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This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
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————————————————————–

Solutions to the problems stated in this issue should be posted before
September 15, 2017

• 5451: Proposed by Kenneth Korbin, New York, NY

Given triangle ABC with sides a = 8, b = 19 and c = 22. The triangle has an interior
point P where AP, BP , and CP each have positive integer length. Find AP and BP , if
CP = 4.

• 5452: Proposed by Roger Izard, Dallas, TX

Let point O be the orthocenter of a given triangle ABC. In triangle ABC let the
altitude from B intersect line segment AC at E, and the altitude from C intersect line
segment AB at D. If AC and AB are unequal, derive a formula which gives the square
of BC in terms of AC,AB,EO, and OD.

• 5453: Proposed by D.M. Bătinetu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu,“George Emil Palade” School, Buzău,
Romania

If a, b, c ∈ (0, 1) or a, b, c ∈ (1,∞) and m,n are positive real numbers, then prove that

loga b+ logb c

m+ n loga c
+

logb c+ logc a

m+ n logb a
+

logc a+ loga b

m+ n logc b
≥ 6

m+ n

• 5454: Proposed by Arkady Alt, San Jose, CA

Prove that for integers k and l, and for any α, β ∈
(
0, π2

)
, the following inequality holds:

k2 tanα+ l2 tanβ ≥ 2kl

sin(α+ β)
−
(
k2 + l2

)
cot(α+ β).

• 5455: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Find all real solutions to the following system of equations:

1

a
+

1

b
+

1

c
=

1

abc

a+ b+ c = abc+
8

27

(
a+ b+ c)3

1



• 5456: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let k be a positive integer. Calculate

lim
x→∞

e−x
∞∑
n=k

(−1)n
(
n

k

)(
ex − 1− x− x2

2!
− · · · − xn

n!

)
.

Solutions

• 5433: Proposed by Kenneth Korbin, New York, NY

Solve the equation: 4
√
x+ x2 = 4

√
x+ 4
√
x− x2, with x > 0.

Solution 1 by Anthony J. Bevelacqua, University of North Dakota, Grand
Forks, ND

Let f(x) = 4
√
x+ 4
√
x− x2 − 4

√
x+ x2. Then f(x) is continuous on [0, 1]. We have

f(1/2) > 0 and f(1) < 0. By the Intermediate Value Theorem our original equation has
at least one solution with x > 0.

Now consider

4
√
x+ x2 = 4

√
x+

4
√
x− x2 =⇒ 4

√
1 + x = 1 + 4

√
1− x

=⇒ 4
√

1 + x− 4
√

1− x = 1

=⇒
√

1 + x− 2
4
√

1− x2 +
√

1− x = 1

=⇒
√

1 + x+
√

1− x = 1 + 2
4
√

1− x2

=⇒ 1 + x+ 2
√

1− x2 + 1− x = 1 + 4
4
√

1− x2 + 4
√

1− x2

=⇒ 1− 2
√

1− x2 = 4
4
√

1− x2

=⇒ 1− 4
√

1− x2 + 4(1− x2) = 16
√

1− x2

=⇒ 5− 4x2 = 20
√

1− x2

=⇒ 25− 40x2 + 16x4 = 400(1− x2)
=⇒ 16x4 + 360x2 − 375 = 0

As a quadratic in x2 the roots of this polynomial are

x2 =
−360± 160

√
6

32
=
−45± 20

√
6

4

and so

x = ±
√
−45± 20

√
6

2

This is a positive real number only if we choose both signs positive. Thus our original
equation has at most one positive real solution.

Our last two paragraphs show that

x =

√
20
√

6− 45

2
.
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is the unique positive real solution to our original equation.

Solution 2 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX

Since x > 0, we lose no solutions if we divide by 4
√
x to obtain

4
√

1 + x = 1 + 4
√

1− x.

If we let X = 4
√

1 + x and Y = 4
√

1− x, then X4 + Y 4 = 2 and we can solve for XY in
the following steps:

X − Y = 1

(X − Y )4 = 1

X4 − 4X3Y + 6X2Y 2 − 4XY 3 + Y 4 = 1

X4 + Y 4 − 2XY
(
2X2 − 3XY + 2Y 2

)
= 1

−2XY
[
2 (X − Y )2 +XY

]
= −1

2XY (XY + 2) = 1

2X2Y 2 + 4XY − 1 = 0

XY =
−2±

√
6

2
.

The condition XY = 4
√

1− x2 ≥ 0 implies that

4
√

1− x2 =

√
6− 2

2

1− x2 =

(√
6− 2

2

)4

=
49− 20

√
6

4

x2 = 1− 49− 20
√

6

4
=

20
√

6− 45

4
.

Because x > 0, our solution is

x =

√
20
√

6− 45

2
.

Solution 3 by Brian D. Beasley, Presbyterian College, Clinton, SC

Solution. Since x > 0, we may divide the given equation by 4
√
x to produce

4
√

1 + x = 1 + 4
√

1− x.

