
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics, Ben-
Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals
and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously stated problems
can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
October15, 2016

• 5403: Proposed by Kenneth Korbin, New York, NY

Let φ =
1 +
√

5

2
. Solve the equation 3

√
x+ φ = 3

√
φ+ 3
√
x− φ with x > φ.

• 5404: Proposed Arkady Alt, San Jose, CA

For any given positive integer n ≥ 3, find the smallest value of the product of x1x2 . . . xn,

where x1, x2, x3, . . . xn > 0 and
1

1 + x1
+

1

1 + x2
+ . . .+

1

1 + xn
= 1.

• 5405: Proposed by D. M. Bătinetu-Giurgiu, Bucharest, Romania and Neculai
Stanciu,“George Emil Palade” School, Buzău, Romania

If a, b ∈ < such that a+ b = 1, en =

(
1 +

1

n

)n

and cn = − lnn+
n∑

k=1

1

k
, then compute

lim
n→∞

(
(n+ 1)a

n+1

√
((n+ 1)!cn)b − na n

√
(n!en)b

)
.

• 5406: Proposed by Cornel Ioan Vălean, Timis, Romania

Calculate:
∞∑
n=1

Hn

n

(
ζ(3)− 1− 1

23
− · · · − 1

n3

)
,

where Hn =

n∑
k=1

1

k
denotes the harmonic number.

• 5407: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain
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Find all triples (a, b, c) of positive reals such that

a+ b+ c = 1,
1

(a+ bc)2
+

1

(b+ ca)2
+

1

(c+ ab)2
=

243

16
.

• 5408: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Calculate: ∫ 1

0

lnx ln(1− x)

x(1− x)
dx.

Solutions

• 5385: Proposed by Kenneth Korbin, New York, NY

A triangle with integer length sides and integer area has perimeter P = 66. Find the sides of
the triangle when the area is minimum.

Solution by Toshihiro Shimizu, Kawasaki, Japan

Let s = P/2 = 23328. Let the sides of the triangle be a, b, c. The square of area of the
triangle can be written as s(s− a)(s− b)(s− c). Thus, (s− a)(s− b)(s− c) must be
minimized and this value must be twice the square of an integer. Let α = s− a, β = s− b,
γ = s− c and T = (s− a)(s− b)(s− c) = αβγ. Then, α+ β + γ = s and without loss of
generality, we assume α ≥ β ≥ γ > 0. When (α, β, γ) = (23276, 44, 8), we have T = 2 · 20242.
We show that this case is the unique smallest case. In this case it follows that
(a, b, c) = (52, 23284, 23320) and Area = 437, 184.

First, we assume that if βγ = t for some positive integer t. Then, it follows that
α = s− β − γ ≥ s− t− 1 and

T = αβγ ≥ (s− t− 1) · t

Thus, we need to find the case that (s− t− 1) · t < 2 · 20242 or t2 − 23327t+ 2 · 20242 > 0 or
t < 356.6.
Therefore, we only need to consider the case that βγ ≤ 356 and the range of γ is
γ ≤

⌊√
356
⌋

= 18.
We consider the case γ = 1. The range of β is 1 ≤ β ≤ 356.For case (β, γ) = (1, 1),
α = s− β − γ = 23326 and T = 23326, T/2 = 11663, It’s not a square of an integer.
For case (β, γ) = (2, 1), α = s− β − γ = 23325 and T = 46650, T/2 = 23325, It’s not a
square of an integer.
For case (β, γ) = (3, 1), α = s− β − γ = 23324 and T = 69972, T/2 = 34986, It’s not a
square of an integer.

...
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Editor′s interlude : The solution continues on in the above manner, and after 49 pages,
with each line similar to the output listed above, the proof by exhaustion ends with the final
entries listed as:

...

We consider the case γ = 17. The range of β is 17 ≤ β ≤ 20. For case (β, γ) = (17, 17),
α = s− β − γ = 23294 and T = 6731966, T/2 = 3365983, It’s not a square of an integer.
For case (β, γ) = (18, 17), α = s− β − γ = 23293 and T = 7127658, T/2 = 3563829, It’s not
a square of an integer.
For case (β, γ) = (19, 17), α = s− β − γ = 23292 and T = 7523316, T/2 = 3761658, It’s not
a square of an integer.
For case (β, γ) = (20, 17), α = s− β − γ = 23291 and T = 7918940, T/2 = 3959470, It’s not
a square of an integer.
We consider the case γ = 18. The range of β is 18 ≤ β ≤ 19.For case (β, γ) = (18, 18),
α = s− β − γ = 23292 and T = 7546608, T/2 = 3773304, It’s not a square of an integer.
For case (β, γ) = (19, 18), α = s− β − γ = 23291 and T = 7965522, T/2 = 3982761, It’s not
a square of an integer.

Editor again: Each of the complete solutions submitted used Hero’s formula on an
expression connecting the perimeter of the triangle with its area, and then used a computer
in proving that they had the minimal area. But sometimes computers get it wrong. David
Stone and John Hawkins of Southern Georgia University in Statesboro, GA
stated that the area of the triangle with integer length sides of (1, 23327, 23328) is
essentially zero, which of course they quickly dismissed. They then listed the areas of the
following three Heronian triangles each having perimeter 66 = 46, 656.

a b c s s− a s− b s− c area
52 23284 23320 23328 23276 44 8 437184
72 23290 23294 23328 23256 38 343 837218
153 23225 23278 23328 23175 103 50 1, 668, 60


Ed Gray of Highland Beach, FL showed that the Heronian Triangle with side lengths of
{1928, 21402, 23326} has an area of 1386720, and Kenneth Korbin, proposer of the
problem, showed that a triangle with side lengths {2600, 2073, 23319} has an area of
3,357,936. Kee-Wai Lau of Hong Kong, China also showed that the triangle with
integer side lengths of {52, 23284, 23320} has a perimeter of 66 and produces the triangle
with the minimal integral area.

