Problems

Ted Eisenberg, Section Editor

This section of the Journal offers readers an opportunity to exchange interesting mathematical problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics, Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions can be sent e-mail to eisenbt@013.net. Solutions to previously stated problems can be seen at http://www.ssma.org/publications.

Solutions to the problems stated in this issue should be posted before October 15, 2015

- 5355: Proposed by Kenneth Korbin, New York, NY

Find the area of the convex cyclic pentagon with sides

$$
(13,13,12 \sqrt{3}+5,20 \sqrt{3}, 12 \sqrt{3}-5)
$$

- 5356: Proposed by Kenneth Korbin, New York, NY

For every prime number p there is a circle with diameter $4 p^{4}+1$. In each of these circles, it is possible to inscribe a triangle with integer length sides and with area

$$
\left(8 p^{3}\right)(p+1)(p-1)\left(2 p^{2}-1\right)
$$

Find the sides of the triangles if $p=2$ and if $p=3$.

- 5357: Proposed by Neculai Stanciu, "George Emil Palade" School, Buzău, Romania and Titu Zvonaru, Comănesti, Romania

Determine all triangles whose side-lengths are positive integers (of which at least one is a prime number), whose semiperimeter is a positive integer, and whose area is equal to its perimeter.

- 5358: Proposed by Arkady Alt, San Jose, CA

Prove the identity $\sum_{k=1}^{m} k\binom{m+1}{k+1} r^{k+1}=(r+1)^{m}(m r-1)+1$.
5359: Proposed by José Luis Díaz-Barrero, Barcelona Tech, Barcelona, Spain.
Let a, b, c be positive real numbers. Prove that

$$
\sqrt[4]{15 a^{3} b+1}+\sqrt[4]{15 b^{3} c+1}+\sqrt[4]{15 c^{3} a+1} \leq \frac{63}{32}(a+b+c)+\frac{1}{32}\left(\frac{1}{a^{3}}+\frac{1}{b^{3}}+\frac{1}{c^{3}}\right) .
$$

- 5360: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

Let $n \geq 1$ be an integer and let

$$
I_{n}=\int_{0}^{\infty} \frac{\arctan x}{\left(1+x^{2}\right)^{n}} d x
$$

Prove that
(a) $\sum_{n=1}^{\infty} \frac{I_{n}}{n}=\zeta(2)$;
(b) $\int_{0}^{\infty} \arctan x \ln \left(1+\frac{1}{x^{2}}\right) d x=\zeta(2)$.

Solutions

- 5337: Proposed by Kenneth Korbin, New York, NY

Given convex quadrilateral $A B C D$ with sides,

$$
\begin{aligned}
& \overline{A B}=1+3 \sqrt{2} \\
& \overline{B C}=6+4 \sqrt{2} \text { and } \\
& \overline{C D}=-14+12 \sqrt{2} .
\end{aligned}
$$

Find side $\overline{A D}$ so that the area of the quadrilateral is maximum.

Solution 1 by Bruno Salgueiro Fanego, Viveiro, Spain

In the published solution to part (b) of problem 787 Journal Crux Mathematicorum, $1984,10(2), 56-58$, it is proved that given three sides $\overline{A B}, \overline{B C}$, and $\overline{C D}$, the area of the quadrilateral $A B C D$ is maximum if, and only if, the length of the fourth side, $\overline{A D}$ is the diameter of the circle passing through B and C, and a root of the polynomial

$$
\begin{aligned}
x^{3}-\left(\overline{A B}^{2}+\overline{B C}^{2}+\overline{C D}^{2}\right)-2 \overline{A B} \cdot \overline{B C} \cdot \overline{C D} & =0 . \text { That is } \\
x^{3}-(571-282 \sqrt{2}) x-206-104 \sqrt{2} & =0,
\end{aligned}
$$

whose only real positive root is $x=7+5 \sqrt{2}$; so $\overline{A D}=7+5 \sqrt{2}$.

Solution 2 by Albert Stadler, Herrliberg, Switzerland

The cyclic quadrilateral has the maximal area among all quadrilaterals having the same sequence of side lengths. This is a corollary to Bretschneider's formula
(http://en.wikipedia.org/wiki/Bretschneider\% $27 s_{\text {_ formula). It can also be proved using }}$ calculus (see([1]). The area of a cyclic quadrilateral with side a, b, c, d is given by Brahmagupta's formula

$$
A=\sqrt{(s-a)(s-b)(s-c)(s-d)} \text { where } s=(a+b+c+d) / 2
$$

So if $a=1+3 \sqrt{2}, b=6+4 \sqrt{2}$, and $c=-14+12 \sqrt{2}$ then

$$
16 A^{2}=(d-9+13 \sqrt{2})(d-19+11 \sqrt{2})(d+21-5 \sqrt{2})(-d-7+19 \sqrt{2}) .
$$

This is a polynomial of degree four whose extremal points are located at the zeros of its derivative. Brute force shows that the extremal points are

$$
\begin{aligned}
& d_{1}=7+5 \sqrt{2}>0, \\
& d_{2}=\frac{-7-5 \sqrt{2}+\sqrt{1987-1338 \sqrt{2}}}{2}<0, \\
& d_{3}=\frac{-7-5 \sqrt{2}-\sqrt{1987-1338 \sqrt{2}}}{2}<0 .
\end{aligned}
$$

So $\overline{A D}=d_{1}=7+5 \sqrt{2}$
References: (1) Thomas, Peter, "Maximizing the Area of a Quadrilateral," The College Mathematics Journal, Vol 34. No 4 (September 2003), pp. 315-316.

Solution 3 by Kee-Wai Lau, Hong Kong, China

We show that the area of the quadrilateral is maximum when $\overline{A D}=7+5 \sqrt{2}$.
Let $\overline{A D}=x, s$ be the semiperimeter and Δ the area of the quadrilateral. Since the length of any side of a quadrilateral must be less than the sum of the lengths of the other three sides, we have $19-112 \sqrt{2}<x<-7+19 \sqrt{2}$. It is well known that

$$
\Delta \leq \sqrt{(s-\overline{A B})(s-\overline{B C})(s-\overline{A B})(s-\overline{A D})}
$$

so that $16 \Delta^{2} \leq f(x)$, where

$$
f(x)=-x^{4}+2(571-282 \sqrt{2}) x^{2}+32(27+13 \sqrt{2}) x-454337+314940 \sqrt{2}
$$

It can be checked readily by differentiation that for $19-11 \sqrt{2}<x<-7+19 \sqrt{2}, f(x)$ attains its unique maximum at $x=7+5 \sqrt{2}$. Hence

$$
\Delta \leq \frac{\sqrt{f(7+5 \sqrt{2})}}{4}=14 \sqrt{-137+106 \sqrt{2}}
$$

It can also be checked readily that the area of the quadrilateral with sides $\overline{A B}=1+3 \sqrt{2}, \overline{B C}=6+4 \sqrt{2}, \overline{C D}=-14+12 \sqrt{2}, \overline{A D}=7+5 \sqrt{2}$,

$$
\overline{A C}=\sqrt{7(-55+58 \sqrt{2})} \text { in fact equals } 14 \sqrt{-137+106 \sqrt{2}} .
$$

This completes the solution.
Also solved by Arkardy Alt, San Jose, CA; Ed Gray, Highland Beach, FL; Henry Ricardo, New York Math Circle, NY; David Stone and John Hawkins, Georgia Southern University, Statesboro, GA, and the proposer.