Squaring both sides then yields
√

1 + x = 1 + 2 4
√

1− x+
√

1− x, or√
1 + x−

√
1− x− 1 = 2 4

√
1− x. Squaring yet again produces

(1 + x) + (1− x) + 1− 2
√

1 + x+ 2
√

1− x− 2
√

1− x2 = 4
√

1− x,

or 3− 2
√

1− x2 = 2
√

1 + x+ 2
√

1− x. We square once more to obtain

9− 12
√

1− x2 + 4(1− x2) = 4(1 + x) + 4(1− x) + 8
√

1− x2
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and thus 5− 4x2 = 20
√

1− x2. Squaring for the last time yields
25− 40x2 + 16x4 = 400(1− x2) and hence 16x4 + 360x2 − 375 = 0. Finally, the only real
positive solution of this equation is

x =

√
−45

4
+ 5
√

6 =

√
−45 + 20

√
6

2
.

Addendum. It is interesting to note that this solution is approximately 0.99872354, very
close to 1. In particular, this implies that 49/4 is a good rational approximation of 5

√
6,

which also means that 7/2 is a good rational approximation of 4
√

150.

Also solved by Arkady Alt, San Jose, CA; Hatef I. Arshagi, Guilford
Technical Community College, Jamestown, NC; Jeremiah Bartz, University
of North Dakota, Grand Forks, ND; Bruno Salgueiro Fanego, Viveiro, Spain;
Ed Gray, Highland Beach, FL; Paul M. Harms, North Newton, KS; Aykut
Ismailov, Shumen, Bulgaria; Kee-Wai Lau, Hong Kong, China; David E.
Manes, SUNY at Oneonta, Oneonta, NY; Boris Rays, Brooklyn, NY;
Brandon Richardson (student), Auburn University at Montgomery, AL;
Toshihiro Shimizu, Kawasaki, Japan; Trey Smith, Angelo State University,
San Angelo, TX; Albert Stadler, Herrliberg, Switzerland; Anna V. Tomova
(three solutions), Varna, Bulgaria, and the proposer.

• 5434: Proposed by Titu Zvonaru, Comnesti, Romania and Neculai Stanciu, “George
Emil Palade” General School, Buzău, Romania

Calculate, without using a calculator or log tables, the number of digits in the base 10
expansion of 296.

Solution 1 by Ed Gray, Highland Beach, FL

(
212
)8

= 296 > (4 · 103)8 = 48 · 1024 > 6 · 104 · 1024 = 6 · 1028.

Also (
28
)12

= 296 <
(
3 · 102

)12
= 312 · 1024 <

(
6 · 105

)
· 1024 = 6 · 1029.

Therefore, 6 · 1028 < 296 < 6 · 1029. So n = 29.

Solution 2 by Paul M. Harms, North Newton, KS

We see that
4(103) < 212 = 4096 < 4.1(103).

Then
16(106) < 224 < 16.81(106) < 17(106).

Taking the fourth power of the appropriate terms we obtain,

164(1024) = 65536(1024) = 0.65536(1029) < 296 < 174(1024) = 83521(1024) = 0.83521(1029).

Since 296 is bounded by integers who have 29 digits in the base 10 expansion, the integer
296 must also have 29 digits in its base 10 expansion.
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Solution 3 by Bruno Salgueiro Fanego, Viveiro, Spain

The required number of digits is 29 because, as we shall show, 1028 ≤ 296 < 1029. More

exactly, we shall prove that 1 <
296

1028
< 10. Since

296

1028
=

(
224

107

)4

=

((
212
)2

107

)4

=

(
40962

107

)4

=

(
1, 6777216 · 107

107

)4

= (1, 6777216)4 ,

we obtain that

14 <
296

1028
< 1, 68)4, that is 1 <

296

1028
< (2.8224)2 and, hence, 1 <

296

1028
< 32 < 10.

Note: another way to show that 1028 < 296 is, for example:

52 < 25

5 < 23

}
⇒ 52 < 25

53 < 29

}
⇒ 55 < 25 · 53 < 212 ⇒ 55 < 212

52 < 25

}
⇒ 57 < 25 · 55 < 217 ⇒

⇒ 27 · 57 < 224 ⇒

⇒
(
107
)4
<
(
224
)4 ⇒

⇒ 1028 < 296.

Solution 4 by Toshihiro Shimizu, Kawasaki, Japan

Since 103 < 210 = 1024 < 1.03× 103 and 296 =
(
210
)9 × 26 =

(
210
)9 × 10× 6.4 we have

6.4× 10× 103×9 <296 < 6.4× 10× 103×9 × (1.03)9 .

We evaluate 1.039. We have 1.03× 1.03× 1.03 = 1.0609× 1.03 = 1.092727 < 1.1 and
1.1× 1.1× 1.1 = 1.331 < 1.4 (I never use calculator.) Therefore, we have

1028 < 6.4× 1028 < 296 < 6.4× 1.4× 1028 = 8.96× 1028 < 1029.

Therefore, the number of digits in 296 is 29.

