Problems Ted Eisenberg, Section Editor
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This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@(013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

Solutions to the problems stated in this issue should be posted before
September 15, 2017

e 5451: Proposed by Kenneth Korbin, New York, NY

Given triangle ABC with sides a = 8,b = 19 and ¢ = 22. The triangle has an interior
point P where AP, BP, and C'P each have positive integer length. Find AP and BP, if
CP =4.

e 5452: Proposed by Roger Izard, Dallas, TX

Let point O be the orthocenter of a given triangle ABC. In triangle ABC' let the
altitude from B intersect line segment AC at F, and the altitude from C intersect line
segment AB at D. If AC and AB are unequal, derive a formula which gives the square
of BC' in terms of AC, AB, FO, and OD.

e 5453: Proposed by D.M. Batinetu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” School, Buziu,
Romania

If a,b,c € (0,1) or a,b,c € (1,00) and m,n are positive real numbers, then prove that

logab+logbc+logbc—|—logca logca+logab> 6
m + nlog, ¢ m + nlogy a m+mnlog.b — m+n

e 5454: Proposed by Arkady Alt, San Jose, CA
Prove that for integers k and [, and for any o, 8 € (0, g), the following inequality holds:

2kl
k?tan o + [ tan 5 > —

Sna 18 (k‘2 + 12) cot(a + ).

e 5455: Proposed by José Luis Diaz-Barrero, Barcelona Tech, Barcelona, Spain

Find all real solutions to the following system of equations:

111
a b ¢ abe

8
at+btc = abc+2—7(a+b+c)3



e 5456: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let k be a positive integer. Calculate

. —x - nf™ = 2 x"
s e > (3) (- 1mam - D).

n=~k

Solutions

e 5433: Proposed by Kenneth Korbin, New York, NY
Solve the equation: vx + 22 = ¥z + v/ — 22, with o > 0.

Solution 1 by Anthony J. Bevelacqua, University of North Dakota, Grand
Forks, ND

Let f(z) = ¢z + Vo — 22 — Vo + 22. Then f(x) is continuous on [0,1]. We have
f(1/2) > 0 and f(1) < 0. By the Intermediate Value Theorem our original equation has
at least one solution with x > 0.

Now consider

Via+a?=Yr+ Vo —a? Vitr=1+vV1l—-=x
Vitzr—vVi—-z=1
Vidtzr—2y1l-22+V1-z=1

Vitr+vVl—z=1+2v1— 22

l+z4+2V1—224+1—2=1+4v1— 22+ 41— 22
1-21—a22=4v1-22

1—4v1— 22441 — 2?) = 161/1 — 22

5 — 42 = 200/1 — 22

25 — 4022 + 1621 = 400(1 — 2?)

162 + 3602 — 375 = 0

el eil

As a quadratic in 22 the roots of this polynomial are

o —360+£160v6  —45+ 206
32 B 4

and so
—45 £ 20v/6
2
This is a positive real number only if we choose both signs positive. Thus our original
equation has at most one positive real solution.

r =4+

Our last two paragraphs show that



is the unique positive real solution to our original equation.

Solution 2 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX

Since x > 0, we lose no solutions if we divide by +/x to obtain

Vi+r=1+v1—z.

Ifwelet X = ¢1+zand Y = /1 —z, then X* + Y4 =2 and we can solve for XY in
the following steps:

X-Y =
(X -Y)!
X4 —4X3Y +6X%Y? —4XY3 + Y
X'+ vt -2XY (2X* - 3XY +2Y?) =
XY [2 (X -Y)2+ XY} = 1

2XY (XY +2) = 1

2X2Y2 +4XY -1 = 0

Il
e e e

—24
XYy = 7\/6
2
The condition XY = +v/1 — 22 > 0 implies that
V1—22 = V62
2
4
L V6—2Y) 49 -20V6
N 2 N 4
2 o 49-20v6 _ 20v6—45

N 4 N 4 ‘

Because x > 0, our solution is
20v/6 — 45
xr =

Solution 3 by Brian D. Beasley, Presbyterian College, Clinton, SC
Solution. Since x > 0, we may divide the given equation by /z to produce
Vitrz=1+ 1 —ux.

Squaring both sides then yields v/1+ 2 =1+2v1 -2+ 1 —x, or
V1+z—+1—2—1=2y1— 2. Squaring yet again produces

A+2)+(1—2)+1-2/1T+2+2V/1 -2 —2V1 — 22 =41 —x,

or 3 —2v1—22=2y1+x+2y1—xz. We square once more to obtain

9—12vV1—22+4(1 —2%) =4(1 + z) + 4(1 — x) + 81 — 22



and thus 5 — 422 = 20v/1 — 22. Squaring for the last time yields
25 — 4022 + 16x* = 400(1 — 22) and hence 16z* + 36022 — 375 = 0. Finally, the only real
positive solution of this equation is

45 —45 + 20v6

Addendum. It is interesting to note that this solution is approximately 0.99872354, very
close to 1. In particular, this implies that 49/4 is a good rational approximation of 5v/6,
which also means that 7/2 is a good rational approximation of v/150.