• 5386: Proposed by Michael Brozinsky, Central Islip, NY.

Determine whether or not there exit nonzero constants a and b such that the conic whose
polar equation is

r =

√
a

sin(2θ)− b cos(2θ)

has a rational eccentricity.
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Solution by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie,
Angelo State University, San Angelo, TX

To begin, the given polar equation can be written in x and y as follows:

by2 + 2xy − bx2 = a. (1)

Noting that (1) has the form Dx2 + Exy + Fy2 = a, the angle of rotation is found to be

tan(2θ) =
E

D − F
= −1

b
. (2)

With some perseverance and the standard rotation formulas with x = u cos(θ)− v sin(θ)
and y = u sin(θ) + v cos(θ), (1) can be written as(

sin(2θ)− b cos(2θ)
)
u2 +

(
b cos(2θ)− sin(2θ)

)
v2 = a. (3)

Thus, using (2), sin(2θ) =
1√
b2 + 1

and cos(2θ) = − b√
b2 + 1

. (3) can now be simplified and

displayed in standard form of a conic as√
b2 + 1u2 −

√
b2 + 1 v2 = a

u2

a√
b2 + 1

− v2

a√
b2 + 1

= 1. (4)

If we consider A to be the distance from the center of the hyperbola to a vertex, B to be the
distance from the center to an end of the conjugate axis, and C to be the distance from the

center to a focus, then from (4), A2 =
a√
b2 + 1

, B2 =
a√
b2 + 1

, and

C2 = A2 +B2 =
2a√
b2 + 1

. (5)

Using (5), eccentricity is defined to be e =
C

A
=
√

2. Thus, there do not exist nonzero

constants a and b to yield a rational eccentricity.

Editor′s comment: This problem appeared before in this column as problem 5304; mea
culpa, once again.

Also solved by Arkady Alt, San Jose, CA; Hatef I. Arshagi, Guilford Technical
Community College, Jamestown, NC; Bruno Salgueiro Fanego, Viveiro, Spain;
Ed Gray; Highland Beach, FL; Kee-Wai Lau, Hong Kong, China; Toshihiro
Shimizu, Kawasaki, Japan, and the proposer.

• 5387: Proposed by Arkady Alt, San Jose, CA

Let D := {(x, y) | x, y ∈ R+, x 6= y and xy = yx} .(Obviously x 6= 1 and y 6= 1 ).

Find sup
(x,y)∈D

(
x−1 + y−1

2

)−1
Solution 1 by Henry Ricardo, New York Math Circle, NY
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The power mean inequality gives us

M−1(x, y) =

(
x−1 + y−1

2

)−1
≤ M0(x, y) =

√
xy,

so that

sup
(x,y)∈D

(
x−1 + y−1

2

)−1
≤ sup

(x,y)∈D

√
xy.

Now it is well known that the general solution of the equation xy = yx in the first quadrant
is given parametrically by

x =

(
1 +

1

u

)u

, y =

(
1 +

1

u

)u+1

, u > 0,

a form attributed to Christian Goldbach. This gives us

x · y =

(
1 +

1

u

)u

·
(

1 +
1

u

)u+1

,

implying that

sup
(x,y)∈D

(
x−1 + y−1

2

)−1
= lim

u→∞

√
xy =

√
e · e = e.

Solution 2 by Toshihiro Shimizu, Kawasaki, Japan

It is well-known that for any positive integer n,

(x, y) =

((
1 +

1

n

)n

,

(
1 +

1

n

)n+1
)

satisfies the equation xy = yx and x 6= y. Letting n→∞, both x and y converges to e.
Thus, the value ((x−1 + y−1)/2)−1 also converges to e.
Next, we show that for any real number satisfying xy = yx, x 6= y, the equation
((x−1 + y−1)/2)−1 ≤ e holds. xy = yx is equivalent to log x/x = log y/y. Since log x/x is
negative and monotone decreasing for x < 1, and it’s positive and monotone increasing for
1 ≤ x ≤ e and also it’s positive and monotone decreasing on e ≤ x, it is obvious that
1 < x, y and without loss of generality , we assume y < e < x. We write x = 1/s, y = 1/t.
Then, s < 1/e < t and s log s = t log t. The inequality ((x−1 + y−1)/2)−1 ≤ e is equivalent to
1/e ≤ (s+ t)/2.
Let f(x) = x log x. Then, f ′(x) = 1 + log x, f ′′(x) = 1/x, f ′′′(x) = −x−2 < 0 for x > 0.
Thus, f ′(x) is concave and it follows that

f ′(z) + f ′(2e − z)
2

≤ f ′(
z + 2

e − z
2

) = f ′(
1

e
) = 0
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for any z > 0. Integrating from z = s to z = 1/e, we get

f(1/e)− f(s) + f(2e − s)− f(1/e)

2
≤ 0,

or f(2/e− s) ≤ f(s) = f(t). Since, f(z) is monotone increasing on 1/e ≤ z, it follows that
2/e− s ≤ t or 1/e ≤ (s+ t)/2. Therefore we have shown that ((x−1 + y−1)/2)−1 ≤ e for any
(x, y) ∈ D.
Finally we conclude that the supremum value is e.

Solution 3 by Bruno Salgueiro Fanego, Viveiro, Spain

In is known that D ∩
{

(x, y)
∣∣x 6= 1, y 6= 1

}
can be parametrized by

(0, 1) ∪ (1,+∞) 3 t→
(
x(t), y(t)

)
=
(
t

1
t−1 , t

t
t−1

)
.