Also solved by Brian D. Beasley, Presbyterian College, Clinton, SC; Hatef I.
Arshagi, Guilford Technical Community College, Jamestown, NC; Kee-Wai
Lau, Hong Kong, China; Albert Stadler, Herrliberg, Switzerland; David
Stone and John Hawkins, Georgia Southern University, Statesboro, GA, and
the proposers.

• 5435: Proposed by Valcho Milchev, Petko Rachov Slaveikov Seconday School, Bulgaria

Find all positive integers a and b for which
a4 + 3a2 + 1

ab− 1
is a positive integer.

Solution 1 by Moti Levy, Rehovot, Israel

This solution is based on similar problem and solution which appeared in [1].
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a4 + 3a2 + 1

ab− 1
may be replaced by equivalent expression with symmetric polynomial in

the numerator.

Indeed,
a4 + 3a2 + 1

ab− 1
=
a2
(
a2 + b2 + 3

)
− (ab− 1) (ab+ 1)

ab− 1
.

Now, a and ab− 1 satisfy the equation b ∗ a+ (−1) ∗ (ab− 1) = 1, which implies that a
and ab− 1 are relatively prime and clearly a2 and ab− 1 are also relatively prime.

Thus,
a4 + 3a2 + 1

ab− 1
is a positive integer if and only if

a2 + b2 + 3

ab− 1
is a positive integer.

We call the ordered pair (a, b) a solution if

a2 + b2 + 3

ab− 1
= m, (1)

where m is a positive integer. The set of solutions is not empty since (1, 2) is a solution.

We exclude (a, a) from the set of solutions since
2a2 + 3

a2 − 1
= 2 +

5

a2 − 1
/∈ N for all a > 0.

Equation (1) is re-written as follows

a2 −mab+ b2 = − (m+ 3) . (2)

It is easily verified (see (3)) that if (a, b) is a solution then (ma− b, a) is a solution as
well.

(ma− b)2 −m (ma− b) a+ a2 = a2 −mab+ b2, (3)

Let (a0, b0) be the “smallest” solution in the sense that a0 + b0 ≤ a+ b, where (a, b) is
any solution.

a0 + b0 ≤ (ma0 − b0) + a0,

or
2b0
a0
≤ m. (4)

2b0
a0
≤ a20 + b20 + 3

a0b0 − 1

0 ≤ −2a0b
2
0 + 2b0 + a30 + 3a0 (5)

Let (a0, a0 + k) be a solution. Then substituting in (5) gives,

0 ≤ −2a0 (a0 + k)2 + 2 (a0 + k) + a30 + 3a0

= −2k2a0 − 4ka20 + 2k − a30 + 5a0.

Solving −2k2a0 − 4ka20 + 2k − a30 + 5a0 ≥ 0, we get

1

2a0

(
1− 2a20 −

√
6a20 + 2a40 + 1

)
≤ k ≤ 1

2a0

(
1− 2a20 +

√
6a20 + 2a40 + 1

)
,

hence, k will have positive values only if√
6a20 + 2a40 + 1 + 1 ≥ 2a20.

This inequality holds for a0 = 1 and a0 = 2. For a0 = 1, possible values for k are 1 or 2;
for a0 = 2, possible value for k is 1.
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Thus we have to check the following set of potential solutions: {(1, 2) , (1, 3) , (2, 1)} .
Clearly (1, 2) and (2, 1) are solutions, but (1, 3) is not.

For (1, 2) and (2, 1) the value of m is 8. We conclude that the sole value of m is 8.

It follows from (3) that the pairs (an, bn) (and by symmetry (bn, an)), which satisfy
condition (1) are expressed by the recurrence formulas

an+1 = 8an − bn,
bn+1 = an,

which are equivalent to the recurrence formulas

an+2 = 8an+1 − an, (6)

bn+2 = 8bn+1 − bn.

We have two sets of initial conditions:

1) a0 = 1, a1 = 6, b0 = 2, b1 = 1; the pairs resulting from these initial conditions are
(1, 2), (6, 1), (47, 6), (370, 47) ,. . . .

an =

(
1

2
− 1√

15

)(
4−
√

15
)n

+

(
1

2
+

1√
15

)(
4 +
√

15
)n
,

bn =

(
1 +

7

2
√

15

)(
4−
√

15
)n

+

(
1− 7

2
√

15

)(
4 +
√

15
)n
.

2) a0 = 2, a1 = 15, b0 = 1, b1 = 2; the pairs resulting from these initial conditions are
(2, 1), (15, 2), (118, 15), (929, 118) , . . . .

an =

(
1− 7

2
√

15

)(
4−
√

15
)n

+

(
1 +

7

2
√

15

)(
4 +
√

15
)n
,

bn =

(
1

2
+

1√
15

)(
4−
√

15
)n

+

(
1

2
− 1√

15

)(
4 +
√

15
)n
.

Reference:

[1] La Gaceta de la RSME, Vol. 18 (2015), No. 1, “Solution to Problem 241, by Roberto
de la Cruz Moreno”.