Also solved by Arkady Alt, San Jose, CA; Hatef I. Arshagi, Guilford
Technical Community College, Jamestown, NC; Jeremiah Bartz, University
of North Dakota, Grand Forks, ND; Bruno Salgueiro Fanego, Viveiro, Spain;
Ed Gray, Highland Beach, FL; Paul M. Harms, North Newton, KS; Aykut
Ismailov, Shumen, Bulgaria; Kee-Wai Lau, Hong Kong, China; David E.
Manes, SUNY at Oneonta, Oneonta, NY; Boris Rays, Brooklyn, NY;
Brandon Richardson (student), Auburn University at Montgomery, AL;
Toshihiro Shimizu, Kawasaki, Japan; Trey Smith, Angelo State University,
San Angelo, TX; Albert Stadler, Herrliberg, Switzerland; Anna V. Tomova
(three solutions), Varna, Bulgaria, and the proposer.

5434: Proposed by Titu Zvonaru, Comnesti, Romania and Neculai Stanciu, “George
Emil Palade” General School, Buzau, Romania

Calculate, without using a calculator or log tables, the number of digits in the base 10
expansion of 2.

Solution 1 by Ed Gray, Highland Beach, FL

(212)% = 2% > (4.10%)8 = 43102 > 6 10* - 1024 = 6 - 102,
Also
(25)"% = 2% < (3-10%)"% = 312102 < (6-10°) - 10%* = 6 - 10%.
Therefore, 6 - 10?8 < 2% < 6-10%?. So n = 29.

Solution 2 by Paul M. Harms, North Newton, KS

We see that
4(10%) < 2'2 = 4096 < 4.1(10%).

Then
16(10%) < 22 < 16.81(10°%) < 17(10°).

Taking the fourth power of the appropriate terms we obtain,
16%(10%1) = 65536(10%) = 0.65536(10%) < 2% < 17%(10*1) = 83521(10%) = 0.83521(10%).

Since 2% is bounded by integers who have 29 digits in the base 10 expansion, the integer
2% must also have 29 digits in its base 10 expansion.



Solution 3 by Bruno Salgueiro Fanego, Viveiro, Spain

The required number of digits is 29 because, as we shall show, 10%® < 296 < 10%. More
96

exactly, we shall prove that 1 < 1028 < 10. Since

4
99 s\t [(212)? 40962\*  (1,6777216-107\" s
0% \107) 107 )] 107 ) ~ 107 = (1,6777216)",
we obtain that

96 96 96

2 2 2
1t < 0% < 1,68)%, that is 1 < 0% < (2.8224)% and, hence, 1 < 0% < 3% < 10.

Note: another way to show that 10%® < 2% is, for example:

2 5 2 5
5<2} 5% <2 :>57<2555<217:>

55 < 212
5 5 &3 12

52 < 25
=27.5T <2 =
= (107" < 22! =

= 10%® < 2%,

Solution 4 by Toshihiro Shimizu, Kawasaki, Japan

Since 10% < 210 = 1024 < 1.03 x 10% and 2% = (210)° x 26 = (219)” x 10 x 6.4 we have

6.4 x 10 x 10%*° <2% < 6.4 x 10 x 10%*? x (1.03)".

We evaluate 1.03°. We have 1.03 x 1.03 x 1.03 = 1.0609 x 1.03 = 1.092727 < 1.1 and
1.1 x 1.1 x 1.1 = 1.331 < 1.4 (I never use calculator.) Therefore, we have

107 < 6.4 x 10?2 < 29 < 6.4 x 1.4 x 10%® = 8.96 x 10%® < 10%.

Therefore, the number of digits in 296 is 29.

Also solved by Brian D. Beasley, Presbyterian College, Clinton, SC; Hatef I.
Arshagi, Guilford Technical Community College, Jamestown, NC; Kee-Wai
Lau, Hong Kong, China; Albert Stadler, Herrliberg, Switzerland; David
Stone and John Hawkins, Georgia Southern University, Statesboro, GA, and
the proposers.

5435: Proposed by Valcho Milchev, Petko Rachov Slaveikov Seconday School, Bulgaria

a*+3a2 +1

Find all positive integers a and b for which b1
ab —

is a positive integer.

Solution 1 by Moti Levy, Rehovot, Israel

This solution is based on similar problem and solution which appeared in [1].



a*+3a2+1
ab—1
the numerator.

may be replaced by equivalent expression with symmetric polynomial in

Indeed,
at+3a®+1 a? (a* +b*+3) — (ab—1) (ab+1)
ab—1 N ab—1
Now, a and ab — 1 satisfy the equation b* a + (—1) % (ab — 1) = 1, which implies that a
and ab — 1 are relatively prime and clearly a? and ab — 1 are also relatively prime.
a*+3a® +1 a?+b%+3

Thus, is a positive integer if and only if is a positive integer.
ab—1 ab—1
We call the ordered pair (a,b) a solution if
2 32
a®+b"+3
- 1
1 m, (1)
where m is a positive integer. The set of solutions is not empty since (1,2) is a solution.
2a% + 3 5
We exclude (a, a) from the set of solutions since a2 +1 =2+ poa— ¢ N for all a > 0.
a? — a? —
Equation (1) is re-written as follows
a® —mab+b* = — (m +3). (2)

It is easily verified (see (3)) that if (a,b) is a solution then (ma — b, a) is a solution as
well.
(ma — b)> — m (ma — b) a + a® = a> — mab + b2, (3)

Let (ag,bp) be the “smallest” solution in the sense that ag + by < a + b, where (a, b) is
any solution.

ap + bo < (mag — bo) + ao,

or

2bo
= <. 4
o = (4)
200 _ af+b5+3
apg —  apbgp—1
0 < —2aobg + 20y + aj + 3ag (5)

Let (ap,ap + k) be a solution. Then substituting in (5) gives,

0 < —2ag (ag + k)* + 2 (ag + k) + aj + 3ag
= —2k%ap — 4ka(2) + 2k — a% + bag.