- 5338: Proposed by Arkady Alt, San Jose, CA

Determine the maximum value of

$$
F(x, y, z)=\min \left\{\frac{|y-z|}{|x|}, \frac{|z-x|}{|y|}, \frac{|x-y|}{|z|}\right\},
$$

where x, y, z are arbitrary nonzero real numbers.

Solution 1 by Kee-Wai Lau, Hong Kong, China

We show that the maximum value of $F(x, y, z)$ is 1 .
We first prove that

$$
\begin{equation*}
F(x, y, z) \leq 1, \tag{1}
\end{equation*}
$$

by showing that at least one of the numbers $\frac{|y-z|}{|x|}, \frac{|z-x|}{|y|}, \frac{|x-y|}{|z|}$ is less than equal to 1.

Suppose, on the contrary, that all of them are greater than 1. From $\frac{|y-z|}{|x|}>1$, we obtain

$$
\begin{equation*}
(y-z)^{2}>x^{2}, \text { or }(x+y-z)(x-y+z)<0 . \tag{2}
\end{equation*}
$$

Similarly from $\frac{|z-x|}{|y|}>1$, and $\frac{|x-y|}{|x|}>1$, we obtain respectively

$$
\begin{equation*}
(x-y-z)(x+y-z)>0, \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
(x-y-z)(x-y+z)>0 . \tag{4}
\end{equation*}
$$

Multiplying (2), (3) and (4) together. we obtain

$$
(x+y-z)^{2}(x-y+z)^{2}(x-y-z)^{2}<0,
$$

which is false. Thus (1) holds. Since $F(2,-1,1)=1$, we see that the maximum value of $F(x, y, z)$ is 1 indeed.

Solution 2 by Albert Stadler, Herrliberg, Switzerland

We claim that the maximum value equals 1 .
Let $x>0$. Then $F(x, x+1,-1)=\min \left\{\frac{x+2}{x}, \frac{x+1}{x+1}, \frac{1}{1}\right\}=1$.
So the maximum value is ≥ 1.
Suppose the maximum value is >1. Then there is a triple (x, y, z) with

$$
\begin{equation*}
|y-z|>|x|,|z-x|>|y|,|x-y|>|z| . \tag{1}
\end{equation*}
$$

By cyclic symmetry, we can assume that $x \leq \min (y, z)$.
Assume first that $x \leq y \leq z$. Then (1) reads as $z-y>|x|, z-x>|y|, y-x>|z|$. So $z-x=(z-y)+(y-x)>|x|+|z| \geq z-x$
which is a contradiction.
Assume next that $x \leq z \leq y$. Then (1) reads as
$y-z>|x|, z-x>|y|, y-x>|z|$. So $y-x=(y-z)+(z-x)>|x|+|y| \geq y-x$, which is a contradiction.

This concludes the proof.

Solution 3 by Paolo Perfetti, Department of Mathematics, "Tor Vergata" Unversity, Rome Italy

Answer: 1
The symmetry of $F(x, y, z)$ allows us to set $z \leq y \leq x$. We have two cases:

1) $0<z \leq y \leq x$ and
2) $z<0,0<y<x$.
3) $z<0,0<y \leq x$.

Moreover, by observing that $F(x, y, z)=F(-x,-y,-z)$, the case $z \leq y<0, x>0$ is recovered by the case 2) simply changing sign to all the signs and the same happens if $z \leq y \leq x<0$.

Now we study the case 1)

$$
\frac{|y-z|}{|x|} \leq \frac{|x-z|}{|y|} \Longleftrightarrow \frac{y-z}{x} \leq \frac{x-z}{y} \Longleftrightarrow z \leq x+y
$$

which evidently holds true. Moreover,

$$
\frac{|y-z|}{|x|} \leq \frac{|x-y|}{|z|} \Longleftrightarrow \frac{y-z}{x} \leq \frac{x-y}{z} \Longleftrightarrow y x+y z \leq x^{2}+z^{2}
$$

This generates two subcases.
1.1) $0<z \leq y \leq x$ and $y x+y z \leq x^{2}+z^{2}$. In this case we must find the maximum of the function $\frac{y-z}{x}$. We have

$$
\frac{y-z}{x} \leq \frac{y-z}{y}=1-\frac{z}{y}<1 .
$$

The value 1 is not attained because $z \neq 0$.
1.2) $0<z \leq y \leq x$ and $y x+y z>x^{2}+z^{2}$. In this case we must find the maximum of the function $\frac{x-y}{z}$. We have

$$
\frac{x-y}{z}<\frac{y-z}{x} \leq \frac{y-z}{y}=1-\frac{z}{y}<1 .
$$

Now we study case 2)

$$
F(x, y, z)=\min \left\{\frac{y-z}{x}, \frac{x-z}{y}, \frac{x-y}{-z}\right\}
$$

and

$$
\frac{y-z}{x} \leq \frac{x-z}{y} \Longleftrightarrow z \leq x+y
$$

which evidently holds true.
Moreover,

$$
\frac{y-z}{x} \leq \frac{z-y}{-z} \Longleftrightarrow y \leq x+z
$$

This generates two subcases.
2.1) $z<0,0<y<x, y \leq x+z$. In this case we must find the maximum of

$$
\frac{y-z}{x} \leq \frac{x}{x}=1 .
$$

The maximum achieved.
2.2) $z<0,0<y<x, y>x+z$. In this case we must find the maximum of

$$
\frac{x-y}{-z} \leq \frac{x-y}{x-y}=1 .
$$

The maximum achieved.
Also solved by Jerry Chu, (student at Saint George's School), Spokane, WA; Ethan Gegner, (student, Taylor University), Upland, IN, and the proposer.

- 5339: Proposed by D.M. Bătinetu-Giurgiu, "Matei Basarab" National College, Bucharest, Romania and Neculai Stanciu "George Emil Palade" School, Buzău, Romania

Calculate: $\int_{0}^{\pi / 2} \frac{3 \sin x+4 \cos x}{3 \cos x+4 \sin x} d x$.