Solution 2 by Anthony Bevelacqua, University of North Dakota, Grand
Forks, ND

1) There are no solutions to our problem with a = b. We have
a4 + 3a2 + 1 ≡ 5 mod (a2 − 1). Assume there is a solution with a = b. Then a2 − 1
divides a4 + 3a2 + 1 so a4 + 3a2 + 1 ≡ 0 mod (a2 − 1). Thus 5 ≡ 0 mod (a2 − 1) and so
a2 − 1 divides 5. But then a2 = 2 or a2 = 6, a contradiction in either case.

2) The only solutions with a ≤ 4 are (a, b) = (1, 2), (2, 1), (1, 6) and (2, 15).
Suppose (a, b) is a solution to our problem. If a = 1 then b− 1 divides 5 so b− 1 = 1 or
b− 1 = 5. Both (1, 2) and (1, 6) are solutions. If a = 2 then 2b− 1 divides 29 so
2b− 1 = 1 or 2b− 1 = 29. Both (2, 1) and (2, 15) are solutions. If a = 3 then 3b− 1
divides 109 so 3b− 1 = 1 or 3b− 1 = 109, a contradiction. If a = 4 then 4b− 1 divides
305 = 5 · 61 so 4b− 1 ∈ {1, 5, 61, 305}, a contradiction.
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3) ab− 1 divides a4 + 3a2 + 1 if and only if ab− 1 divides a2 + b2 + 3.
We have

(ab− 1)(a3b+ 3ab+ a2 + 3) = a4b2 + 3a2b2 + a3b+ 3ab− a3b− 3ab− a2 − 3

= a4b2 + 3a2b2 − a2 − 3

and so
b2(a4 + 3a2 + 1)− (ab− 1)(a3b+ 3ab+ a2 + 3) = a2 + b2 + 3.

Thus if ab− 1 divides a4 + 3a2 + 1 then ab− 1 divides a2 + b2 + 3. Conversely suppose
ab− 1 divides a2 + b2 + 3. Then ab− 1 divides b2(a4 + 3a2 + 1). Since ab− 1 and b2 are
relatively prime we have that ab− 1 divides a4 + 3a2 + 1.

Now if k > 0 and (a, b) is a solution to a2 + b2 + 3 = k(ab− 1) then b is a root of the
polynomial a2 + x2 + 3 = k(ax− 1) which can be rewritten as
x2 − kax+ (a2 + 3 + k) = 0. Thus if b′ is the other root we have, by Vieta’s formulas,
b+ b′ = ka and bb′ = a2 + 3 + k. The first shows that b′ is an integer and the second
shows that b′ > 0. Thus (a, b′) is another solution to a2 + b2 + 3 = k(ab− 1).

4) If ab− 1 divides a2 + b2 + 3 then a2 + b2 + 3 = 8(ab− 1). Suppose there are positive
integers a, b, k such that a2 + b2 + 3 = k(ab− 1). For this fixed k let S be the set of all
positive integer pairs (a, b) such that a2 + b2 + 3 = k(ab− 1). Choose an (a, b) ∈ S such
that a+ b is minimal. Without loss of generality we have a ≤ b. Since a 6= b by 1) we
have a < b. Now (a, b′) is another solution. Since a+ b is minimal we have a+ b ≤ a+ b′

and hence b ≤ b′. Thus

b2 ≤ bb′ = a2 + 3 + k =⇒ k ≥ b2 − a2 − 3

and so

a2 + b2 + 3 = k(ab− 1)

≥ (b2 − a2 − 3)(ab− 1)

= ab3 − b2 − a3b+ a2 − 3ab+ 3.

Hence
3ab+ 2b2 ≥ ab3 − a3b =⇒ 3a+ 2b ≥ ab2 − a3.

Since a < b we have 3a+ 2b < 5b and ab2 − a3 = a(b+ a)(b− a) > ab. Thus 5b > ab and
so a < 5. By 2) the only possible (a, b) are then (1, 2), (1, 6), and (2, 15). Each of these
gives k = 8.

Thus 3) and 4) show that our original problem is equivalent to finding all positive
integers a and b such that a2 + b2 + 3 = 8(ab− 1). We could rewrite this as
(a− 4b)2 − 15b2 = −11 and apply the theory of equations of the form x2 −Dy2 = N as
found in, say, section 58 of Nagell’s Number Theory. Instead we will determine the
solutions by “Vieta jumping” as in the proof of (4).

Let S be the set of all positive integers pairs (a, b) such that a2 + b2 + 3 = 8(ab− 1).
Clearly if (a, b) ∈ S then (b, a) ∈ S, and, by 1) there are no (a, b) ∈ S with a = b. Recall
that if (a, b) ∈ S then (a, b′) ∈ S where b+ b′ = 8a and bb′ = a2 + 11.