Solving —2k%ag — 4kag + 2k — a% + 5ag > 0, we get

1 1
—(1-2af —1/6a2 +2a3 +1) <k < — (1 —2a§ +1/6ad +2a3 + 1),
2aq 2ag

hence, k£ will have positive values only if

\/6a3 +2a8 + 1+ 1 > 243,

This inequality holds for ag = 1 and ag = 2. For ag = 1, possible values for k are 1 or 2;
for ag = 2, possible value for k is 1.



Thus we have to check the following set of potential solutions: {(1,2),(1,3),(2,1)}.
Clearly (1,2) and (2, 1) are solutions, but (1, 3) is not.

For (1,2) and (2,1) the value of m is 8. We conclude that the sole value of m is 8.
It follows from (3) that the pairs (ay,by,) (and by symmetry (by,, a,)), which satisfy
condition (1) are expressed by the recurrence formulas

ap41 = 8an — bn7

bn+1 = Qnp,

which are equivalent to the recurrence formulas

(n42 = 8an+l — Qn, (6)

bn—i—? = 8bn—&—l - bn

We have two sets of initial conditions:

1) ag =1, a3 = 6,byp = 2,b; = 1; the pairs resulting from these initial conditions are
(1,2), (6,1), (47,6), (370,47) ,....

a, — (;_\/11»5> (4—\/ﬁ)n+(;+\/11»5> <4+\/ﬁ)n,

by = <1+2\;ﬁ> (4—@)n+<1—2\;ﬁ> (4+x/ﬁ>n.

2) ap =2, ap = 15,bp = 1,b; = 2; the pairs resulting from these initial conditions are
(2,1), (15,2), (118,15), (929,118), ....

an = (1_2\;ﬁ) (4—\/ﬁ)n+<1+2\;B> (4+\/ﬁ)n,
by = (;+\/ﬁ> (4—\/ﬁ)n+(;—\/1175> (4+v15)".

Reference:

[1] La Gaceta de la RSME, Vol. 18 (2015), No. 1, “Solution to Problem 241, by Roberto
de la Cruz Moreno” .

Solution 2 by Anthony Bevelacqua, University of North Dakota, Grand
Forks, ND

1) There are no solutions to our problem with a =b. We have

a* +3a® + 1 =5mod (a? — 1). Assume there is a solution with @ = b. Then a? — 1
divides a* + 3a%2 + 1 so a* + 34> + 1 = 0 mod (a? — 1). Thus 5 = 0 mod (a? — 1) and so
a’® — 1 divides 5. But then a® = 2 or a® = 6, a contradiction in either case.

2) The only solutions with a < 4 are (a,b) = (1,2), (2,1), (1,6) and (2, 15).

Suppose (a,b) is a solution to our problem. If @ =1 then b — 1 divides 5sob—1=1 or
b—1=2>5. Both (1,2) and (1,6) are solutions. If a = 2 then 2b — 1 divides 29 so
2b—1=1or2b—1=29. Both (2,1) and (2, 15) are solutions. If a = 3 then 3b — 1
divides 109 so 3b — 1 =1 or 3b — 1 = 109, a contradiction. If a = 4 then 4b — 1 divides
305 =5-61s04b—1¢€{1,5,61,305}, a contradiction.



3) ab — 1 divides a* + 3a® + 1 if and only if ab — 1 divides a® + b* + 3.
‘We have

a*b?® + 3a%b% + a®b + 3ab — a®b — 3ab — a®> — 3
= a*? +3d%? —a® -3

(ab — 1)(a’b + 3ab + a* + 3)

and so
b?(a* + 3a* + 1) — (ab — 1)(a®b + 3ab + a® + 3) = a* + b* + 3.

Thus if ab — 1 divides a* + 3a® 4+ 1 then ab — 1 divides a? + b* 4+ 3. Conversely suppose
ab — 1 divides a® + b* + 3. Then ab — 1 divides b*(a* + 3a® + 1). Since ab — 1 and b? are
relatively prime we have that ab — 1 divides a* + 3a® + 1.

Now if k£ > 0 and (a,b) is a solution to a® + b> + 3 = k(ab — 1) then b is a root of the

polynomial a? + 22 + 3 = k(ax — 1) which can be rewritten as

22 — kaz + (a®> + 3+ k) = 0. Thus if ¥’ is the other root we have, by Vieta’s formulas,
b+ = ka and bb' = a® + 3 + k. The first shows that ¢’ is an integer and the second

shows that & > 0. Thus (a, ) is another solution to a? + b + 3 = k(ab — 1).

4) If ab — 1 divides a® + b* + 3 then a® + b* + 3 = 8(ab — 1). Suppose there are positive
integers a, b, k such that a® + b?> + 3 = k(ab — 1). For this fixed k let S be the set of all
positive integer pairs (a,b) such that a? + b* + 3 = k(ab — 1). Choose an (a,b) € S such
that a 4+ b is minimal. Without loss of generality we have a < b. Since a # b by 1) we
have a < b. Now (a,b) is another solution. Since a + b is minimal we have a +b < a + b’
and hence b < ¥'. Thus

V<l =a’>+3+k = k>0 —a>—3

and so
>+ +3 = k(ab—1)
> (¥ —a®—-3)(ab—1)
= ab® = > —a?b+a® — 3ab+ 3.
Hence

3ab + 2% > ab® — b = 3a+ 20> ab® — a’.