Solution 1 by Haroun Meghaichi (student, University of Science and Technology Houari Boumediene), Algeria

Consider the general case for $a, b>0$:

$$
I(a, b)=\int_{0}^{\pi / 2} \frac{a \sin x+b \cos x}{b \sin x+a \cos x} \mathrm{~d} x
$$

Note that the derivative of the denominator (with respect to x) is $b \cos x-a \sin x$, and $\{b \sin x+a \cos x, b \cos x-a \sin x\}$ form a base on $R[\cos x, \sin x]$, then there are $\alpha, \beta \in R$ such that

$$
\begin{aligned}
a \sin x+b \cos x & =\alpha(b \sin x+a \cos x)+\beta(b \cos x-a \sin x), \quad \forall x \in R \\
& \Leftrightarrow b-a \alpha-b \beta=a-b \alpha+a \beta=0 .
\end{aligned}
$$

We can easily solve the system to get $(\alpha, \beta)=\left(\frac{2 a b}{a^{2}+b^{2}}, \frac{b^{2}-a^{2}}{a^{2}+b^{2}}\right)$, then

$$
I(a, b)=\frac{1}{a^{2}+b^{2}} \int_{0}^{\pi / 2} 2 a b+\left(b^{2}-a^{2}\right) \frac{b \cos x-a \sin x}{b \sin x+a \cos x} \mathrm{~d} x
$$

$$
\begin{aligned}
& =\frac{1}{a^{2}+b^{2}}\left[2 a b x+\left(b^{2}-a^{2}\right) \ln |a \cos x+b \sin x|\right]_{0}^{\pi / 2} \\
& =\frac{1}{a^{2}+b^{2}}\left(a b \pi+\left(b^{2}-a^{2}\right) \ln \frac{b}{a}\right)
\end{aligned}
$$

The proposed integral equals $I(4,3)=I(3,4)=\frac{1}{25}\left(12 \pi+7 \ln \frac{4}{3}\right)$.

Solution 2 by Dionne Bailey, Elsie Campbell, Charles Diminnie, and Andrew Siefker, Angelo State University, San Angelo, TX

We attack the problem by using the classical technique for converting a rational function of $\sin x$ and $\cos x$ into an ordinary rational function. If we set

$$
u=\tan \left(\frac{x}{2}\right)
$$

then the "half-angle" formulas imply that

$$
u^{2}=\frac{\sin ^{2}\left(\frac{x}{2}\right)}{\cos ^{2}\left(\frac{x}{2}\right)}=\frac{1-\cos x}{1+\cos x}
$$

and hence,

$$
\begin{equation*}
\cos x=\frac{1-u^{2}}{1+u^{2}} . \tag{1}
\end{equation*}
$$

Also, using (1) and the known identity

$$
u=\tan \left(\frac{x}{2}\right)=\frac{\sin x}{1+\cos x},
$$

we get

$$
\begin{equation*}
\sin x=\frac{2 u}{1+u^{2}} \tag{2}
\end{equation*}
$$

Finally,

$$
d u=\sec ^{2}\left(\frac{x}{2}\right) \cdot \frac{1}{2} d x=\frac{1}{2}\left[1+\tan ^{2}\left(\frac{x}{2}\right)\right] d x=\frac{1+u^{2}}{2} d x
$$

i. e.,

$$
\begin{equation*}
d x=\frac{2}{1+u^{2}} d u \tag{3}
\end{equation*}
$$

Since $u=0$ when $x=0$ and $u=1$ when $x=\frac{\pi}{2},(1),(2)$, and (3) yield (upon simplification)

$$
\begin{align*}
\int_{0}^{\frac{\pi}{2}} \frac{3 \sin x+4 \cos x}{3 \cos x+4 \sin x} d x & =4 \int_{0}^{1} \frac{2 u^{2}-3 u-2}{\left(3 u^{2}-8 u-3\right)\left(1+u^{2}\right)} d u \\
& =4 \int_{0}^{1} \frac{2 u^{2}-3 u-2}{(3 u+1)(u-3)\left(1+u^{2}\right)} d u \tag{4}
\end{align*}
$$

Then, (4) and the partial fraction expansion

$$
\begin{aligned}
\frac{2 u^{2}-3 u-2}{(3 u+1)(u-3)\left(1+u^{2}\right)} & =\frac{12}{25} \cdot \frac{1}{1+u^{2}}-\frac{7}{50} \cdot \frac{u}{1+u^{2}}+\frac{21}{100} \cdot \frac{1}{3 u+1} \\
& +\frac{7}{100} \cdot \frac{1}{u-3}
\end{aligned}
$$

imply that

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{2}} \frac{3 \sin x+4 \cos x}{3 \cos x+4 \sin x} d x & =4 \int_{0}^{1} \frac{2 u^{2}-3 u-2}{(3 u+1)(u-3)\left(1+u^{2}\right)} d u \\
& \left.\left.\left.=\frac{48}{25} \tan ^{-1} u\right]_{0}^{1}-\frac{7}{25} \ln \left(1+u^{2}\right)\right]_{0}^{1}+\frac{7}{25} \ln |3 u+1|\right]_{0}^{1} \\
& \left.+\frac{7}{25} \ln |u-3|\right]_{0}^{1} \\
& =\frac{12 \pi}{25}-\frac{7}{25} \ln 2+\frac{7}{25} \ln 4+\frac{7}{25} \ln 2-\frac{7}{25} \ln 3 \\
& =\frac{12 \pi}{25}+\frac{7}{25} \ln \left(\frac{4}{3}\right)
\end{aligned}
$$

Solution 3 by Ethan Gegner, (student, Taylor University), Upland, IN

The value of the integral is $\frac{1}{25}(12 \pi+7 \log (4 / 3))$.
Define

$$
\begin{aligned}
I & =\int_{0}^{\pi / 2} \frac{3 \sin x+4 \cos x}{3 \cos x+4 \sin x} d x \\
A & =\int_{0}^{\pi / 2} \frac{\sin x}{3 \cos x+4 \sin x} d x \\
B & =\int_{0}^{\pi / 2} \frac{\cos x}{3 \cos x+4 \sin x} d x
\end{aligned}
$$

Then

$$
I=3 A+4 B
$$

$$
\begin{aligned}
I+A-B & =\int_{0}^{\pi / 2} \frac{3 \cos x+4 \sin x}{3 \cos x+4 \sin x} d x=\frac{\pi}{2} \\
I-6 A & =\int_{0}^{\pi / 2} \frac{-3 \sin x+4 \cos x}{3 \cos x+4 \sin x} d x=\int_{3}^{4} \frac{1}{u} d u=\log (4 / 3)
\end{aligned}
$$

Solving this system yields $I=\frac{1}{25}(12 \pi+7 \log (4 / 3))$.