(Note that t =
y(t)

x(t)
is the slope of the line from (0, 0) to

(
x(t), y(t)

)
; moreover,

y(t)x(t) =
(
t

t
t−1

)t 1
t−1

= t
t

t−1
·t

1
t−1

= t
t·t

1
t−1

t−1 = t
t
1+ 1

t−1

t−1 = t
t

t
t−1

t−1 = t
1

t−1
·t

1
t−1

=
(
t

1
t−1

) t
tt−1

= x(t)y(t).

Hence, (
x(t)−1 + y(t)−1

2

)−1
=

2x(t)y(t)

x(t) + y(t)
=

2t
1

t−1 · t
t

t−1

t
1

t−1 + t
t

t−1

=
2t

1+t
t−1

t
1

t−1 · (1 + t)
=

2t
t

t−1

t+ 1
.

Let us define (0, 1) ∪ (1,∞) 3 µ→ f(u) =
2u

u
u−1

u+ 1.

Then f ′(u) =
2u

u
u−1 (2u− 2− (u+ 1) lnu)

(u2 − 1)2
so f ′(u) > 0 for u ∈ (0, 1) and f ′(u) < 0 for

u ∈ (1,+∞), with implies that f is strictly increasing in (0, 1) and strictly decreasing in

(1,+∞), which implies that

sup
u∈(0,1)∪(1,+∞)

f(u) = lim
u→1

f(u) = lim
n→1

2

u+ 1
· lim
u→1

u
u

u−1 = lim
n→1

u
u

u−1 = e
ln lim

u→1
u

u
u−1

= e
lim
u→1

lnu
u

u−1

= e
lim
u→1

u
u−1

lnu
= e

lim
u→1

u

u− 1

(
−
∞∑
n=1

1− un

n

)
= e

lim
u→1

u

∞∑
n=1

(1− u)n−1

n

= e

lim
u→1

u+

∞∑
n=2

u(1− u)n−1

n
= e1+0 = e.

Thus, sup
(x,y)∈D

(
x−1 + y−1

2

)−1
= sup

t∈(0,1)∪(1,+∞)

(
x(t)−1 + y(t)−1

2

)−1
= sup

t∈(0,1)∪(1,+∞)
f(t) = e.
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Solutions 4 and 5 by Michael Brozinsky, Central Islip, NY

For simplicity, we shall use
2xy

x+ y
, which equals the given expression.

We shall also use the Lambert function W (x) which is the inverse of f(x) = x · ex (with the

domain of f(x) being {−1,∞ ) so that W (x) has domain

[
−1

e
,∞
)

and

W (x · ex) = x if x ≥ −1, and

x = W (x) · eW (x), if x ≥ 1

e
(∗)

From yx = xy we have
ln(x)

x
=

ln(y)

y
(∆), and since F (t) =

ln(t)

t
is one to one and negative

on (0, 1), one to one and positive on (1, e) and one to one and positive on (e,∞) and since
x 6= y, we can assume that 1 < y < e and x > e so that in particular ln(y) > −1 and from
(∗), W

(
− ln(y) · e− ln(y)

)
= − ln(y) which we will encounter later when we obtain (∗∗)

below.

From yx = xy we have by raising both sides to the
1

xy
power that y

1
y = x

1
x . The left hand

side can be written as
(
eln(y)

) 1
y =

(
eln(y)

)e− ln(y)

= eln(y)·e
− ln(y)

and so we have

eln(y)·e
− ln(y)

= x
1
x . If we take natural logs of both sides of this equation and multiply both

sides by −1 we have

− ln(y) · e− ln(y) =
− ln(x)

x
(1).

Now
− ln(x)

x
> −1

e
(since

ln(x)

x
has it s maximum of

1

e
) when x = e and thus

W

(
− ln(x)

x

)
> −1 and so 1 +W

(
− ln(x)

x

)
> 0. (Note W (u) ≥ −1 with equality only if

u = −1

e
).

Taking W of both sides of (1) and using (∗) we have from (1) that

− ln(y) = W

(
− ln(x)

x

)
(∗∗) and so

y =
1

e− ln(y)
=

1

e
W

(
− ln(x)

x

) = using(∗)
W
(
− ln(x)

x

)
− ln(x)

x

= − x

ln(x)
·W

(
− ln(x)

x

)

The expression whose supremum we wish to find is thus

2xy

x+ y
=

2x
(
− x

ln(x) ·W
(
− ln(x)

x

))
x+

(
− x

ln(x) ·W
(
− ln(x)

x

)) − 2x2W
(
− ln(x)

x

)
ln(x) ·

(
x−

xW
(
− ln(x)

x

)
ln(x)

) (∗ ∗ ∗)
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Now differentiating the second equation in (∗) shows W ′(x) =
1

eW (x) · (W (x) + 1)
and so

differentiating (∗ ∗ ∗) gives, after simplification

2W

(
− ln(x)

x

)2(
ln(x)−W

(
− ln(x)

x

)
− 2

)
(

ln(x)−W
(
− ln(x)

x

))2(
1 +W

(
− ln(x)

x

)) = − 2 ln(y)2 (ln(x) + ln(y)− 2)

(ln(x) + ln(y))2 (1− ln(y))
using (∗∗) (1).

Recall 1− ln(y) = 1 +W

(
ln(x)

x

)
> 0. The expression in (1) thus is positive when

ln(x) + ln(y)− 2 < 0 and negative when ln(x) + ln(y)− 2 > 0. This last expression in (∗ ∗ ∗)
increases if xy < e2 and decreases when xy > e2 and thus has maximum of e when xy = e2

and so e is the desired supremum.

