (2), taking advantage of the fact that
gi+j(x) = gi+jmod4(x) (with g0(x) ≡ x), we obtain the following additional relations
(respectively):

f (g(x)) + f
(
g3(x)

)
+ f

(
g2(x)

)
= ag(x) + b (3)

f
(
g2(x)

)
+ f (x) + f

(
g3(x)

)
= ag2(x) + b (4)

f
(
g3(x)

)
+ f (g(x)) + f(x) = ag3(x) + b. (5)

By adding (2), (4), and (5) and subtracting two times (3) from the result (again, with

x 6= −2, −1

2
, 1), we may find an expression for f(x):

3f(x) = a
(
x+ g2(x) + g3(x)− 2g(x)

)
+ b

12



f(x) =
a

3

(
x+ g2(x) + g3(x)− 2g(x)

)
+
b

3

f(x) =
a

3

(
x− x+ 5

2x+ 1
+

2x− 5

2x+ 4
− 4x+ 5

−x+ 1

)
+
b

3
. (6)

To verify (6) is a solution, note that

f

(
4x+ 5

−2x+ 2

)
=

a

3

(
4x+ 5

−2x+ 2
+

2x− 5

2x+ 4
+ x+

2x+ 10

2x+ 1

)
+
b

3

f

(−x− 5

2x+ 1

)
=

a

3

(−x− 5

2x+ 1
+ x+

4x+ 5

−2x+ 2
− 2x− 5

x+ 2

)
+
b

3

and therefore

f(x) + f

(
4x+ 5

−2x+ 2

)
+ f

(−x− 5

2x+ 1

)
= ax+ b.

Comment 1. Note that

{
x,

4x+ 5

−2x+ 2
,
−x− 5

2x+ 1
,

2x− 5

2x+ 4

}
=
{
g0(x), g(x), g2(x), g3(x)

}
forms a

cyclic group of order 4 under function composition, with generator g(x): Function
composition is an associative operation, the identity element is g0(x) = g4(x) = x (and hence
gn(x) = gnmod4(x), as claimed above, so the set is closed under composition), and
gk ◦ g4−k(x) = g4−k ◦ gk(x) = x for k = 0, 1, 2, 3.

Solution 3 by David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA

Let L(x) = ax+ b, h(x) =
−x− 5

2x+ 1
= − x+ 5

2x+ 1
and k(x) =

4x+ 5

−2x+ 2
= − 4x+ 5

2(x− 1)
.

Then the given condition becomes

(1) f(x) + f (h(x)) + f (k(x)) = L(x).

Suppressing the argument x and adopting concatenation to represent composition, this
becomes a functional condition:

(1a) f + fh+ fk = L.

Straightforward computation shows that h2(x) = h(h(x)) = x, that

k2(x)=h(x) and h(k(x )) = k(h(x )) =
2x − 5

2(x + 2)
.

That is, with i denoting the identity function,

(2) h2 = i, k2 = h and kh = hk .

It follows that k4 = i and khk = hk2 = hk = i.

Applying both sides of (1a) to h(x) yields fh+ fh2 + fkh = Lh, or

(3) fh+ f + fkh = Lh.

13



Applying both sides of (1a) to k(x) yields fk + fhk + fkk = Lk or

(4) fk + fhk + fh = Lk.

Finally, applying both sides of (3) to k(x) yields fhk + fk + fkhk = Lhk, or

(5) fhk + fk + f = Lhk.

Thus we have a system of 4 equations in the 4 unknowns, f, fh, fk, fhk:

f + fh+ fk = L

f + fh + fhk = Lh

fh+ fk + fhk = Lk

f + fk + fhk = Lhk

Calculations reveal that

(6) f =
1

3
{L+ Lh+ Lhk − 2Lk}.

That is,

f(x) =
1

3
{ax+ b+ ah(x) + b+ ah(k(x)) + b− 2ak(x)− 2b}

=
a

3

{
x+ h(x) + h(k(x))− 2k(x)}+

b

3

=
a

3

{
x+
−x− 5

2x+ 1
+

2x− 5

2(x+ 2)
− 2

4x+ 5

−2x+ 2

}
+
b

3

=
a

3

{
4x4 + 24x3 + 30x3 + 59x+ 45

2(2x+ 1)(x− 1)(x+ 2)

}
+
b

3
.

Comment 1. More generally, note that if h and k are any two functions such that h has order
2, k2 = h and h commute with k, then (6) gives the function f satisfying (1).