Solution 4 by Bruno Salgueiro Fanego, Viveiro, Spain

Since $\frac{d}{d x}(a x+b \ln (2 \cos x+4 \sin x))=\frac{(4 a-3 b) \sin x+(3 a+4 b) \cos x}{3 \cos x+4 \sin x}$ when
$3 \cos x+4 \sin x>0$ and $b \in \Re$, if we take $a, b, \in \Re$ such that $4 a-3 b=3$ and $3 a+4 b=4$, that is, $a=\frac{24}{25}$ and $b=\frac{7}{25}$, we obtain that $\frac{1}{25}(24 x+7 \ln (3 \cos x+4 \sin x))$ is a primitive of $\frac{3 \sin x+4 \cos x}{3 \cos x+4 \sin x}$ in $[0, \pi / 2]$, so, by Barrow's rule,

$$
\begin{aligned}
\int_{0}^{\pi / 2} \frac{3 \sin x+4 \cos x}{3 \cos x+4 \sin x} d x & =\frac{1}{25}\left(24 x+\left.7 \ln (3+4())\right|_{0} ^{\pi / 2}\right. \\
& =\frac{1}{25}(12 x+7 \ln (3 \cdot 0+4 \cdot 1))-\frac{1}{25}(24 \cdot 0+7 \ln (31+4 \cdot 0) \\
& =\frac{12 \pi}{25}+\frac{7}{25} \ln \left(\frac{4}{3}\right)
\end{aligned}
$$

Solution 5 by Brian D. Beasely, Presbyterian College, Clinton, SC

We let $f(x)=3 \sin x+4 \cos x$ and $g(x)=3 \cos x+4 \sin x$. Since $g^{\prime}(x)=-3 \sin x+4 \cos x$, we seek constants A and B such that

$$
\frac{f(x)}{g(x)}=A\left(\frac{g^{\prime}(x)}{g(x)}\right)+B .
$$

This produces $A=7 / 25$ and $B=24 / 25$, so

$$
\begin{aligned}
\int_{0}^{\pi / 2} \frac{f(x)}{g(x)} d x & =\int_{0}^{\pi / 2}\left[A\left(\frac{g^{\prime}(x)}{g(x)}\right)+B\right] d x \\
& =A \ln (g(x))+B x]_{0}^{\pi / 2} \\
& =A \ln \left(\frac{4}{3}\right)+B\left(\frac{\pi}{2}\right) \\
& =\frac{7}{25} \ln \left(\frac{4}{3}\right)+\frac{12 \pi}{25}
\end{aligned}
$$

Addendum. We may generalize the above technique to show that

$$
\int_{0}^{\pi / 2} \frac{m \sin x+n \cos x}{3 \cos x+4 \sin x} d x=A \ln \left(\frac{4}{3}\right)+B\left(\frac{\pi}{2}\right)
$$

where $A=(-3 m+4 n) / 25$ and $B=(4 m+3 n) / 25$.
We may further generalize to show that

$$
\int_{0}^{\pi / 2} \frac{m \sin x+n \cos x}{p \cos x+q \sin x} d x=A \ln \left|\frac{q}{p}\right|+B\left(\frac{\pi}{2}\right)
$$

where $A=(-p m+q n) /\left(p^{2}+q^{2}\right)$ and $B=(q m+p n) /\left(p^{2}+q^{2}\right)$, provided we place appropriate restrictions on the values of p and q (to keep $p \cos x+q \sin x \neq 0$ for each x in $[0, \pi / 2]$, to avoid $p=0$ or $q=0$, etc.).

Also solved by Arkady Alt, San Jose, CA; Andrea Fanchini, Gantú, Italy; Paul M. Harms, North Newton, Ks; Ed Gray, Highland Beach, FL; G.C. Greubel, Newport News, VA; Kee-Wai Lau, - Hong Kong, China; Daniel López, Center for Mathematical Sciences, UNAM, Morelia, Mexico; Paolo Perfetti, Department of Mathematics, "Tor Vergata" University, Rome, Italy; Henry Ricardo (two solutions), New York Math Circle, NY; Albert Stadler, Herrliberg, Switzerland; Vu Tran (student, Purdue University), West Lafayette, IN; Nicusor Zlota, "Traian Vuia" Technical College, Focsani, Romania; Titu Zvonaru, Comănesti, Romania, and the proposers.

- 5340: Proposed by Oleh Faynshteyn, Leipzig, Germany

Let a, b and c be the side-lengths, and s the semi-perimeter of a triangle. Show that

$$
\frac{a^{2}+b^{2}}{(s-c)^{2}}+\frac{b^{2}+c^{2}}{(s-a)^{2}}+\frac{c^{2}+a^{2}}{(s-b)^{2}} \geq 24
$$

Solution 1 by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain
Changing variables by letting $s-a=x, s-b=y$ and $s-c=z$ the proposed inequality is equivalent to the following one, for x, y and z positive real numbers:

$$
\sum_{\text {cyclic }}\left(1+\frac{y}{z}\right)^{2}+\left(1+\frac{x}{z}\right)^{2} \geq 24
$$

The last inequality follows by the power-mean, arithmetic-mean, geometric-mean inequality:

$$
\begin{aligned}
\sqrt{\frac{\sum_{\text {cyclic }}\left(1+\frac{y}{z}\right)^{2}+\left(1+\frac{x}{z}\right)^{2}}{6}} & \geq \frac{\sum_{\text {cyclic }}\left(1+\frac{y}{z}\right)+\left(1+\frac{x}{z}\right)}{6} \\
& =1+\frac{\sum_{\text {cyclic }}\left(\frac{y}{z}+\frac{x}{z}\right)}{6} \\
& \geq 1+\sqrt[6]{\prod_{\text {cyclic }} \frac{y}{z} \cdot \frac{x}{z}} \\
& =2
\end{aligned}
$$

from where the result follows, with equality if and only if $x=y=z$, that is if $a=b=c$.

Solution 2 by Nikos Kalapodis, Patras, Greece

$a+b+c=2 s \Longrightarrow a^{2}=(s-b+s-c)^{2}$.
Using the well-known inequality $(x+u)^{2} \geq 4 x y$ for $x=s-b$ and $y=s-c$ we have

$$
\begin{gather*}
(s-b+s-c)^{2} \geq 4(s-b)(s-c), \text { i.e., } \\
a^{2} \geq 4(s-b)(s-c) \tag{1}
\end{gather*}
$$

Similarly we obtain,

$$
\begin{align*}
& b^{2} \geq 4(s-c)(s-a) \tag{2}\\
& c^{2} \geq 4(s-a)(s-b) \tag{3}
\end{align*}
$$

Applying the well known inequality $x^{2}+y^{2} \geq 2 x y$, to (1), (2), and (3) we have

$$
\begin{aligned}
& \frac{a^{2}+b^{2}}{(s-c)^{2}}+\frac{b^{2}+c^{2}}{(s-a)^{2}}+\frac{c^{2}+a^{2}}{(s-b)^{2}}= \\
& {\left[\left(\frac{a}{s-b}\right)^{2}+\left(\frac{a}{s-c}\right)^{2}\right]+\left[\left(\frac{b}{s-c}\right)^{2}+\left(\frac{b}{s-a}\right)^{2}\right]+\left[\left(\frac{c}{(s-a)}^{2}+\left(\frac{c}{(s-b)^{2}}\right)\right] \geq\right.} \\
& \frac{2 a^{2}}{(s-b)(s-c)}+\frac{2 b^{2}}{(s-c)(s-a)}+\frac{2 c^{2}}{(s-a)(s-b)} \geq 2(4+4+4)=24
\end{aligned}
$$