Solution 5

For simplicity, we shall use
2xy

x+ y
, which equals the given expression. From yx = xy we have

ln(x)

x
=

ln(y)

y
(∆), and since F1(t) =

ln(t)

t
is one to one and negative on (0, 1), one to one

and positive on (1, e) and one to one and positive on (e,∞) and since x 6= y, we can assume
that 1 < x < e and y > e

Now since y · ln(x) = x · ln(y), we have that y · ln(x)− x = x · (ln(y)− 1) > 0 (∗). Since
d

dx

(
u(x)v(x)

)
= u(x)v(x) ·

(
v(x)

u(x)
u′(x) + ln (u(x)) · v′(x)

)
we readily have from yx = xy by

implicit differentiation that y′ =
y · ln(y)− y2

x
y · ln(x)− x

and since
d

dx

(
2xy

x+ y

)
=

2
(
x2y′ + y2

)
(x+ y)2

we

have by substitution that

d

dx

(
2xy

x+ y

)
=

2y
(
ln(y)x2 + ln(x)y2 − 2xy

)
(y ln(x)− x) (x+ y)

and factoring out xy

=

2xy2
(

ln(y)

y
x+

ln(x)

x
y − 2

)
(y ln(x)− x)(x+ y)2

, and since x y = yx ,

=

2xy2
(

ln(xy)

y
+

ln(yx)

x
− 2

)
(y ln(x)− x)(x+ y)2

=
2xy2 (ln(x) + ln(y)− 2

(y ln(x)− x) (x+ y)2
.
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The expression is thus positive (recall y ln(x)− x > 0) when ln(x) + ln(y)− 2 < 0 and

negative when ln(x) + ln(y)− 2 > 0. Thus sup
(x,y)∈D

(
x−1 + y−1

2

)−1
increases if xy < e2 and

decreases when xy > e2 and so e is the desired supremum.

Editor′s comment: Michael Brozinsky also submitted two more solutions to this problem,
each in the spirit of solutions the above.

Also solved by Hatef I. Arshagi, Guilford Technical Community College,
Jamestown, NC; Kee-Wai Lau, Hong Kong, China; David Stone and John
Hawkins, Georgia Southern University, Statesboro, GA, and the proposer.

5388: Proposed by Jiglău Vasile, Arad, Romania

Let ABCD be a cyclic quadrilateral, R and r its exradius and inradius respectively, and
a, b, c, d its side lengths (where a and c are opposite sides.) Prove that

R2

r2
≥ a2c2

b2d2
+
b2d2

a2c2
.

Solution 1 by Toshihiro Shimizu, Kawasaki, Japan

Remark: We assume that ABCD is inscribable (and thus ABCD is bicentric) and excircle
is circumcircle.

Let the circumcircle and incircle of ABCD be Γ(with center O), Γ′(with center I),
respectively. We fix Γ,Γ′ and move A such that ABCD has circumcircle Γ and incircle Γ′.
The existence of such quadrilateral is assured by the Poncelet’s closure theorem (see also
https://en.wikipedia.org/wiki/Poncelet%27s closure theorem).

If Γ and Γ′ are concentric, the quadrilateral is square and we can easy to check that R =
√

2r
and a2c2

b2d2
+ b2d2

a2c2
= 2. Thus the equality holds. We assume that Γ and Γ′ are not concentric.

As A vary, we only show the case when (r.h.s), that is a2c2

b2d2
+ b2d2

a2c2
, is maximum. The value is

maximum when ac
bd is maximum. We calculate the maximum value.

Let P be the intersection of AC and BD. Let W,X, Y, Z be the tangency point of Γ′ with
AB,BC,CD,DA, respectively.

Then, we show the following lemma. The point P is a fixed point as A varies. Let E be
the intersection of AB and CD. Let F be the intersection of BC and DA. Since the
quadrilateral ABCD is inscribable, AC, BD, ZX, WY are all concurrent at point P . (it
can be shown by Brianchon’s theorem and we omit) Then, ZX is the polar line of F with
respect to Γ′ and WY is the polar line of E with respect to Γ′. Thus, FE is the polar line of
P (intersection of ZX and WY ) with respect to Γ′. Moreover, E,P is on the polar line of F
with respect to Γ and F, P is on the polar line of E with respect to Γ. (This fact is well
known and I saw it in my Japanese book.) Therefore, EF and P are polar line and pole
with respect to both Γ and Γ′. We will show that this situation only occurs when P is one
of the particular two points. More precisely, since EF is polar line of P with respect to both
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Γ and Γ′, both PO, PO′ are perpendicular to EF . Thus, P must be on OO′. We calculate
the position of P (see Figure 1) Let x = IP and d = IO. From the point P , draw a line
perpendicular to OO′ and let S, S′ be one of the intersection with Γ, Γ′, respectively. Let Q
be the intersection of tangent line of Γ at S and OO′ and Q′ be the intersection of tangent
line of Γ′ at S′ and OO′. We find the condition that Q = Q′. This situation is equivalent to
the above since 4QSO and 4SPO is similar right triangle,
OQ = OS ·OS/OP = R2/(x+ d). Similarly, IQ′ = IS′ · IS′/IP = r2/x. Thus,

R2

x+ d
= d+

r2

x

must be hold. Since this equation is quadratic equation, there are at most two valid value of
x. As A varies continuously, P moves continuously and can’t jump to another point. Thus,
P must be fixed point as A varies. Therefore, lemma has been shown.

Now we have fixed point P and line EF are fixed as A varies. We show that EI and FI are
perpendicular. Since WY ⊥ EI and ZX ⊥ FI , it suffices to show that ZX ⊥WY . Since
6 ZAP = 6 DAC = 6 DBC = 6 PBX and 6 AZP = 6 FZX = 6 FXZ = 6 BXP , we have
4ZPA ∼ 4XPB. Thus, 6 ZPA = 6 XPB. Similarly, 6 APW = 6 DPY , 6 WPB = 6 Y PC,
6 XPC = 6 ZPD. Since 6 APW = 6 Y PC and 6 XPC = 6 ZPA,
6 ZPA+ 6 WPA = 360◦/4 = 90◦. Thus, ZX ⊥WY .