Since a < b we have 3a + 2b < 5b and ab® — a® = a(b + a)(b — a) > ab. Thus 5b > ab and
so a < 5. By 2) the only possible (a,b) are then (1,2), (1,6), and (2,15). Each of these
gives k = 8.

Thus 3) and 4) show that our original problem is equivalent to finding all positive
integers a and b such that a® + b? + 3 = 8(ab — 1). We could rewrite this as

(a — 4b)%? — 156> = —11 and apply the theory of equations of the form 22 — Dy? = N as
found in, say, section 58 of Nagell’s Number Theory. Instead we will determine the
solutions by “Vieta jumping” as in the proof of (4).

Let S be the set of all positive integers pairs (a,b) such that a? + b> + 3 = 8(ab — 1).
Clearly if (a,b) € S then (b,a) € S, and, by 1) there are no (a,b) € S with a = b. Recall
that if (a,b) € S then (a,b’) € S where b+ = 8a and bV’ = a® + 11.

5) For any (a,b) € S define p(a,b) = (V/,a) and A(a,b) = (b,80 — a). Then p(a,b) € S,
Aa,b) € S, and A(p(a,b)) = (a,b).



Let (a,b) € S. We have (a,b’) € S and hence p(a,b) = (V/,a) € S. Now

b+ (8b—a)® +3 = 64b% —16ab+ (a* + b* + 3)
64b* — 16ab + 8(ab — 1)
64b* — 8ab — 8

= 8(b(8b—a)—1)

so A(a,b) = (b,8b —a) € S. Finally,
Mp(a, b)) = A, a) = (a,8a — V')

where

2 2 2

. @ +11  8ab—a”—11 b7
8a —b = 8a 2 = 5 =3 =b.

6) The only (a,b) € S such that a < b < 10 are (a,b) = (1,2) and (1,6).

Since a? + b? + 3 = 0 mod 8 we see that a and b must have opposite parity and neither
can be divisible by 4. Moreover the only such solutions with a or b less than 4 are (1, 2)
and (1,6) by 2). This leaves only

(a,b) = (5,6),(6,7),(6,9), (5,10),(7,10), (9, 10)
and none of these satisfy a? + b + 3 = 8(ab — 1).
7) Let (a,b) € S such that b > 11. If a < b then b’ < a

Suppose first that o' < 10. Assume a < ¥'. Since (a,d’) € S we have a # b'. Thus
a < b <10. So, by 6), we must have a = 1. But if a =1 we have b=1 or b =6, a
contradiction with b > 11. Hence V' < a.

Suppose now that b > 11. Again assume a < ’. Then, as in the last paragraph, a < V'.
We have

11
Ww=a>+11<¥)?+11 = b<b’+F§b’+1

and so b < V. Now swapping b and b’ we have

11
b =a?+11 <> +11 = b’<b+?§b+1

and so b’ < b. Thus b =1b". Since 8a = b+ b’ = 2b we have b = 4a. But then
a? +16a* + 3 = 8(4a* — 1) = 11 = 15d%,
a contradiction. Hence V' < a.

Finally,

8) (a,b) € S if and only if {a,b} = {spn, Sp+1} or {a,b} = {t,,tn+1} for n > 0 where
sop=1, s1 =2, and s, = 85,1 — Sp,_o for n > 2

and
t(] = 1, tl = 6, and tn = 8tn_1 — tn_Q for n Z 2.



Note that A\"*(1,2) = (sp, sp+1) and A*(1,6) = (tn, tn+1) for all n > 0.

Since (1,2) and (1,6) € S we see that (a,b) € S for any {a,b} = {sy, Sp+1} or
{a,b} = {tn,tp+1} and n > 0 by (5).

Now suppose (a,b) € S. Since (b,a) € S as well, we can suppose without loss of
generality that a < b. By 5) and 7) there exists an integer d > 0 such that

p?(a,b) = (a*,b*) with a* < b* < 10. By (6) we must have p%(a,b) = (1,2) or

p%(a,b) = (1,6). Since (a,b) = A%(p%(a, b)) we have (a,b) = A4(1,2) or (a,b) = X\4(1,6).

Thus ab — 1 divides a* 4+ 3a® + 1 if and only if a and b are consecutive elements of either
of the sequences s, or t,, given above. Since the first few terms of s,, are
1,2,15,118,929,7314,57583, ... and the first few terms of ¢, are
1,6,47,370,2913, 22934, 180559, . . . the first few solutions to our problem (with a < b)
are

(a,b) = (1,2),(2,15), (15,118), (118,929), (929, 7314), (7314, 57583), . ...

and

(a,b) = (1,6), (6,47), (47, 370), (370, 2913), (2913, 22934), (22934, 180559), . ..

Also solved by Ed Gray, Highland Beach, FL; Kenneth Korbin, NewYork,
NY; Toshihiro Shimizu, Kawasaki, Japan; Anna V. Tomova (three solutions),
Varna, Bulgaria, and the proposer.