Solution 3 by Arkady Alt, San Jose, CA

Note that $\sum_{\text {cyc }} \frac{a^{2}+b^{2}}{(s-c)^{2}} \geq 24 \Longleftrightarrow \sum_{\text {cyc }} \frac{a^{2}+b^{2}}{(a+b-c)^{2}} \geq 6$.
Since $a^{2} \geq a^{2}-(b-c)^{2} \Longleftrightarrow \quad \frac{a^{2}}{a+b-c} \geq c+a-b$
and

$$
b^{2} \geq b^{2}-(c-a)^{2} \Longleftrightarrow \frac{b^{2}}{a+b-c} \geq b+c-a
$$

then by AM-GM Inequality we have
$\sum_{\text {cyc }} \frac{a^{2}}{(a+b-c)^{2}} \geq \sum_{\text {cyc }} \frac{c+a-b}{a+b-c} \geq 3 \sqrt[3]{\frac{c+a-b}{a+b-c} \cdot \frac{a+b-c}{b+c-a} \cdot \frac{b+c-a}{c+a-b}}=3$
and
$\sum_{c y c} \frac{b^{2}}{(a+b-c)^{2}} \geq \sum_{c y c} \frac{b+c-a}{a+b-c} \geq 3 \sqrt[3]{\frac{b+c-a}{a+b-c} \cdot \frac{c+a-b}{b+c-a} \cdot \frac{a+b-c}{c+a-b}}=3$.
Thus, $\sum_{\text {cyc }} \frac{a^{2}+b^{2}}{(a+b-c)^{2}} \geq 6$.

Solution 4 by D.M. Bătinetu-Giurgiu, Bucharest, Romania

We shall prove that

$$
\frac{x a^{m}+y b^{m}}{(s-c)^{m}}+\frac{x b^{m}+y c^{m}}{(s-a)^{m}}+\frac{x c^{m}+y a^{m}}{(s-b)^{m}} \geq 3 \sqrt{x y} \cdot 2^{m+1}, \text { where } m, x, y>0 .
$$

Proof: We denote the area of the triangle by F, its circumradius by R and its inradius by r.

By the AM-GM inequality and taking into account that $F=s r=\sqrt{s(s-a)(s-b)(s-c)}$ we have that
$\sum_{\text {cydic }} \frac{x a^{m}+y b^{m}}{(s-c)^{m}} \geq 2 \sqrt{x y} \sum_{\text {cyclic }} \frac{(\sqrt{a b})^{m}}{(s-c)^{m}} \geq 2 \sqrt{x y} \cdot 3 \cdot \sqrt[3]{\prod_{\text {cyclic }} \frac{(\sqrt{a b})^{m}}{(s-c)^{m}}}$
$=6 \sqrt{x y} \cdot \sqrt[3]{\left(\frac{a b c}{(s-a)(s-b)(s-c)}\right)^{m}}$
$=6 \sqrt{x y} \cdot \sqrt[3]{\frac{(4 R F)^{m} s^{m}}{(s(s-a)(s-b)(s-c))^{m}}}$
$=6 \sqrt{x y} \cdot \sqrt[3]{\frac{4^{m} R^{m} F^{m} s^{m}}{F^{2 m}}}$
$=6 \sqrt{x y} \cdot \sqrt[3]{\frac{4^{m} R^{m} s^{m}}{F^{m}}}$
$=6 \sqrt{x y} \cdot \sqrt[3]{\frac{4^{m} R^{m} s^{m}}{s^{m} r^{m}}}$
$=6 \sqrt{x y} \cdot \sqrt[3]{4^{m}\left(\frac{R}{r}\right)^{m}}$
$\geq \operatorname{Euler}(R \geq 2 r) 6 \sqrt{x y} \cdot \sqrt[3]{4^{m} 2^{m}}$
$=6 \sqrt{x y} \cdot \sqrt[3]{2^{3 m}}=6 \sqrt{x y} \cdot \sqrt[3]{2^{3 m}}=3 \sqrt{x y} 2^{m+1}$
If we take $m=2$ we obtain a solution to problem 5340 .
Solution 5 by Paul M. Harms, North Newton, KS

If $x>0$, then using calculus we can show that the minimum value of both expressions

$$
\left\{\begin{array}{l}
x+\frac{1}{x} \\
x^{2}+\frac{1}{x^{2}}
\end{array}\right.
$$

is 2 and occurs at $x=1$. I will use several substitutions to get the left side of the problem inequality into a form easier to use.
First let $t>0$ and $r>0$ such that $a=r c$ and $b=t c$. Then $s=\frac{c}{2}(r+t+1)$ and the left side of the problem inequality is

$$
\frac{\left(r^{2}+t^{2}\right)}{\left(\frac{t+r-1}{2}\right)^{2}}+\frac{\left(t^{2}+1\right)}{\left(\frac{t-r+1}{2}\right)^{2}}+\frac{\left(r^{2}+1\right)}{\left(\frac{r-t+1}{2}\right)^{2}}
$$

Now let $\left\{\begin{array}{l}2 H=r+t-1, \\ 2 L=t-r+1 \\ 2 K=r-t+1 .\end{array}\right.$ Then $\left\{\begin{array}{l}r=H+K \\ t=H+L \\ L=1-K\end{array} \quad\right.$ with H, L and K positive since $s-a, s-b$ and $s-c$ are positive.
The inequality in terms of the positive numbers H, K and L can be written as

$$
\frac{(H+K)^{2}+(H+L)^{2}}{H^{2}}+\frac{(H+L)^{2}+1}{L^{2}}+\frac{(H+K)^{2}+1}{K^{2}} \geq 24 .
$$

Working with the left side of the inequality we can obtain

$$
\begin{aligned}
& \left(2+2 \frac{K}{H}+\left(\frac{K}{H}\right)^{2}+2 \frac{L}{H}+\left(\frac{L}{H}\right)^{2}\right)+\left(\left(\frac{H}{L}\right)^{2}+2 \frac{L}{H}+1+\frac{1}{L^{2}}\right)+\left(\left(\frac{H}{K}\right)^{2}+2 \frac{H}{K}+1+\frac{1}{K^{2}}\right) \\
= & 2\left(\frac{K}{H}+\frac{H}{K}\right)+2\left(\frac{L}{H}+\frac{H}{L}\right)+2\left(\left(\frac{H}{K}\right)^{2}+\left(\frac{K}{H}\right)^{2}\right)+\left(\left(\frac{L}{H}\right)^{2}+\left(\frac{H}{L}\right)^{2}\right)+4+\frac{1}{K^{2}}+\frac{1}{L^{2}} .
\end{aligned}
$$