Let θ = 6 IEF , 6 DEA = 2α, 6 DFC = 2β. The distance between I and EF be p(> r), this
value is constant as θ vary. Then, since EI = p/ sin θ and FI = p/ cos θ,
sinα = r/EI = (r sin θ)/p and sinβ = r/FI = (r cos θ)/p. Thus,
cos 2α = 1− 2 sin2 α = 1− 2(r2 sin2 θ)/p2 and cos 2β = 1− 2 sin2 β = 1− 2(r2 cos2 θ)/p2.

Then, from the Law of Sines, it follows that

a = AB

= FB · sin 6 BFA

sin 6 FAB

= EF · sin 6 FEB

sin 6 EBF
· sin 6 BFA

sin 6 FAB

= EF · sin(θ − α) sin 2β

cos(β − α) cos(α+ β)

c = CD

= CF · sin 6 DFC

sin 6 CDF

= EF · sin 6 CEF

sin 6 ECF
· sin 6 DFC

sin 6 CDF

= EF · sin(θ + α) sin 2β

cos(α+ β) cos(β − α)

b, d are calculated by replacing θ by π/2− θ and swapping α and β from a, c respectively.
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Then, since both denominators are unchanged under these replacement, we get

ac

bd
=

sin(θ − α) sin(θ + α)

sin(π/2− θ − β) sin(π/2− θ + β)
· sin2 2β

sin2 2α

=
cos 2θ − cos 2α

cos(π − 2θ)− cos 2β
· 1− cos2 2β

1− cos2 2α

=
cos 2θ − cos 2α

cos(π − 2θ)− cos 2β
· 1− cos 2β

1− cos 2α
· 1 + cos 2β

1 + cos 2α

=
1− 2 sin2 θ −

(
1− 2(r2 sin2 θ)/p2

)
1− 2 cos2 θ − (1− 2(r2 cos2 θ)/p2)

· cos2 θ

sin2 θ
· 2− 2(r2 cos2 θ)/p2

2− 2(r2 sin2 θ)/p2

=
p2 − r2 cos2 θ

p2 − r2 sin2 θ
.

Since sin2 θ + cos2 θ = 1, this value takes maximum when sin θ = 0 and the maximum value

is p2−r2
p2

. Similarly, the minimal value is p2

p2−r2 when sin θ = 1. Therefore, the maximal value

of a2c2

b2d2
+ b2d2

a2c2
is
(
p2−r2
p2

)2
+
(

p2

p2−r2

)2
. Thus we only need to show that

R2

r2
≥
(
p2 − r2

p2

)2

+

(
p2

p2 − r2

)2

Now we derive relation between p, r,R. Let K, L be the intersection of line QI and Γ′,
where K is closer to Q than L. Let the tangent line at K meet Γ at N and the tangent line
at L meet Γ at N ′. We can see that Q,N,N ′ are collinear and this line is a tangent line of Γ
(see figure 2). Let the tangency point be M . Then, since 4QKN and 4QMI are similar,

KN = MI ·QK/QM = r(p− r)/
√
p2 − r2. Thus, KO =

√
R2 −

(
r(p−r)√
p2−r2

)2

. Similarly,

since 4QLN ′ and 4QMI are similar, LN ′ = MI ·QL/QM = r(p+ r)/
√
p2 − r2. Thus,

LO =

√
R2 −

(
r(p+r)√
p2−r2

)2

. Therefore, since 2r = KO + LO, it follows that

2r =

√√√√R2 −

(
r(p− r)√
p2 − r2

)2

+

√√√√R2 −

(
r(p+ r)√
p2 − r2

)2

2r =

√
R2 − p+ r

p− r
· r2 +

√
R2 − p− r

p+ r
· r2

Squaring, we get

4r2 = 2R2 −
(
p+ r

p− r
+
p− r
p+ r

)
r2 + 2

√
R2 − p+ r

p− r
· r2
√
R2 − p− r

p+ r
· r2(

4 +
p+ r

p− r
+
p− r
p+ r

)
r2 − 2R2 = 2

√
R2 − p+ r

p− r
· r2
√
R2 − p− r

p+ r
· r2

11



Squaring again, we get(
4 +

p+ r

p− r
+
p− r
p+ r

)2

r4 − 4R2r2
(

4 +
p+ r

p− r
+
p− r
p+ r

)
+ 4R4 = 4R4 − 4R2r2

(
p+ r

p− r
+
p− r
p+ r

)
+ 4r4((

4 +
p+ r

p− r
+
p− r
p+ r

)2

− 4

)
r2 = 16R2

Therefore,

R2

r2
=

1

16

((
4 +

p+ r

p− r
+
p− r
p+ r

)2

− 4

)

=
1

16

(
14 +

(
p− r
p+ r

)2

+

(
p+ r

p− r

)2

+ 8

(
p− r
p+ r

+
p+ r

p− r

))

=
14
(
p2 − r2

)2
+ (p− r)4 + (p+ r)4 + 8 (p− r) (p+ r)

(
(p− r)2 + (p+ r)2

)
16 (p− r)2 (p+ r)2

=
2p4 − p2r2

(p2 − r2)2

Therefore we need to show that

2p4 − p2r2

(p2 − r2)2
≥
(
p2 − r2

p2

)2

+

(
p2

p2 − r2

)2

It is equivalent to

p4 − p2r2

(p2 − r2)2
≥
(
p2 − r2

p2

)2

p2

p2 − r2
≥
(
p2 − r2

p2

)2

p6 ≥
(
p2 − r2

)3
.

The last inequality is obvious.