Comment 2. We believe that he domain and codomain of f , as stated in in the problem, are a
typo. The conditions on the domain and codomain of f (and h and k and kh) are probably
best summarized as “for all x for which everything makes sense.” The domain of f consists of

all reals except the obvious ones: 1,−2 and −1

2
.

Then fh is well defined because h is defined for all x except −1

2
and does not map any real to

−1

2
. Similarly fk is defined because k is defined for all reals except 1 and has range all reals

except −2.

The composed functions kh = hk both map from <− {−2} to <− {1} despite the technical
concerns with domains.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Boris Rays, Brooklyn,
NY, and the proposers.
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• 5246: Proposed by José Luis Dı́az-Barrero, Polytechnical University of Catalonia, Barcelona,
Spain

Let a1, a2, . . . an, (n ≥ 3) be distinct complex numbers. Compute the sum

n∑
k=1

sk
∏
j 6=k

(−1)n

aj − ak
,

where sk =

(
n∑

i=1

ai

)
− ak, 1 ≤ k ≤ n.

Solution 1 by Bruno Salgueiro Fanego, Viveiro, Spain

Let f : C → C be the function defined by f(a) =

(
n∑

i=1

aj

)
− a, a ∈ C. Then f is a polynomial

function such that f(ak) = sk, 1 ≤ k ≤ n. It is also known that there is only one polynomial
function p : C → C with degree less than n and such that p(ak) = sk, 1 ≤ k ≤ n which can be
obtained for example with the Lagrange interpolation formula:

p(a) =
n∑

k=1

sk
∏
j 6=k

a− aj
ak − aj

=
n∑

k=1

sk

∏
j 6=k

(a− aj)

(−1)n−1
∏
j 6=k

(aj − ak)
=
∑ (−1)n−1 sk∏

j 6=k

(aj − ak)

∏
j 6=k

(a− aj) .

So, both polynomial functions p and f , must be equal; in particular, their respective leading

coefficients must coincide, that is
n∑

k=1

(−1)n−1 sk∏
j 6=k

(aj − ak)
= 0. Thus, the required sum is

n∑
k=1

(−1)n∏
j 6=k

(aj − ak)
= 0.

Solution 2 by Paul M. Harms, North Newton, KS

Consider the polynomial

P (x) =
(x− a2)(x− a3) · · · (x− an)

(a1 − a2)(a1 − a3) · · · (a1 − an)
+

(x− a1)(x− a3) · · · (x− an)

(a2 − a1)(a2 − a3) · · · (a2 − an)

+ · · ·
(x− a1)(x− a2) · · · (x− an−1)

(an − a1)(an − a2) · · · (an − an−1)
− 1.

We see that the degree of p(x) is n− 1. Note that 0 = p(a1) = p(a2) = · · · = p(an).

Since n different complex number have a polynomial value of zero for the n− 1 degree
polynomial, the polynomial must be identically zero.

If p(x) (given above is expanded, then all coefficients of the different powers of x must be zero.
Consider the coefficient of xn−2. From the first fraction of p(x) the coefficient of xn−2 is

−(a2 + a3 + · · ·+ an)

(a1 − a2)(a1 − a3) · · · (a1 − an)
=

−s1
(a1 − a2)(a1 − a3) · · · (a1 − an)

.
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We see that the coefficient of xn−2 for p(x) is

−s1
(a1 − a2)(a1 − a3) · · · (a1 − an)

+
−s2

(a2 − a1)(a2 − a3) · · · (a2 − an)
+ · · ·

+
−sn

(an − a1)(an − a2) · · · (an − an−1)
= 0.

The left side of the last equality is equal to or the negative of the summation in the problem.
Thus the summation in the problem is zero.

Also solved by the proposer.

• 5247: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

Calculate

lim
n→∞

1

n
n

√∫ 1

0
ln(1 + ex) ln(1 + e2x) · · · ln(1 + enx) dx.

Solution 1 by Anastasios Konronis, Athens, Greece

For n ∈ N, x ∈ (0, 1] we have

ln(1 + ex) · ln(1 + e2x) · · · ln(1 + enx) = n!xn
n∏

k=1

(
1 +

ln(1 + e−kx)

kx

)
= n!xn

n∏
k=1

(
1 +O

(
e−kx

kx

))

= n!xn
(

1 +O
(
e−x

xn

))

= n!
(
xn +O

(
e−x

))
so ∫ 1

0
ln(1 + ex) · ln(1 + e2x) · · · ln(1 + enx) =

n!

n+ 1
(1 +O(n)) .