Each of the brackets in the last expression has the form $\left(x+\frac{1}{x}\right)$ or $\left(x^{2}+\frac{1}{x^{2}}\right)$ so the minimum value of each bracket is 2 . Then the left side of the original problem inequality is greater than or equal to $2(2)+2(2)+2+2+4+\frac{1}{K^{2}}+\frac{1}{L^{2}}$. If we can show that this expression is greater than or equal 24 , the original inequality is correct.
We must show that $\frac{1}{K^{2}}+\frac{1}{L^{2}}$ is at least 8 . Since K and L are positive numbers such that $L=1-K$, the derivative of the two terms is $\frac{-2}{K^{3}}-\frac{2}{L^{3}}(-1)$. Letting the derivative equal to zero, we obtain $K=L=\frac{1}{2}$. The value of 8 is clearly a minimium for $\frac{1}{K^{2}}+\frac{1}{L^{2}}$. Thus the problem inequality is correct.

Solution 6 by Henry Ricardo, New York Math Circle, NY

It is a known consequence of the arithmetic-geometric mean inequality that the side-lengths of a triangle satisfy the inequality

$$
(b+c-a)(c+a-b)(a+b-c) \leq a b c .
$$

Using this fact and the arithmetic-geometric mean inequality twice more, we have

$$
\begin{aligned}
\frac{a^{2}+b^{2}}{(s-c)^{2}}+\frac{b^{2}+c^{2}}{(s-a)^{2}}+\frac{c^{2}+a^{2}}{(s-b)^{2}} & \geq 3\left(\frac{\left(a^{2}+b^{2}\right)\left(b^{2}+c^{2}\right)\left(c^{2}+a^{2}\right)}{(s-a)^{2}(s-b)^{2}(s-c)^{2}}\right)^{1 / 3} \\
& \geq 3\left(\frac{(2 a b)(2 b c)(2 a c)}{[(b+c-a)(a+c-b)(a+b-c)]^{2} / 64}\right)^{1 / 3} \\
& \geq 3\left(\frac{8 a^{2} b^{2} c^{2}}{(a b c)^{2} / 64}\right)^{1 / 3}=24 .
\end{aligned}
$$

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State University, San Angelo, TX; D. M.Btinetu-Giurgiu, Bucharest, Romania; Bruno Salgueiro Fanego, Viveiro, Spain; Ethan Gegner (student, Taylor University), Upland, IN; Ed Gray, Highland Beach, FL; Nikos Kalapodis (two additional solutions to \#2 above), Patras, Greece; Kee-Wai Lau, Hong Kong, China; Haroun Meghaichi (student, University of Science and Technology Houari Boumediene), Algeria; Albert Stadler, Herrliberg, Switzerland; Nicusor Zlota, "Traian Vuia" Technical College, Focsani, Romania; Titu Zvonaru and Neculai Stanciu, Romania, and the proposer.

- 5341: Proposed by José Luis Díaz-Barrero, Barcelona Tech, Barcelona, Spain

Let $z_{1}, z_{2}, \cdots, z_{n}$, and $w_{1}, w_{2}, \cdots, w_{n}$ be sequences of complex numbers. Prove that

$$
R e\left(\sum_{k=1}^{n} z_{k} w_{k}\right) \leq \frac{3}{(n+1)(n+2)} \sum_{k=1}^{n}\left|z_{k}\right|^{2}+\frac{3 n^{2}+6 n+1}{20} \sum_{k=1}^{n}\left|w_{k}\right|^{2} .
$$

Solution 1 by Kee-Wai Lau, Hong Kong, China
We have

$$
\begin{aligned}
\operatorname{Re}\left(\sum_{k=1}^{n} z_{k} w_{k}\right) \leq\left|\sum_{k=1}^{n} z_{k} w_{k}\right| & \leq \sum_{k=1}^{n}\left|z_{k}\right|\left|w_{k}\right| \\
& =\sum_{k=1}^{n}\left|\frac{\sqrt{6} z_{k}}{\sqrt{(n+1)(n+2)}}\right|\left|\frac{\sqrt{(n+1)(n+2)} w_{k}}{\sqrt{6}}\right| \\
& \leq \frac{1}{2}\left(\sum_{k=1}^{n}\left(\left|\frac{\sqrt{6} z_{k}}{\sqrt{(n+1)(n+2)}}\right|^{2}+\left|\frac{\sqrt{(n+1)(n+2)} w_{k}}{\sqrt{6}}\right|^{2}\right)\right) \\
& =\frac{3}{(n+1)(n+2)} \sum_{k=1}^{n}\left|z_{k}\right|^{2}+\frac{(n+1)(n+2)}{12} \sum_{k=1}^{n}\left|w_{k}\right|^{2} .
\end{aligned}
$$

Since

$$
\frac{(n+1)(n+2)}{12}=\frac{3 n^{2}+6 n+1}{20}-\frac{(n-1)(4 n+7)}{60} \leq \frac{3 n^{2}+6 n+1}{20},
$$

so the inequality of the problem holds.

Solution 2 by Ethan Gegner (student, Taylor University), Upland, IN

For $n \in N$, define

$$
f(n)=\left(\frac{3}{(n+1)(n+2)}\right)\left(\frac{3 n^{2}+6 n+1}{20}\right)
$$

and observe that f is an increasing function of n; thus, $f(n) \geq f(1)=1 / 4$ for all $n \in N$. Applying AM-GM inequality and then Cauchy's inequality, we obtain

$$
\begin{aligned}
\frac{3}{(n+1)(n+2)} \sum_{k=1}^{n}\left|z_{k}\right|^{2}+\frac{3 n^{2}+6 n+1}{20} \sum_{k=1}^{n}\left|w_{k}\right|^{2} & \geq 2 \sqrt{f(n)\left(\sum_{k=1}^{n}\left|z_{k}\right|^{2}\right)\left(\sum_{k=1}^{n}\left|w_{k}\right|\right)^{2}} \\
& \geq\left(\sum_{k=1}^{n}\left|z_{k}\right|^{2}\right)^{1 / 2}\left(\sum_{k=1}^{n}\left|w_{k}\right|^{2}\right)^{1 / 2} \\
& \geq \sum_{k=1}^{n}\left|z_{k}\right|\left|w_{k}\right| \\
& \geq \operatorname{Re}\left(\sum_{k=1}^{n} z_{k} w_{k}\right)
\end{aligned}
$$

Solution 3 by Paolo Perfetti, Department of Mathematics, "Tor Vergata"