Following are the diagrams for Lemma 1.
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Solution 2 by Kee-Wai Lau, Hong Kong, China

It is well known that R =
1

4

√
(ab+ cd)(ac+ bd)(ad+ bc)

abcd
and r =

√
abcd

a+ c
=

√
abcd

b+ d
for the

bicentric quadrilateral ABCD. Hence the inequality of the problem is equivalent to

(ab+ cd)(ac+ bd)(ad+ bc)((a+ c)(b+ d)− 16
(
a4c4 + b4d4) ≥ 0 (1)

By homogeneity, we may assume without loss of generality that

c = 1− a (2)

and
d = 1− b (3)

13



It can be checked readily, using (2) and (3), that the left hand side of (1) equals

(1 + 4a (1− a)) a2 (a− 1)2 (2a− 1)2 + (1 + 4b(1− b)) b2(b− 1)2(2b− 1)2

+ab(1− a)(1− b)((2a− 1)2 + (2b− 1)2).

Since 0 < a < 1 amnd 0 < b < 1, so the last expression is nonnegative. Thus (1) holds and
this completes the solution.

Also solved by Ed Gray, Highland Beach, FL, and the proposer

5389: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let ABC be a scalene triangle with semi-perimeter s and area A. Prove that

3a+ 2s

a(a− b)(a− c)
+

3b+ 2s

b(b− a)(b− c)
+

3c+ 2s

c(c− a)(c− b)
<

3
√

3

4A
.

Solution 1 by Neculai Stanciu, “George Emil Palade” School Buzău, Romania
and Titu Zvonaru, Comaesti, Romania

bc3 − b3c+ a3c− ac3 + ab3 − a3b
abc (a− b)(b− c)(c− a)

<
3
√

3

4A
⇐⇒ (a− b)(b− c)(c− a)(a+ b+ c)

abc(a− b)(b− c)(c− a)
<

3
√

3

4A

⇐⇒ 2s

4AR
<

3
√

3

4A

⇐⇒ 2s < 3R
√

3,

which is the well-known Mitrinović’s inequality (see, e.g., item 5.3 in Geometric Inequalities
by O.Bottema et. al., Groningen, 1969.)

Solution 2 by Ed Gray, Highland Beach, FL

Let the statement of the problem be labeled as (1).

Outline of solution: We will show that the left hand side of (1), l.h.s. (1) =l.h.s. (9)
Statement (12) below is derived from a well known identity.
Statement (13) and onward shows that the l.h.s (9)=l.h.s. (12). So in summary,

l.h.s (1)=l.h.s. (9) =l.h.s.(12) ≤ 3
√

3

4A
.

Collecting the terms on the l.h.s.(1) gives us

(2)
bc(c− b)(4a+ b+ c) + ac(a− c)(a+ 4b+ c) + ab(bb− a)(a+ b+ 4c)

abc(a− b)(b− c)(c− a)
or

(3)
bc(c− b)4a+ (bc)(c2 − b2) + (ac)(a− c)4b+ ac(a2 − c2) + ab(b− a)4c+ ab(b2 − a2)

abc(a− b)(b− c)(c− a)
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(4)
4abc(c− b) + 4abc(a− c) + 4abc)(b− a) + bc(c2 − b2) + ab(a2 − c2) + ab(b2 − a2)

abc(a− b)(b− c)(c− a)
or

(5)
4abc(c− b+ a− c+ b) + bc(c− b)(c+ b) + ac(a− c)(a+ c) + ab(b− a)(b+ a)

abc(a− b)(b− c)(c− a)
=

(6)
bc(c− b)(c+ b) + a− c+ b)

abc(a− b)(b− c)(c− a)
+
ac(a− c)(a+ c) + a− c+ b)

abc(a− b)(b− c)(c− a)
+

ab(b− a)(b+ a)

abc(a− b)(b− c)(c− a)
=

(7)
c+ b

a(a− b)(a− c)
+

a+ c

b(c− b)(a− b)
+

a+ b

c(c− b)(c− a)
=

(8)
bc(c2 − b2) + ac(a2 − c2) + ab(b2 − a2)

abc(a− b)(b− c)(c− a)
.

Slightly re-arranging (1) becomes

(9)
a3(c− b) + b3(a− c) + c3(b− a)

bc(a3)(c− b) + ac(b3)(a− c) + ab(c3)(b− a)
<

3
√

3

4A
.

A well known identity (GOOGLE) is:

(10)
9abc

a+ b+ c
≥ 4A

√
3, or inverting

(11)
a+ b+ c

9abc
≤ 1

4A
√

3
=

√
3

12A
=

3
√

3

36A

Multiplying by 9

(12)
a+ b+ c

abc
≤ 3
√

3

4A
Hence, it is sufficient to show:

(13)
a3(c− b) + b3(a− c) + c3(b− a)

bc(a3)(c− b) + ac(b3)(a− c) + ab(c3)(b− a)
≤ a+ b+ c

abc
or

(14)

a3(c− b) + b3(a− c) + c3(b− a) ≤ (a+ b+ c)

(
bc(a3)(c− b) + ac(b3)(a− c) + ab(c3)(b− a)

abc

)
or

(15)

a3(c− b) + b3(a− c) + c3(b− a) ≤ (c−b)
(
a3 + a2b+ a2c

)
+(a−c)

(
ab2 + b3 + cb2

)
+(b−a)

(
ac2 + bc2 + c3

)
)

Transposing from left to right

(16)
0 ≤ (c− b)(a2)(b+ c) + (a− c)(b2)(a+ c) + (b− a)(c2)(b+ a)

(a2)(c2 − b2) + (b2)(a2 − c2) + (c2)(b2 − a2) or

(17)
0 ≤ a2c2 − a2b2 + b2a2 − b2c2 + b2c2 − a2c2 = 0. Q.E.D.

Solution 3 by Moti Levy, Rehovot, Israel
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The left hand side of the inequality can be simplified,

3a+ 2s

a (a− b) (a− c)
+

3b+ 2s

b (b− c) (b− a)
+

3c+ 2s

c (c− a) (c− b)
= 2sabc.