5436: Proposed by Arkady Alt, San Jose, CA

Find all values of the parameter ¢ for which the system of inequalities

Vr+t>2y
A= Vy+t>2z
Vz+t> 2
a) has solutions;
b) has a unique solution.
Solution by the Proposer
t>16y* —x
a) Note that (A) <~ t>162* —y = 3t>16y* — 2+ 162* —y + 162" — 2z =
t>16z* — 2

(16:U4 — :E) + (16y4 — y) + (1624 — z) > 3min (16:1:4 — ZL') — ¢t > min (16:174 — 1,‘) .
X T

1
For x € (0,

1 6> , using the AM-GM Inequality, we obtain

1 - 162%)°
<
48 =

1 /4823 +3-3-1623\" /1 /3\* 3 , A
. — — . — = —. — <
\/ 18 ( 1 18 1 16 And since x — 16x* < 0 for

10

3
x — 162* :m(1—16x3) — 3 x3(1—16m3)3 _ §/(48I )(




1 3
x ¢ (O, 16> , then for all  the inequality z — 16x* < 16 holds. Since the upper bound

is 6 for values

1 3
x — 162* is attainable when z = 1 then max (m - 16904) =16 =
3

in (162* — ) = ——.

min (162* — ) 16
3

Thus t > T is a necessary condition for the solvability of system (A).

Let’s prove sufficiency.

3 3
Let t > BT Since function h () is continuous in R and min (16z* — z) = 16 then
x

[_136’ oo> is the range of h (z) . This means that for any t > —13—6 the equation

162* —z =t

has solution in R and since for any u which is a solution of the equation 16z* —x =1t
the triple (x,y, z) = (u,u,u,) is a solution of the system (A) then for such ¢ system (A)
solvable as well.

Remark.

3
Actually the latest reasoning about the solvability of system (A) if ¢ > T is redundant

111
for (a) because suffices to note that for such ¢ the triple (z,y, z) = ( ) satisfies to

47474

(A).
But for (b) criteria of solvability of equation 16x* — z =t in form of inequality

3
t>——1is

16
important.

3

b) Note that system (A) always have more the one solution if t > 16

3
Indeed, let for any tq1,to € <—16,t> such that t; # to equation 16u* — u = t; has
solution u;,7 =1, 2.

Then u; # ug and two distinct triples (up,uy,uy), (ug, ug, uz) satisfy to the system (A).

3 3 3 3
Let t = —— Then —— > 16y* — D iy 16yt —y > -
et t 16 en 16 2 6y* —x — 16+x y > 16y* —y > 16

3 3
Hereof x —y > 0 <= x > y. Similarly 16 > 162* — y and 16 > 162* — 2 implies
y > z and z > z, respectively. Thus in that case x = y = z and all solutions of the

system (A) are represented by solutions of one equation 16z* — 2 = ~16 S

1
162* — 2 + % =0 <= 256x* — 162 + 3 =0 which has only root 1 because
25621 — 162 + 3 = (4o — 1)* (162% + 8z + 3) .

1
Thus, system (A) has unique solution iff t = T

Also solved by Ed Gray, Highland Beach,FL; Kee-Wai Lau, Hong Kong,
China; Moti Levy, Rehovot, Israel; David Stone and John Hawkins, Georgia

11



Southern University, Statesboro, GA, and Toshihiro Shimizu, Kawasaki,
Japan.

5437: Proposed by José Luis Diaz-Barrero, Barcelona Tech, Barcelona, Spain

Let f: C — {2} — C be the function defined by f(z) = 2 322. If
Z—
f"(z)=(fofo...of)(2), then compute f"(z) and ngrilwf (2).

n

Solution 1 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX

Assume first that z # 2 and f" (2) exists for all n > 1. Then, direct computation yields

10112

42 — 43z
2 _
f (Z) - 52_6

and f3(z) = 51, 99"

(1)
When these are combined with the formula for f (z), it appears that there is a sequence

{zn} of positive integers such that

2z, — 2z, + 1) 2
Tnz — (xn + 1)

" (z) = (2)

9 _
for all n > 1. Since f (z) = . _322

then

, we have x; = 1. Further, if (2) holds for some n > 1,

@) =" ()

_2-3f"(2)

fr(z) =2

Sl
B B

~ 2[znz — (vn + 1)) = 322, — (22, + 1) 2]
220 — (22n + 1) 2] = 2[znz — (7, + 1)]

(8xp +2) — (8z,+3) 2
(4 + 1)z — (4dzp + 2)°

This suggests that x,,11 = 4z, + 1 for n > 1. These conditions on {z,} are consistent
with the formula for f (z) and property (2). Note finally that

3 4-1 15 42-1 63 43 —1
r1=1=-=——, a29=5=—= , and x3=21=— = .
3 3 3 3 3 3

12



n_

This leads us to conjecture that x, = and hence,

3
e B by
SO [( ) ERERC

If 7 (z) exists for all n > 1, let P (n) be the statement

W 24" 1) —(2-47+ 1)z
e s} Py PTG

f"(2) =

for all n > 1.

Ifn=1,

2(4-1)—(2-4+1)z 6-9z
(4-1)z—(4+2)  32-6

_2—3z
22

and thus, P (1) is true. Assume that P (n) is true, i.e.,

W 2(A"—1)— (247 + 1)z
L T § Sy ¥ T

for some n > 1. Then,

=) = £ ()

2(4" — 1) — (24" +1) 2
2_3[ (4" — 1)z — (4" +2) ]
[2(4”—1)—(2-4”+1)z] ,

(4" — 1)z — (4" 1 2)

24" — 1)z — (4" +2)] — 3[2(4" — 1) — (2-4" + 1) 2]
2" —1)— (2- 4"+ 1)z —2[(A" — 1)z — (4" + 2)]

[2(4" —1)+3(2-4" +1)] 2 — [2(4" + 2) + 6 (4" — 1)]
QA" —1)+2@ +2)]—2-4"+1+2(4" — 1)z

(2-4"t141) z — 2 (4nt1 — 1)
(4n+1 + 2) _ (4n+1 _ 1) z

24t 1) — (2.4 1) 2
4+l — 1)z — (471 4 2)

and therefore, P (n + 1) is also true. By Mathematical Induction, P (n) is true for all
n > 1.