 University, Rome, ItalyThe AGM yields

$$
\frac{3}{(n+1)(n+2)} \sum_{k=1}^{n}\left|z_{x}\right|^{2}+\frac{3 n^{2}+6 n+1}{20} \sum_{k=1}^{n}\left|w_{x}\right|^{2} \geq 2 \sqrt{\frac{3}{20} \frac{3 n^{2}+6 n+1}{n^{2}+3 n+2}} \sqrt{\sum_{k=1}^{n}\left|z_{x}\right|^{2} \cdot \sum_{r=1}^{n}\left|w_{r}\right|^{2}} .
$$

Then we use Cauchy-Schwarz

$$
\sqrt{\sum_{k=1}^{n}\left|z_{x}\right|^{2} \cdot \sum_{r=1}^{n}\left|w_{r}\right|^{2}} \geq \sum_{k=1}^{n}\left|z_{x}\right| \cdot\left|w_{k}\right|
$$

Moreover

$$
\operatorname{Re}\left(\sum_{k=1}^{n} z_{k} w_{k}\right) \leq\left|\sum_{k=1}^{n} z_{k} w_{k}\right| \leq \sum_{k=1}^{n}\left|z_{k} w_{k}\right|,
$$

and the inequality amounts to show that

$$
2 \sqrt{\frac{3}{20} \frac{3 n^{2}+6 n+1}{n^{2}+3 n+2}} \geq 1 \Longleftrightarrow n \leq-\frac{7}{4}, n \geq 1 .
$$

This completes the proof.

Solution 4 by Nicusor Zlota, "Traian Vuia" Technical College, Focsani, Romania

Let $z_{k}=x_{k}+i y_{k}$ and $w_{k}=a_{k}+i b_{k}$, for $0 \leq k \leq n$. We can assume that $x_{k}, y_{k}, a_{k}, b_{k} \geq 0$, because we can increase the left hand side of the statement of the problem by using absolute values.
We wish to prove the inequality:

$$
\sum_{k=1}^{n}\left(a_{k} x_{k}-b_{k} y_{k}\right) \leq \frac{3}{(n+1)(n+2)} \sum_{k=1}^{n}\left(x_{k}^{2}+y_{k}^{2}\right)+\frac{3 n^{2}+6 n+1}{20} \sum_{k=1}^{n}\left(a_{k}^{2}+b_{k}^{2}\right) .
$$

Because of symmetry, we need only show that:

$$
a_{k} x_{k} \leq \frac{3}{(n+1)(n+2)} x_{k}^{2}+\frac{3 n^{2}+6 n+1}{20} a_{k}^{2} .
$$

Considering this as a quadratic inequality for the variable x_{k}, we see that the discriminant is negative.

$$
\Delta=a_{k}^{2}-4 \frac{3}{(n+1)(n+2)} \frac{3 n^{2}+6 n+1}{20} a_{k}^{2}=a_{k}^{2}\left(\frac{-4 n^{2}+3 n+7}{5(n+1)(n+2)}\right)<0 .
$$

Hence, the problem is solved.

Also solved by Bruno Salgueiro Fanego,Viveiro, Spain; Ed Gray, Highland Beach, FL, and the proposer.

- 5342: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

Let $a, b, c, \alpha>0$, be real numbers. Study the convergence of the integral

$$
I(a, b, c, \alpha)=\int_{1}^{\infty}\left(a^{1 / x}-\frac{b^{1 / x}+c^{1 / x}}{2}\right)^{\alpha} d x
$$

The problem is about studying the conditions which the four parameters, a, b, c, and α, should verify such that the improper integral would converge.

Solution 1 by Arkady Alt, San Jose, CA

Case 1. If $a=b=c$, then for any nonzero $x, a^{\frac{1}{x}}-\frac{b^{\frac{1}{x}}+c^{\frac{1}{x}}}{2}=0$, so $I(a, b, c, \alpha)=0$ for any real $\alpha>0$.
Case 2. Suppose α isn't an integer. Then $a^{\frac{1}{x}}-\frac{b^{\frac{1}{x}}+c^{\frac{1}{x}}}{2}$ must be nonnegative for any x and in particular, it must be positive for $x=1$, that is $a \geq \frac{b+c}{2}$.
Since $\left\{\begin{array}{l}2 a=b+c \\ b=c\end{array} \Longleftrightarrow a=b=c\right.$ then, to avoid the trivial case 1, we will consider a, b, c such that
$a>\frac{b+c}{2}$ or $\left\{\begin{array}{l}2 a=b+c \\ b \neq c .\end{array}\right.$
Then, by the AM-PM inequality, for $x>1$ we have

$$
\frac{b+c}{2}>\left(\frac{b^{\frac{1}{x}}+c^{\frac{1}{x}}}{2}\right)^{x} \Longleftrightarrow\left(\frac{b+c}{2}\right)^{\frac{1}{x}}>\frac{b^{\frac{1}{x}}+c^{\frac{1}{x}}}{2}
$$

and we obtain $a^{\frac{1}{x}}>\frac{b^{\frac{1}{x}}+c^{\frac{1}{x}}}{2}$ for any $x>1$ and that the integral is defined.
For any real $p>0$ we have $\lim _{t \rightarrow 0} \frac{p^{t}-1}{t}=\ln p$. So, $\lim _{x \rightarrow \infty} x\left(a^{\frac{1}{x}}-\frac{b^{\frac{1}{x}}+c^{\frac{1}{x}}}{2}\right)=$
$\lim _{x \rightarrow \infty} x\left(a^{\frac{1}{x}}-1\right)-\frac{1}{2}\left(\lim _{x \rightarrow \infty} x\left(b^{\frac{1}{x}}-1\right)+\lim _{x \rightarrow \infty} x\left(c^{\frac{1}{x}}-1\right)\right)=\ln a-\frac{\ln b+\ln c}{2}=\ln \frac{a}{\sqrt{b c}}>0$, because $a>\sqrt{b c}$ if $b \neq c$ or if $a>\frac{b+c}{2}$.

Therefore, $\lim _{x \rightarrow \infty} \frac{\left(a^{\frac{1}{x}}-\frac{b^{\frac{1}{x}}+c^{\frac{1}{x}}}{2}\right)^{\alpha}}{\frac{1}{x^{\alpha}}}=\ln ^{\alpha} \frac{a}{\sqrt{b c}}>0$, and by the Limit Comparison Test,
$I(a, b, c, \alpha)$ converges iff $\frac{1}{x^{\alpha}}$ converges; that is, $I(a, b, c, \alpha)$ converges if $\alpha>1$ and diverges if $\alpha \in(0,1]$.
Case 3. Let α be a positive integer. Then the expression $\left(a^{\frac{1}{x}}-\frac{b^{\frac{1}{x}}+c^{\frac{1}{x}}}{2}\right)^{\alpha}$ is defined for any positive a, b, c and since

$$
\lim _{x \rightarrow \infty}\left(a^{\frac{1}{x}}-\frac{b^{\frac{1}{x}}+c^{\frac{1}{x}}}{2}\right)^{\alpha}=\ln ^{\alpha} \frac{a}{\sqrt{b c}}>0
$$

is the limit of $I(a, b, c, \alpha)$ for $a>\sqrt{b c}$ and when $\alpha>1$. So the situation of $a=\sqrt{b c}$ must be analyzed.