Now from the above and taking into account that, from Stirling’s formula,

lnn! = n lnn− n+O(lnn)

we get that

1

n
n

√∫ 1

0
ln(1 + ex) · ln(1 + e2x) · · · ln(1 + enx) dx =

1

n
exp

(
1

n
ln

(
n!

n+ 1
(1 +O(n))

))

=
1

n
exp

(
lnn− 1 +O

(
lnn

n

))
= e−1 +O

(
lnn

n

)
→ e−1

Solution 2 by Arkady Alt, San Jose, California, USA.
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Let fn (x) =
n∏

k=1
ln
(
1 + ekx

)
. Since fn (x) >

n∏
k=1

ln
(
ekx
)

= xnn! then

∫ 1

0
fn (x) dx > n!

∫ 1

0
xndx =

n!

n+ 1
.

On the other hand, since fn (x)fn (1) ≤ 1 we have∫ 1

0
fn (x) dx ≤ fn (1)

∫ 1

0
dx = fn (1) .

Thus,

1

n
n

√
n!

n+ 1
<

1

n
n

√∫ 1

0
fn (x) dx ≤ 1

n
n

√
fn (1).

Let an =
fn (1)

nn
.

Since

lim
n→∞

an
an−1

= lim
n→∞

(
fn (1)

nn
· (n− 1)n−1

fn−1 (1)

)

= lim
n→∞

((
1− 1

n

)n−1
· ln (1 + en)

n

)

= lim
n→∞

(
1− 1

n

)n−1
· lim
n→∞

ln (1 + e−n) + n

n

= e−1 · 1 = e−1

then by *, the Multiplicative Stolz Theorem lim
n→∞

1

n
n

√
fn (1) = lim

n→∞
n
√
an = lim

n→∞
an
an−1

= e−1.

Also we have

lim
n→∞

1

n
n

√
n!

n+ 1
= lim

n→∞

n
√
n!

n
· 1

n
√
n+ 1

= lim
n→∞

n
√
n!n · lim

n→∞
1

n
√
n+ 1

= e−1 · 1 = e−1.

(Note: lim
n→∞

n
√
n!

n
= e−1. Indeed,

(
n

e

)n

< n! <

(
n+ 1

e

)n

(n+ 1)⇒

1

e
<

n
√
n!

n
<

1

e
· n+ 1

n
· n
√
n+ 1,
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or again, applying the Multiplicative Stolz Theorem to n

√
n!

nn
).

Then by the squeeze principle,

lim
n→∞

1

n
n

√
fn (1) = lim

n→∞

n
√
n!

n
= e−1 = e−1 yields

lim
n→∞

1

n
n

√∫ 1

0
fn (x) dx = e−1.

* We use the Multiplicative Stolz Theorem in the following form:

If the sequence

(
an+1

an

)
n≥1

has a limit then the sequence
(

n
√
an
)
n≥1 has a limit and

lim
n→∞

n
√
an = lim

n→∞
an+1

an
.

Solution 3 by Kee-Wai, Hong Kong, China

We show that the limit equals
1

e
.

Denote the integrand by f(x). Since f(x) > (x)(2x) · · · (nx) = (n!)xn, so∫ 1

0
f(x)dx >

n!

n+ 1
. (1)

For 0 ≤ x ≤ 1 and k = 1, 2, · · · , n, we have

1 + ekx ≤ 1 + ek < 2ek < e1+k, so that

f(x) < (n+ 1)! and∫ 1

0
f(x)dx < (n+ 1)!. (2)

By Stirling’s formula for n! we have

lim
n→∞

1

n
n

√
n!

n+ 1
= lim

n→∞
1

n
n

√
(n+ 1)! =

1

e
.

Now by (1), (2) and the squeezing principle, we obtain the result we claimed.

Also solved by Paul M. Harms, North Newton, KS; Adrian Naco, Polytechnic
University, Tirana, Albania and the proposer.

Mea Culpa (yet again)

Featured solution 5241(3) that appeared in the April 2013 issue of the column was submitted
jointly by Anastasios Kotronis and Konstantinos Tsouvalas, University of Athens,
Athens, Greece. I inadvertently forgot to list Konstantinos’ name. Sorry.
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