Because formula (3) required the assumption that f™ (z) exists for all n > 1, we need to
determine if there are points z € C'\ {2} for which there is a positive integer m such that

13



f" (#) does not exist for n > m. The existence of f™ (z) requires that z, f (z), ...,
71 (2) # 2. Therefore, we have to find all points z for which f™ (z) = 2 for some
m > 1. One way to do this is to consider the inverse function

72z+2
243

()

and describe

Fm () = <f1 of o o fl> (=)

m

in a manner similar to that used to find formula (3). If we do so, we see that for z # —3,

(4™ 4 2) 2 +2 (4™ — 1)

e = e

In particular,
(4™ +2)-2+42(4m—1) 4™+l 42
(4m —1)-2+4+2-4m+1  4mtl 1"

Fm e =

gm+1 +9
If z,, = yrEsE for some m > 1, then it follows that f (z,,) = 2 and hence, f" (z,,) is

undefined for n > m. Therefore, lirf f™ (2m) does not exist for these points.
n—-+0o0

Let
4m+1 + 2

For z ¢ S, f™ (z) exists for all n > 1. If z =1, then z ¢ S and (3) implies that

noy 204" —1)—(2-4" + 1)
/)= (4n — 1) — (47 + 2)

_ 3
=3
=1
for all n > 1. Hence, ll)I_’I_l f" (1) = 1. For all other values of z ¢ 5,
. 24" —-1)—(2-4"+ 1)z
1 "(z)= 1
n—lﬂ-loo ") n—l>r-ir-100 (4r—1)z— (4" + 2)
g 204 (2447
T notoo (1—47) 2 — (1 +2-477)
2—2
- c_ 9
z—1
Therefore, for z ¢ S,
. n _J 1 ifz=1
ngr-lr-loof (2) = { —2  otherwise

Solution 2 by Henry Ricardo, Westchester Math Circle, NY

14



We take advantage of the well-known homomorphism between 2 x 2 matrices and

b
Moébius transformations: A = ( CCL b > < f(z) = 4z +d' In this relation, the n-fold

d
composition f"(z) corresponds to the nth power of A. Here we are dealing with powers

. -3 2
Ofthematrle—< 1 _2>.

Now we invoke a known result that is a consequence of the Cayley-Hamilton theorem: If
A € My(C) and the eigenvalues A1, Ay of A are not equal, then for all n > 1 we have

1 1
A— oI dC=
)\1 — )\2 ( >\2 2) and ¢ )\2 - )\1

A" = N'B + \yC, where B = (A= M12). (%)

(See, for example, Theorem 2.25(a) in Essential Linear Algebra with Applications by T.
Andreescu, Birkhauser, 2014.)

The eigenvalues of the given matrix A are —1 and —4, so we apply () to get

—

An__'gw(A+4b)—V§W(A+b)

_ ((—1)“;(—4)”) i (4-(—1)“—(—4)”)12

3
_(Gare e s e
S by e )

After some simplification, we see that

(2-4"+1)z — 24" —1)
(1—47)z + (4" +2)

f"z) =

Finally, we note that f™(1) = 3/3 = 1; and, for z # 1, we have

, . (24" 4+ 1)z — 24" —1) 2(z — 1)
1 " = 1 = = 2.
Jm ) = i e T a1 9) =2

Therefore,

[ 1 ifz=1,
Jﬁ&f(@"{-a ifz#1

Solution 3 by David E. Manes, Oneonta, NY
We will show by induction that
9 _ 2ap, + 1 ;

16 = —a T
.

Qn

A7 1. If n =1, then a; = 1 and f(V(2) = ((2_32? = f(z). Therefore, the
S

result is true for n = 1. Assume the positive integer n > 1 and the given formula is valid

where a,, =

15



for f(")(z). Then

272an+1z
23| —— 1 2y + 1
y_tntl 22—2<“"+ )—6+3< n + >z
f"E) = fE) = = - -
2 1
o 20+ 1 2_2an+12_2z+2<an+1)
an 92 an anp,
anp +1
Z_
Qap
_ 2anz —2a, — 2 — 6a, +6a,z+ 32 —2—8a, + (8a, + 3)z
20y, — 2ap2 — 2 — 202 +2an, +2  —(4a, + 1)z + (4n + 2)

4" —1 4" 1
2 —
 2+8an— (8an+3)z +8< 3 ) <8< 3 >+3>Z

(dan + 1)z — (4n +2) (4 <4n3_1>+1>2_(4 <4”3—1>+2>

(=2 424" — (1 + 247+
(4l — 1)z — (471 4 2)

247t 4]
3
5 (2.4n+1+1> 2 - o z
- — ]z - -
B gn+l _ 1 B 3

4gn+1 ) - gn+1 +2
Z = 4n+1 -1 3

<= 4n+1_1

3

9 _ <2an+1 + 1) 5
Gn41

o <an+1 + 1>
an+1

4n+1 -1 471-0-1 2 4n+1 -1
where ap11 = 7) Note that + = 3 +1=ap41 +1 and
2.4t 41 2.4ntl 9 g+l 1

Hence, the result is true for the integer n + 1 so that by the principle of mathematical
induction the result is valid for all positive integers n.