5) For any (a, b) ∈ S define ρ(a, b) = (b′, a) and λ(a, b) = (b, 8b− a). Then ρ(a, b) ∈ S,
λ(a, b) ∈ S, and λ(ρ(a, b)) = (a, b).
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Let (a, b) ∈ S. We have (a, b′) ∈ S and hence ρ(a, b) = (b′, a) ∈ S. Now

b2 + (8b− a)2 + 3 = 64b2 − 16ab+ (a2 + b2 + 3)

= 64b2 − 16ab+ 8(ab− 1)

= 64b2 − 8ab− 8

= 8(b(8b− a)− 1)

so λ(a, b) = (b, 8b− a) ∈ S. Finally,

λ(ρ(a, b)) = λ(b′, a) = (a, 8a− b′)

where

8a− b′ = 8a− a2 + 11

b
=

8ab− a2 − 11

b
=
b2

b
= b.

6) The only (a, b) ∈ S such that a < b ≤ 10 are (a, b) = (1, 2) and (1, 6).

Since a2 + b2 + 3 ≡ 0 mod 8 we see that a and b must have opposite parity and neither
can be divisible by 4. Moreover the only such solutions with a or b less than 4 are (1, 2)
and (1, 6) by 2). This leaves only

(a, b) = (5, 6), (6, 7), (6, 9), (5, 10), (7, 10), (9, 10)

and none of these satisfy a2 + b2 + 3 = 8(ab− 1).

7) Let (a, b) ∈ S such that b ≥ 11. If a < b then b′ < a

Suppose first that b′ ≤ 10. Assume a ≤ b′. Since (a, b′) ∈ S we have a 6= b′. Thus
a < b′ ≤ 10. So, by 6), we must have a = 1. But if a = 1 we have b = 1 or b = 6, a
contradiction with b ≥ 11. Hence b′ < a.

Suppose now that b′ ≥ 11. Again assume a ≤ b′. Then, as in the last paragraph, a < b′.
We have

bb′ = a2 + 11 < (b′)2 + 11 =⇒ b < b′ +
11

b′
≤ b′ + 1

and so b ≤ b′. Now swapping b and b′ we have

bb′ = a2 + 11 < b2 + 11 =⇒ b′ < b+
11

b
≤ b+ 1

and so b′ ≤ b. Thus b = b′. Since 8a = b+ b′ = 2b we have b = 4a. But then

a2 + 16a2 + 3 = 8(4a2 − 1) =⇒ 11 = 15a2,

a contradiction. Hence b′ < a.

Finally,

8) (a, b) ∈ S if and only if {a, b} = {sn, sn+1} or {a, b} = {tn, tn+1} for n ≥ 0 where

s0 = 1, s1 = 2, and sn = 8sn−1 − sn−2 for n ≥ 2

and
t0 = 1, t1 = 6, and tn = 8tn−1 − tn−2 for n ≥ 2.
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Note that λn(1, 2) = (sn, sn+1) and λn(1, 6) = (tn, tn+1) for all n ≥ 0.

Since (1, 2) and (1, 6) ∈ S we see that (a, b) ∈ S for any {a, b} = {sn, sn+1} or
{a, b} = {tn, tn+1} and n ≥ 0 by (5).

Now suppose (a, b) ∈ S. Since (b, a) ∈ S as well, we can suppose without loss of
generality that a < b. By 5) and 7) there exists an integer d ≥ 0 such that
ρd(a, b) = (a∗, b∗) with a∗ < b∗ ≤ 10. By (6) we must have ρd(a, b) = (1, 2) or
ρd(a, b) = (1, 6). Since (a, b) = λd(ρd(a, b)) we have (a, b) = λd(1, 2) or (a, b) = λd(1, 6).

Thus ab− 1 divides a4 + 3a2 + 1 if and only if a and b are consecutive elements of either
of the sequences sn or tn given above. Since the first few terms of sn are
1, 2, 15, 118, 929, 7314, 57583, . . . and the first few terms of tn are
1, 6, 47, 370, 2913, 22934, 180559, . . . the first few solutions to our problem (with a ≤ b)
are

(a, b) = (1, 2), (2, 15), (15, 118), (118, 929), (929, 7314), (7314, 57583), . . .

and

(a, b) = (1, 6), (6, 47), (47, 370), (370, 2913), (2913, 22934), (22934, 180559), . . .

Also solved by Ed Gray, Highland Beach, FL; Kenneth Korbin, NewYork,
NY; Toshihiro Shimizu, Kawasaki, Japan; Anna V. Tomova (three solutions),
Varna, Bulgaria, and the proposer.

• 5436: Proposed by Arkady Alt, San Jose, CA

Find all values of the parameter t for which the system of inequalities

A =


4
√
x+ t ≥ 2y

4
√
y + t ≥ 2z

4
√
z + t ≥ 2x

a) has solutions;

b) has a unique solution.

Solution by the Proposer

a) Note that (A)⇐⇒


t ≥ 16y4 − x
t ≥ 16z4 − y
t ≥ 16x4 − z

=⇒ 3t ≥ 16y4 − x+ 16z4 − y + 16x4 − z =

(
16x4 − x

)
+
(
16y4 − y

)
+
(
16z4 − z

)
≥ 3 min

x

(
16x4 − x

)
=⇒ t ≥ min

x

(
16x4 − x

)
.