Hence the original inequality is equivalent to

2s

abc
<

3
√

3

4A
or to 4A

√
3 <

9abc

a + b + c
. (1)

It is well known that in any triangle, sinA+ sinB + sinC ≤ 3
√

3

2
. Hence

sinA+ sinB + sinC =
a

2R
+

b

2R
+

c

2R
≤ 3
√

3

2
or

a+ b+ c ≤ 3R
√

3. (2)

It is well known that R =
abc

4A
. Labeling this equation as (3), it follows from (2) and (3)

that a+ b+ c ≤ 3
abc

4A
√

3, which implies (1).

Remark: Inequality (1) was proposed by T. R. Curry in the “American Mathematical
Monthly”, Vol. 73 (1966) as elementary problem number 1861.
The solution by Leon Bankoff (who served as the editor of the Problem Department of
PME magazine for several years) was selected.

Also solved by Arkady Alt, San Jose, CA; Hatef I. Arshagi, Guilford Technical
Community College, Jamestown, NC; Elsie M. Campbell, Dionne T. Bailey, and
Charles Diminnie, Angelo State University, San Angelo, TX; Bruno Salgueiro
Fanego, Viveiro, Spain; Toshihiro Shimizu, Kawasaki, Japan; Kee-Wai Lau,
Hong Kong, China; Nicusor Zlota “Trian Vuia” Technical College, Focsani,
Romania, and the proposer.

5390: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let A ∈M2 (R) such that AAT =

(
a b
b a

)
, where a > b ≥ 0. Prove that AAT = ATA if

and only if A =

(
α β
β α

)
or A =

(
β α
α β

)
, where α =

±
√
a+ b±

√
a− b

2
and

β =
±
√
a+ b∓

√
a− b

2
. Here AT denotes the transpose of A.

Solution 1 by Toshihiro Shimizu of Kawasaki, Japan
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Remark: I assume that a > b > 0.
Let

A =

(
x y
z w

)
.

Then, from the AAT = ATA, it follows that x2 + y2 = x2 + z2 = y2 + w2 = z2 + w2 = a,
xz + yw = xy + zw = b. Thus, y2 = z2, x2 + z2 = y2 + w2 and (x− w)(y − z) = 0. Thus, it
follows that x = w or y = z and y = ±z.
If y 6= z, y = −z 6= 0 and x = w must be satisfied. Then, we can write

A =

(
x y
−y x

)
.

Then, a = x2 + y2, b = 0, a contradiction.
Thus y = z, then x = ±w. Since xz + yw = b > 0, the plus sign must be occured. Thus, we
can write

A =

(
x y
y x

)
,

and x2 + y2 = a, 2xy = b. Then, (x+ y)2 = a+ b implies x+ y = ±
√
a+ b. Thus, x, y is a

two root of the equation t2 ∓
√
a+ bt+ b/2 = 0. Thus,

{x, y} =
{
±
√
a+b+

√
a+b−2b

2 , ±
√
a+b−

√
a+b−2b

2

}
.

Solution 2 by Kee-Wai Lau, Hong Kong, China

If a > b = 0, then the matrix A0 =

(√
a 0

0 −
√
a

)
satisfying A0A

T
0 =

(
a 0
0 a

)
and

A0A
T
0 = AT

0A0, is neither of the form

(
α β
β α

)
nor of the form

(
β α
α β

)
.

Hence in what follows we always assume that a > b > 0.

Let

(
w x
y z

)
so that AAT =

(
w2 + x2 wy + xz
wy + xz y2 + z2

)
and AAT =

(
w2 + y2 wx+ yz
wx+ yz x2 + z2

)
.

Hence if AAT =

(
a b
b a

)
, then

w2 + x2 = y2 + z2 = a, (1)

and
wy + xz = b. (2)

Suppose that AAT = ATA, then

x2 = y2, (3)

and
wy + xz = wx+ yz. (4)

From (4) we obtain (x− y)(z − w) = 0. We first suppose that x = y. Then by (1), we have
w2 = z2 and by (2) we have x(w + z) = b. Since b > 0, so w = z and we have
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w2 + x2 = a
2wx = b (5)

Solving (5), we obtain (w, x) =(√
a+ b+

√
a− b

2
,

√
a+ b−

√
a− b

2

)
,

(
−
√
a+ b+

√
a− b

2
,

√
a− b−

√
a+ b

2

)
,(√

a+ b−
√
a− b

2
,

√
a+ b+

√
a− b

2

)
,

(√
a− b−

√
a+ b

2
,−
√
a+ b+

√
a− b

2

)
,

with corresponding matrices

A1 =


√
a+ b+

√
a− b

2

√
a+ b−

√
a− b

2

√
a+ b−

√
a− b

2

√
a+ b+

√
a− b

2

 ,

A2 =


−
√
a+ b+

√
a− b

2

√
a− b−

√
a+ b

2

√
a− b−

√
a+ b

2
, −

√
a+ b+

√
a− b

2

 ,

A3 =


√
a+ b−

√
a− b

2

√
a+ b+

√
a− b

2

√
a+ b+

√
a+ b

2
,

√
a+ b−

√
a− b

2

 , and

A4 =


√
a− b−

√
a− b

2
−
√
a+ b+

√
a− b

2

−
√
a+ b+

√
a− b

2
,

√
a− b−

√
a+ b

2

 .

It is easy to check that Ak satisfies AkA
T
k =

(
a b
b a

)
and that AkA

T
k = AT

kAk for k = 1, 2, 3, 4.

Next we suppose that w = z. Then by (2), we have w(x+ y) = b. Since b > 0, so by (3), we
have x = y, and we arrive at (5) again. This completes the solution.