For the limit question, note that if f(z) = z, then z = 1 or z = —2. Therefore, one of the
fixed points of f is z = 1 so that (") (1) = 1 for each positive integer n and
lim f((1) = 1. Moreover, observe that

n—-+o0o

. . 3
lim —= lim —— =
n—-+oo ay, n——+oo 4™ — 1

0.

Therefore, if z # 1, then

16



n—+oo n——+o0o an + 1 o . 1 z—1
z— z— lim (14 —

(07 n——+0o00 Qnp,

1
o 20n+1 <2_ tim <2+>Z) -
lim f™(z) = lim an e an = - 9

Hence,

. n 1, ifz=1,
lim 7 )(z):{—z if 241

Solution 4 by Jeremiah Bartz, University of North Dakota, Grand Forks, ND

b
Recall the map f(z) = @zt ¢ gives a group isomorphism between group of
cz+d c d
fractional linear transformations
b
{f cf(z) = az+ where a,b,c,d € C and ad — bc # 0}
cz+d

under function composition and the group

GL(Q,C):{[‘CL Z] ca,b,c,d € C and ad—bc;éO}

under matrix multiplication.
-3
To compute f"(z), let M = [

1 _; ] Using induction, we show

M" =

3 4" +1 4" 42 |

ObserveM1:_1{23+1 _23+2]:_1[ 9 _6]:[_3 2]
3 B .

-3 6 3 3 6 1 -2
Assume
A (_1)n |: 22n+1 +1 _22n+1 4+ 2 :|
3 —4" 4+ 1 4" 42
and observe
MM = M"M
B (_1)71 22n+1 +1 _22n+1 +92 -3 2
B 3 —4" 4+ 1 4n 42 1 -2
B (_1)71 _3(22n+1 + 1) + (_22n+1 + 2) 2(22n+1 + 1) _ 2(_22n+1 + 2)
-3 —3(—4"+1) + (4" + 2) 2(—4" 4+ 1) — 2(4" + 2)
(_1)71-1—1 22(n+1)+1 +1 _22(n+l)+1 +2
B 3[ —4mtl 4 4"+1+2]'

Using the aforementioned group isomorphism and simplifying, we conclude

(2t 4 1)z 22t 42 (24" 4+ 1)z 4 (2—2-4")
(—4n 4+ 1Dz +47+2 (1 —4")z+ (2+4")

f'(z) =

17



k

4% +2
Notice that the map f™(z) is undefined for z = 1 where 1 < k < n. Consequently

lim f(z) does not exist for these values of z. Furthermore,
n—+00

. . (2 4n+1)2+(2—2~4n)
| " = 1
1 2
T ) Kl C i)
n—-+0oo i ~1) - i 3 i 1
4n 4qn

Note f(1) =1so f*(1) =1 for all n > 1. It follows that

n

4n 42
DNE if z =+
. 1
lim f(z)= 1 ifz=1

—2 otherwise.

where n € Z<g

(DNE = does not exist)

Comment by Editor : David Stone and John Hawkins of Georgia Southern
University stated the following in their solution: “The appearance of so many sums of
powers of 4 prompts us to offer a candidate for the cutest representation of f (")(z) :

(2-111... .14+ 1)z —2-111.. .14
—111... gz + (111, 14+ 1)

RO
where each of the base 4 repunits has n — 1 digits.”

Solution 5 by Toshihiro Shimizu, Kawasaki, Japan

b
Let f™(2) = %. Then, we have
n n
An412 + bpg

Cpt+12 + d'n,—|—1

= " ()

nf2—3z
()

(b, — 3ap) z + 2 (ay, — by)

(dn, — 3cn) z+2(cp — dy)

Therefore, we have a,11 = by, — 3ay, bpr1 = 2a, — 2b, and cp41 = dy, — 3cn,
dpi1 = 2¢, — 2d,. Since f(2) =2z, a9 =1,bg = co = 0 and dy = 1. Since
by, = an41 + 3ay, we have

An+2 + 3an+1 = 2an -2 (an+1 + 3CLn)
Gn42 + dap41 +4a, =0

18



and a1 = by — 3ag = —3. Thus, we have

1 2
bn:an+1+3an

— 1 (_1)n+1

Similarly, we have ¢, 42 + 5¢cpt1 + 4cp, = 0 and ¢; = dy — 3¢cop = 1. Thus, we have
1
— (="
S (-9
dp = cpy1 + 3¢,
2 1
S ()" + 5 (-4)
Therefore,

f"(2) =

(D" +2(=4)") 2+ 2(=1)" —2(=4)")
(=1D)" = (=" 2+ 2 (=D)" + (-4)")

If z # 1, we have

\/
v
—~
[\V]
—
ENEENE
S—
3
—_
SN—

—z+1
=-2 (n— +00).

If z =1, the value of f" (2) is always 1 and its limit is also 1.
Solution 6 by Kee-Wai Lau, Hong Kong, China

It can easily be proved by induction that
() = 2(22" — 1) — (22" 1 1)z
(22 — 1)z — 2(22n—1 + 1)’

2221 +1
whenever z ¢ S,,, where S, = {2} U {(2%_—;) k=1,2,3,--- ,n}.