For x ∈
(

0,
1

16

)
, using the AM-GM Inequality, we obtain

x− 16x4 = x
(
1− 16x3

)
= 3

√
x3 (1− 16x3)3 =

3

√(
48x3

) (
1− 16x3

)3
48

≤

3

√
1

48
·
(

48x3 + 3− 3 · 16x3

4

)4

= 3

√
1

48
·
(

3

4

)4

=
3

16
. And since x− 16x4 ≤ 0 for

10



x /∈
(

0,
1

16

)
, then for all x the inequality x− 16x4 ≤ 3

16
holds. Since the upper bound

is
3

16
for values

x− 16x4 is attainable when x =
1

4
, then max

(
x− 16x4

)
=

3

16
⇐⇒

min
x

(
16x4 − x

)
= − 3

16
.

Thus t ≥ − 3

16
is a necessary condition for the solvability of system (A).

Let’s prove sufficiency.

Let t ≥ − 3

16
. Since function h (x) is continuous in R and min

x

(
16x4 − x

)
= − 3

16
, then[

− 3

16
,∞
)

is the range of h (x) . This means that for any t ≥ − 3

16
the equation

16x4 − x = t

has solution in R and since for any u which is a solution of the equation 16x4 − x = t

the triple (x, y, z) = (u, u, u, ) is a solution of the system (A) then for such t system (A)

solvable as well.

Remark.

Actually the latest reasoning about the solvability of system (A) if t ≥ − 3

16
is redundant

for (a) because suffices to note that for such t the triple (x, y, z) =

(
1

4
,
1

4
,
1

4

)
satisfies to

(A).

But for (b) criteria of solvability of equation 16x4 − x = t in form of inequality

t ≥ − 3

16
is

important.

b) Note that system (A) always have more the one solution if t > − 3

16
.

Indeed, let for any t1, t2 ∈
(
− 3

16
, t

)
such that t1 6= t2 equation 16u4 − u = ti has

solution ui, i = 1, 2.

Then u1 6= u2 and two distinct triples (u1, u1, u1) , (u2, u2, u2) satisfy to the system (A).

Let t = − 3

16
.Then − 3

16
≥ 16y4 − x =⇒ − 3

16
+ x− y ≥ 16y4 − y ≥ − 3

16
.

Hereof x− y ≥ 0 ⇐⇒ x ≥ y. Similarly − 3

16
≥ 16z4 − y and − 3

16
≥ 16x4 − z implies

y ≥ z and z ≥ x, respectively. Thus in that case x = y = z and all solutions of the

system (A) are represented by solutions of one equation 16x4 − x = − 3

16
⇐⇒

16x4 − x+
3

16
= 0 ⇐⇒ 256x4 − 16x+ 3 = 0 which has only root

1

4
because

256x4 − 16x+ 3 = (4x− 1)2
(
16x2 + 8x+ 3

)
.

Thus, system (A) has unique solution iff t =
1

4
.

Also solved by Ed Gray, Highland Beach,FL; Kee-Wai Lau, Hong Kong,
China; Moti Levy, Rehovot, Israel; David Stone and John Hawkins, Georgia
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Southern University, Statesboro, GA, and Toshihiro Shimizu, Kawasaki,
Japan.

• 5437: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let f : C − {2} → C be the function defined by f(z) =
2− 3z

z − 2
. If

fn(z) = (f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸
n

)(z), then compute fn(z) and lim
n→+∞

fn(z).

Solution 1 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX

Assume first that z 6= 2 and fn (z) exists for all n ≥ 1. Then, direct computation yields

f2 (z) =
10− 11z

5z − 6
and f3 (z) =

42− 43z

21z − 22
. (1)

When these are combined with the formula for f (z), it appears that there is a sequence
{xn} of positive integers such that

fn (z) =
2xn − (2xn + 1) z

xnz − (xn + 1)
(2)

for all n ≥ 1. Since f (z) =
2− 3z

z − 2
, we have x1 = 1. Further, if (2) holds for some n ≥ 1,

then

fn+1 (z) = f (fn (z))

=
2− 3fn (z)

fn (z)− 2

=

2− 3

[
2xn − (2xn + 1) z

xnz − (xn + 1)

]
[

2xn − (2xn + 1) z

xnz − (xn + 1)

]
− 2

=
2 [xnz − (xn + 1)]− 3 [2xn − (2xn + 1) z]

[2xn − (2xn + 1) z]− 2 [xnz − (xn + 1)]

=
(8xn + 2)− (8xn + 3) z

(4xn + 1) z − (4xn + 2)
.

This suggests that xn+1 = 4xn + 1 for n ≥ 1. These conditions on {xn} are consistent
with the formula for f (z) and property (2). Note finally that

x1 = 1 =
3

3
=

4− 1

3
, x2 = 5 =

15

3
=

42 − 1

3
, and x3 = 21 =

63

3
=

43 − 1

3
.

12



This leads us to conjecture that xn =
4n − 1

3
and hence,

fn (z) =

2

(
4n − 1

3

)
−
[
2

(
4n − 1

3

)
+ 1

]
z(

4n − 1

3

)
z −

[(
4n − 1

3

)
+ 1

] =
2 (4n − 1)− (2 · 4n + 1) z

(4n − 1) z − (4n + 2)

for all n ≥ 1.