Then $\left(a^{\frac{1}{x}}-\frac{b^{\frac{1}{x}}+c^{\frac{1}{x}}}{2}\right)^{\alpha}=\frac{(-1)^{\alpha}\left(b^{\frac{1}{2 x}}-c^{\frac{1}{2 x}}\right)^{2 \alpha}}{2^{\alpha}}$.
Assume, without loss of generality, $b>c$. Since $\lim _{x \rightarrow \infty} x\left(b^{\frac{1}{2 x}}-a^{\frac{1}{2 x}}\right)=\frac{1}{2} \ln \frac{b}{c}>0$,
then $\lim _{x \rightarrow \infty} \frac{\left(b^{\frac{1}{2 x}}-a \frac{1}{2 x}\right)^{2 \alpha}}{\frac{1}{x^{2 \alpha}}}=\left(\frac{1}{2} \ln \frac{b}{c}\right)^{2 \alpha}>0$, and by the Limit Comparison Test
$I(a, b, c, \alpha)$ is convergent iff $\frac{1}{x^{2 \alpha}}$ convergent, that is $I(a, b, c, \alpha)$ convergent if $\alpha>1 / 2$ and divergent if $\alpha \in(0,1 / 2]$.

In summary,

- If $a=b=c$ then $I(a, b, c, \alpha)=0$ is convergent for any real α;
- If $\alpha \in \Re_{+} / N$ and $a>\frac{b+c}{2}$ or $\left\{\begin{array}{c}2 a=b+c \\ b \neq c\end{array}\right.$ then $I(a, b, c, \alpha)$ is convergent for $\alpha>1$ and divergent for $\alpha \in(0,1]$;
- If $\alpha \in \Re_{+} / N$ and $a>\sqrt{b c}$ then $I(a, b, c, \alpha)$ is convergent for $\alpha>1$ and divergent for $\alpha \in(0,1]$;
- If $\alpha \in N$ and $a=\sqrt{b c}$ then $I(a, b, c, \alpha)$ is convergent for $\alpha>1 / 2$ and divergent for $\alpha \in(0,1 / 2]$.

Solution 2 by Paolo Perfetti, Department of Mathematics, "Tor Vergata" University, Rome, Italy

To have the integral well defined, a necessary condition is $2 a \geq b+c$.
The convergence occurs in one of the following cases:

1) if $a=b=c$ we have convergence for any value of α
2) if $\alpha>1$ we have convergence regardless the values of a, b, c
3) if $1 / 2<\alpha \leq 1$ and $a=\sqrt{b c}$ we have convergence.

Proof
If α is irrational or it is a rational p / q reduced to the lowest terms with q even, we must impose

$$
2 a^{1 / x}-b^{1 / x}-c^{1 / x} \geq 0
$$

but this doesn't seem to me easy to prove. A necessary condition is $2 a \geq b+c$ corresponding to $x=1$.
If $a=b=c$ the integrand is identically zero and then the integral converges regardless the value of α.

From now on, $a \neq b$ or $b \neq c$ or $a \neq c$.
We have $a^{1 / x}=e^{\frac{\ln a}{x}}=1+\frac{\ln a}{x}+\frac{\ln ^{2} a}{2 x^{2}}+\frac{\ln ^{3} a}{6 x^{3}}+O\left(x^{-4}\right)$ whence

$$
\begin{aligned}
& {\left[a^{1 / x}-\frac{b^{1 / x}+c^{1 / x}}{2}\right]^{\alpha}=\left\{1+\frac{\ln a}{x}+\frac{\ln ^{2} a}{2 x^{2}}+\frac{\ln ^{3} a}{6 x^{3}}+\right.} \\
& \left.-\frac{1}{2}\left(1+\frac{\ln b}{x}+\frac{\ln ^{2} b}{2 x^{2}}+\frac{\ln ^{3} b}{6 x^{3}}+1+\frac{\ln c}{x}+\frac{\ln ^{2} c}{2 x^{2}}+\frac{\ln ^{3} c}{6 x^{3}}+O\left(x^{-4}\right)\right)\right\}^{\alpha}= \\
& =\frac{1}{x^{\alpha}}\left(\ln \frac{a}{\sqrt{b c}}+\frac{\ln ^{2} a-\frac{\ln ^{2} b}{2}-\frac{\ln ^{2} c}{2 x}}{2 x}+x A\right)^{\alpha} \\
& A=\frac{1}{6}\left(\frac{\ln ^{3} a}{x^{3}}-\frac{\ln ^{3} b}{2 x^{3}}-\frac{\ln ^{3} c}{2 x^{3}}\right)+O\left(x^{-4}\right)
\end{aligned}
$$

The positivity of $\ln \frac{a}{\sqrt{b c}}+\frac{\ln ^{2} a-\frac{\ln ^{2} b}{2}-\frac{\ln ^{2} c}{2}}{2 x}+x A$ for x large enough, imposes $\ln \frac{a}{\sqrt{b c}}>0$ that is $a^{2} \geq b c$ which in turn follows by $2 a \geq b+c$. Indeed

$$
a^{2} \geq \frac{(b+c)^{2}}{4}=\frac{b^{2}+c^{2}+2 b c}{4} \geq \frac{4 b c}{4}=b c
$$

Let $\alpha>1$. Since for any x large enough it is

$$
\left(\ln \frac{a}{\sqrt{b c}}+\frac{\ln ^{2} a-\frac{\ln ^{2} b}{2}-\frac{\ln ^{2} c}{2}}{2 x}+x A\right)^{\alpha} \leq C
$$

if $\alpha>1$ the integral $\int_{1}^{\infty} \frac{1}{x^{\alpha}}\left(\ln \frac{a}{\sqrt{b c}}+\frac{\ln ^{2} a-\frac{\ln ^{2} b}{2}-\frac{\ln ^{2} c}{2}}{2 x}+x A\right)^{\alpha} d x$ converges.

Let $1 / 2<\alpha \leq 1$ and $a=\sqrt{b c}$.

$$
0 \leq\left(a^{1 / x}-\frac{b^{1 / x}+c^{1 / x}}{2}\right)^{\alpha}=\frac{1}{x^{2 \alpha}}\left(\frac{1}{4}(\ln b-\ln c)^{2}+x^{2} A\right)^{\alpha} \leq \frac{C_{1}}{x^{2 \alpha}}
$$

whence convergence.

Let $0<\alpha \leq 1 / 2$, and $a=\sqrt{b c}$. To have convergence we need $\ln b=\ln c$ that is $b=c$, but this would yield $a=b=c$, a forbidden condition.

Also solved by the proposer.