Solution 3 by the Proposer
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One implication is easy to prove. If A =

(
α β
β α

)
or A =

(
β α
α β

)
, with

α =
±
√
a+ b±

√
a− b

2
and β =

±
√
a+ b∓

√
a− b

2
, then

AAT = ATA =

(
α2 + β2 2αβ

2αβ α2 + β2

)
=

(
a b
b a

)
.

Now we prove the other implication. First we note, since det(AAT ) = det2A = a2 − b2 > 0,

that A is invertible. The equation AAT =

(
a b
b a

)
implies that

AT = A−1
(
a b
b a

)
= A−1(aI2 + bJ), where J =

(
0 1
1 0

)
. The equation AAT = ATA

implies that AAT = aI2 + bJ = (aA−1 + bA−1J)A = ATA, and this in turn implies

bA−1JA = bJ and, since b 6= 0, we get that JA = AJ . Let A =

(
x y
u v

)
. Since JA = AJ

we get that u = y and v = x, so A =

(
x y
y x

)
. We have

AAT =

(
x2 + y2 2xy

2xy x2 + y2

)
=

(
a b
b a

)
and this implies that x2 + y2 = a and 2xy = b. Since we have a symmetric system it is clear
that the values of x and y could be interchanged. Adding and subtracting these equations
we get that (x+ y)2 = a+ b and (x− y)2 = a− b, and we have x+ y = ±

√
a+ b and

x− y = ±
√
a− b. Thus, x =

±
√
a+ b±

√
a− b

2
, y =

±
√
a+ b∓

√
a− b

2
and the problem is

solved.

Also solved by Boris Rays, Brooklyn, NY; Dexter Harrell (Undergraduate
Student), Auburn University Montgomery, AL; David Stone and John Hawkins,
Georgia Southern University, Statesboro, GA.

Problem 5375* once again

Toshihiro Shimizu of Kawasaki, Japan has the solved 5375*. (We can now remove the
asterisk from its label.) Following is a restatement of Kenneth Korbin’s problem and
Toshihiro’s solution to it.

5375 (revised): Prove or disprove the following conjecture. Let k be the product of N
different prime numbers each congruent to 1(mod 4).

The total number of different rectangles and trapezoids with integer length sides and

diagonals that can be inscribed in a circle with diameter k is exactly
5N − 3N

2
.
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Solution

Let a, b be the length of longer and shorter sides of the trapezoid (or rectangle, in this case
let a = b), c be the length of other sides and d be the length of the diagonal. Let α, β, γ, δ
be the central angle with respect to the circumcircle of the segment (side or diagonal) with
length a, b, c, d, respectively. We can see that

sin
α

2
=
a

k

sin
β

2
=
b

k

sin
γ

2
=
c

k

sin
δ

2
=
d

k
.

Moreover, α = δ − γ, β = δ + γ. Thus, it follows that

a

k
= sin

α

2
= sin

(
δ

2
− γ

2

)
=
d
√
k2 − c2 − c

√
k2 − d2

k2

b

k
= sin

β

2
= sin

(
δ

2
+
γ

2

)
=
d
√
k2 − c2 + c

√
k2 − d2

k2
.

Thus, k2 − c2 and k2 − d2 must be perfect square. (♥)Let these perfect squares be c′2, d′2,
respectively. Then, ak = dc′ − cd′, bk = dc′ + cd′. Thus, both dc′, cd′ must be divisible by k.
Since dc′ − cd′ > 0, it must follow that d > c.

Conversely, if we are given (c, d) with these condition, we can get a, b and the trapezoid (or
rectangle) is determined. Thus, we calculate the number of (c, d).

It follows that

k2 = c2 + c′2

k2 = d2 + d′2

Let k1 = gcd(c, k) and k2 = k/k1. Then, gcd(c′, k) = k1 and d is divisible by k2.

Let k1 be the product of M prime numbers. We calculate the number of (c, d) with the
fixed k1. Since, the case that c = d is impossible we ignore the condition d > c and divide
the result by 2.

The number of c with simply k1 | c is 3N−M − 1(see Note 2), since the condition is
(k/k1)

2 = (c/k1)
2 + (c′/k1)

2. But this value over-counts the case that k1p | c, where p is a
prime divisor of k but not of k1. Thus, we need to subtract 3N−M−1 − 1. We also
undercounted the case that cpq, where p, q is a prime divisor of k but not k1, and so on.
Thus the number of c is calculated, by Inclusion-exclusion principle, that

N−M∑
t=0

(
N −M

t

)
· (−1)t

(
3N−M−t − 1

)
= (3− 1)N−M − (1− 1)N−M

= 2N−M

20



The number of d can be simply calculated as 3M − 1. Thus, summing up about M , the total
number of {c, d} is

N∑
M=0

(
N

M

)
2N−M · (3M − 1) = (2 + 3)N − (2 + 1)N

= 5N − 3N

Thus, the total number of (c, d) is
5N − 3N

2
.

Note 1: about (♥): precisely, I think we can show that if a
√
x+ b

√
y is rational, where

a, b ∈ Q+ and x, y are non-negative integer, then both x, y must be perfect square.

Note 2: From Jacobi’s two square theorem
(http://web.maths.unsw.edu.au/˜mikeh/webpapers/paper21.pdf), the number of integer
(x, y) with k2 = x2 + y2 is

4
∑
26|d|n

(−1)
d−1
2 = 4

∑
d|n

1 = 4 · 3N .

Among these integer roots, there are four with at least one of them is zero (±k, 0), (0,±k).
Other 4 · 3N − 4 of them are classified to (±x,±y) with x, y > 0. Thus, the number of
positive integer roots can be written as 3N − 1.

Mea− Culpa

Mistakes happen. Arkady Alt of San Jose, CA should have been credited with having
solved 5381, and G. C. Greubel of Newport News, VA should have been listed for
having solved, in two different ways, 5384. I am sorry for these mistakes.
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