If fn (z) exists for all n ≥ 1, let P (n) be the statement

fn (z) =
2 (4n − 1)− (2 · 4n + 1) z

(4n − 1) z − (4n + 2)
. (3)

If n = 1,

2 (4− 1)− (2 · 4 + 1) z

(4− 1) z − (4 + 2)
=

6− 9z

3z − 6

=
2− 3z

z − 2

and thus, P (1) is true. Assume that P (n) is true, i.e.,

fn (z) =
2 (4n − 1)− (2 · 4n + 1) z

(4n − 1) z − (4n + 2)

for some n ≥ 1. Then,

fn+1 (z) = f (fn (z))

=

2− 3

[
2 (4n − 1)− (2 · 4n + 1) z

(4n − 1) z − (4n + 2)

]
[

2 (4n − 1)− (2 · 4n + 1) z

(4n − 1) z − (4n + 2)

]
− 2

=
2 [(4n − 1) z − (4n + 2)]− 3 [2 (4n − 1)− (2 · 4n + 1) z]

[2 (4n − 1)− (2 · 4n + 1) z]− 2 [(4n − 1) z − (4n + 2)]

=
[2 (4n − 1) + 3 (2 · 4n + 1)] z − [2 (4n + 2) + 6 (4n − 1)]

[2 (4n − 1) + 2 (4n + 2)]− [2 · 4n + 1 + 2 (4n − 1)] z

=

(
2 · 4n+1 + 1

)
z − 2

(
4n+1 − 1

)
(4n+1 + 2)− (4n+1 − 1) z

=
2
(
4n+1 − 1

)
−
(
2 · 4n+1 + 1

)
z

(4n+1 − 1) z − (4n+1 + 2)

and therefore, P (n+ 1) is also true. By Mathematical Induction, P (n) is true for all
n ≥ 1.

Because formula (3) required the assumption that fn (z) exists for all n ≥ 1, we need to
determine if there are points z ∈ C \ {2} for which there is a positive integer m such that

13



fn (z) does not exist for n > m. The existence of fn (z) requires that z, f (z), . . .,
fn−1 (z) 6= 2. Therefore, we have to find all points z for which fm (z) = 2 for some
m ≥ 1. One way to do this is to consider the inverse function

f−1 (z) =
2z + 2

z + 3

and describe

f−m (z) =

(
f−1 ◦ f−1 ◦ . . . ◦ f−1︸ ︷︷ ︸

)
m

(z)

in a manner similar to that used to find formula (3). If we do so, we see that for z 6= −3,

f−m (z) =
(4m + 2) z + 2 (4m − 1)

(4m − 1) z + 2 · 4m + 1
.

In particular,

f−m (2) =
(4m + 2) · 2 + 2 (4m − 1)

(4m − 1) · 2 + 2 · 4m + 1
=

4m+1 + 2

4m+1 − 1
.

If zm =
4m+1 + 2

4m+1 − 1
for some m ≥ 1, then it follows that fm (zm) = 2 and hence, fn (zm) is

undefined for n > m. Therefore, lim
n→+∞

fn (zm) does not exist for these points.

Let

S = {2} ∪
{

4m+1 + 2

4m+1 − 1
: m ∈ N

}
.

For z /∈ S, fn (z) exists for all n ≥ 1. If z = 1, then z /∈ S and (3) implies that

fn (1) =
2 (4n − 1)− (2 · 4n + 1)

(4n − 1)− (4n + 2)

=
−3

−3

= 1

for all n ≥ 1. Hence, lim
n→+∞

fn (1) = 1. For all other values of z /∈ S,

lim
n→+∞

fn (z) = lim
n→+∞

2 (4n − 1)− (2 · 4n + 1) z

(4n − 1) z − (4n + 2)

= lim
n→+∞

2 (1− 4−n)− (2 + 4−n) z

(1− 4−n) z − (1 + 2 · 4−n)

=
2− 2z

z − 1
= −2.

Therefore, for z /∈ S,

lim
n→+∞

fn (z) =

{
1 if z = 1
−2 otherwise

Solution 2 by Henry Ricardo, Westchester Math Circle, NY
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We take advantage of the well-known homomorphism between 2× 2 matrices and

Möbius transformations: A =

(
a b
c d

)
↔ f(z) =

az + b

cz + d
. In this relation, the n-fold

composition fn(z) corresponds to the nth power of A. Here we are dealing with powers

of the matrix A =

(
−3 2
1 −2

)
.

Now we invoke a known result that is a consequence of the Cayley-Hamilton theorem: If
A ∈M2(C) and the eigenvalues λ1, λ2 of A are not equal, then for all n ≥ 1 we have

An = λn1B + λn2C, where B =
1

λ1 − λ2
(A− λ2I2) and C =

1

λ2 − λ1
(A− λ1I2) . (∗)

(See, for example, Theorem 2.25(a) in Essential Linear Algebra with Applications by T.
Andreescu, Birkhäuser, 2014.)