; n . 2(22k_1 +1

Clearly, lim f"(1) =1 and if z ¢ T, where T = {1,2} U{ ———— k=1,2,3--- 3,
n—00 22k _ 1

then lim f"(z) = —2.

n—oo
Also solved by Arkady Alt, San Jose, CA; Hatef I. Arshagi, Guilford
Technical Community College, Jamestown, NC; Brian D. Beasley,
Presbyterian College, Clinton, SC; Brian Bradie, Christopher Newport
University, Newport News,VA; Bruno Salgueiro Fanego Viveiro, Spain; Ed
Gray, Highland Beach, FL; Moti Levy (two solutions), Rehovot, Israel;
Francisco Perdomo and Angel Plaza, Universidad de Las Palmas de Gran
Canaria, Spain; Trey Smith, Angelo State University, San Angelo, TX;
Albert Stadler, Herrliberg, Switzerland; David Stone and John Hawkins,
Georgia Southern University, Statesboro, GA, and the proposer.
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5438: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let k > 0 be an integer and let a > 0 be a real number. Prove that

2172k y2k Z2k xkyk ykzk xkzk

>
) T ) i ) Ty s Ty s Ty g
for z,y,z € (—1,1).

Solution 1 by Albert Stadler, Herrliberg, Switzerland

We note that by the Binomial theorem,

2 12k — [—a 2k+2;
e Z( > :' (j)t i1 <t<1,

7=0
—a) ala+1)-(a+j-1)

where (—1)j( ) = S > 0 for all indices j > 0.
J J:

Therefore, by the AM—GM inequality,

22k y2k 52k < y2k >
+ + = =
(1—a2)  (1—y?)>  (1-2%)° zy:l =2 (-2
_ 1 Z Z ( ) (x2k+2j T y2k+2j>
cycl 7=0

v

S

cycl j=0

WV,
]
M
/\
= 4
\_/
R‘
ci

Solution 2 by Hatef I. Arshagi, Guilford Technical Community College,
Jamestown, NC

It is well known that for any real numbers a, b, ¢
a? +b* + % > ab + be + ca. (1)

We show that a,b € (—1,1)

V(1 —a2)(1—b2) <1—ab. (2)

Suppose that to the contrary /(1 — a2)(1 — b2) > 1 — ab, by squaring both sides of the
inequality, we get 1 — a? — b + a?b? > 1 — 2ab + a?b?, which implies that
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—a? — b +2ab = —(a — b)? > 0, which is impossible, that is, (2) is proved. From (2), we
can conclude that

1 1
Vi) 1-ab )
Now, using (1) and (3), we write
$2k y2k ZZk

R E O (RS
. l’kyk ] ykzk: . Zkl'k ]

(1—a?)(1-32)3 " (-1 —22))  ((1-22)(1—22)3

JJkyk ykzk zkxk

= + 7+

(V= a-)"  (VO-0-22) (V-2 -22)
. :Ckyk ykzk kak

(I—zy)*  (Q-yz)*  (1—zz)

Solution 3 by Moti Levy, Rehovot, Israel

Si off € (~1,1) th
mce a — en
1 —la))* = Q1 =a)™ ’
k k k k k k
2" Jy| lyl" || i yk 2" hh

2 + .
(L= lzllyD™ @ =lyllzD)™ @ =2z~ QA ==2y)®  (1-y2)*  (1-z0)"
Therefore, we can assume that z,y,z € (0,1). Using the generalized binomial theorem,
1 (nta—-1\ , <=T(n+a) ,
- = — 1.
(1—w)” Z( n )u Z n!T («) wt o ful <
n=0 n=0

ka

(-2

_ f: L(n+a) smen
= nll'(a)

xkyk _ = I'(n+a) ) HE
(1—zy)® _T;) n!T () (zy)

By the inequality a® + b% + ¢ > ab+bc + ca, a,b,c >0,

(xn+k)2 4 <yn+k>2 . (zn+k>2 > xn+kyn+k n yn+kzn+k 4 pntkgntk
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22k y2k 52k
na T+ na T 2\
(1—22)"  (1-y?) (1—2)

o
. F TL+G 2(n+k:) n—i—a 2(n+k) n—i—a 2(n+k)
I R R =~

_Z nl?; +a) < 2(n+k) _|_y2(n+k) + Z2(n+k))
n=0

I'n+a) (
> n+k, n+k n+k _n+k n+k knJrk)
- z_;) n!l («) YAy

(n + a) 2y () (1) (n + a) k) () (n + a) L (n+h) 1 (k)
= E E E k
n=0 n'F + n'T '+ n'F

xkyk yk 2k zkxk

T U—ay) Q- -z

Solution 4 by Kee-Wai Lau, Hong Kong, China

We first note that

0<(1—a2)(1—9%) = (1—ay)* — (& —)* < (1 —2)"
Hence by the AM-GM inequality, we have

$2k N ka 2‘.’Ekyk‘
(L—a2)>  (1-y2)> ~ /A —a2)2(1 —y2)> ~ (1—ay)™

V

Similarly,

2k 2k k k
U S U B
(I—g?)  ([1—2%)e (1—yz)*
52k . 22k . 9|2 ak|
(1—22)>  (1—a2)> = (1—zz)>

Adding these inequalities, we easily deduce the inequality of the problem.

Also solved by Ed Gray, Highland Beach, FL; Nicusor Zlota, “Traian Vuia”
Technical College, Focsani, Romania; Toshihiro Shimizu, Kawasaki, Japan,
and the proposer.

Mea Culpa

For a variety of reasons, mostly caused by sloppy bookkeeping, those listed below were
not credited for having solved the following problems, but should have been.
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5427: Paul M. Harms, North Newton, KS.

5428: Ed Gray, Highland Beach, FL;
David Stone and John Hawkins, Georgia Southern University, Statesboro,
GA.

5429: Brian D. Beasley, Presbyterian College, Clinton, SC.

5431: Albert Stadler, Herrliberg, Switzerland.
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