The eigenvalues of the given matrix A are −1 and −4, so we apply (∗) to get

An =
(−1)n

3
(A+ 4I2) −

(−4)n

3
(A+ I2)

=

(
(−1)n − (−4)n

3

)
A +

(
4 · (−1)n − (−4)n

3

)
I2

=

(
1
3(−1)n(1 + 2 · 4n) 2

3(−1)n + 2
3(−1)n+14n

1
3(−1)n + 1

3(−1)n+14n 1
3(−1)n(2 + 4n)

)
.

After some simplification, we see that

fn(z) =
(2 · 4n + 1)z − 2(4n − 1)

(1− 4n)z + (4n + 2)
.

Finally, we note that fn(1) = 3/3 = 1; and, for z 6= 1, we have

lim
n→+∞

fn(z) = lim
n→+∞

(2 · 4n + 1)z − 2(4n − 1)

(1− 4n)z + (4n + 2)
=

2(z − 1)

1− z
= −2.

Therefore,

lim
n→+∞

fn(z) =

{
1 if z = 1,
−2 if z 6= 1

.

Solution 3 by David E. Manes, Oneonta, NY

We will show by induction that

f (n)(z) =
2− 2an + 1

an
z

z − an + 1

an

where an =
4n − 1

3
. If n = 1, then a1 = 1 and f (1)(z) =

(2− 3z)

(z − 2)
= f(z). Therefore, the

result is true for n = 1. Assume the positive integer n ≥ 1 and the given formula is valid
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for f (n)(z). Then

f (n+1)(z) = f(f (n)(z) =

2− 3

2− 2an + 1

an
z

z − an + 1

an


2− 2an + 1

an
z

z − an + 1

an

− 2

=

2z − 2

(
an + 1

an

)
− 6 + 3

(
2an + 1

an

)
z

2− 2an + 1

an
z − 2z + 2

(
an + 1

an

)

=
2anz − 2an − 2− 6an + 6anz + 3z

2an − 2anz − z − 2anz + 2an + 2
=
−2− 8an + (8an + 3)z

−(4an + 1)z + (4n+ 2)

=
2 + 8an − (8an + 3)z

(4an + 1)z − (4n+ 2)
=

2 + 8

(
4n − 1

3

)
−
(

8

(
4n − 1

3

)
+ 3

)
z(

4

(
4n − 1

3

)
+ 1

)
z −

(
4

(
4n − 1

3

)
+ 2

)
=

(−2 + 2 · 4n+1)− (1 + 2 · 4n+1)z

(4n+1 − 1)z − (4n+1 + 2)

=

2−
(

2 · 4n+1 + 1

4n+1 − 1

)
z

z −
(

4n+1 + 2

4n+1 − 1

) =

2−


2 · 4n+1 + 1

3
4n+1 − 1

3

 z

z −


4n+1 + 2

3
4n+1 − 1

3



=

2−
(

2an+1 + 1

an+1

)
z

z −
(
an+1 + 1

an+1

)

where an+1 =
(4n+1 − 1)

3
. Note that

4n+1 + 2

3
=

4n+1 − 1

3
+ 1 = an+1 + 1 and

2 · 4n+1 + 1

3
=

2 · 4n+1 − 2

3
+ 1 = 2

(4n+1 − 1

3

)
+ 1 = 2an+1 + 1.

Hence, the result is true for the integer n+ 1 so that by the principle of mathematical
induction the result is valid for all positive integers n.

For the limit question, note that if f(z) = z, then z = 1 or z = −2. Therefore, one of the
fixed points of f is z = 1 so that f (n)(1) = 1 for each positive integer n and

lim
n→+∞

f (n)(1) = 1. Moreover, observe that

lim
n→+∞

1

an
= lim

n→+∞

3

4n − 1
= 0.

Therefore, if z 6= 1, then

16



lim
n→+∞

f (n)(z) = lim
n→+∞

2− 2an + 1

an
z

z − an + 1

an

 =

(
2− lim

n→+∞

(
2 +

1

an

)
z

)
(
z − lim

n→+∞

(
1 +

1

an

)) =
2− 2z

z − 1
= −2.

Hence,

lim
n→+∞

f (n)(z) =

{
1, if z = 1,

−2, if z 6= 1.

Solution 4 by Jeremiah Bartz, University of North Dakota, Grand Forks, ND

Recall the map f(z) =
az + b

cz + d
7→
[
a b
c d

]
gives a group isomorphism between group of

fractional linear transformations{
f : f(z) =

az + b

cz + d
where a, b, c, d ∈ C and ad− bc 6= 0

}
under function composition and the group

GL(2, C) =

{[
a b
c d

]
: a, b, c, d ∈ C and ad− bc 6= 0

}
under matrix multiplication.

To compute fn(z), let M =

[
−3 2

1 −2

]
. Using induction, we show

Mn =
(−1)n

3

[
22n+1 + 1 −22n+1 + 2
−4n + 1 4n + 2

]
.

Observe M1 =
−1

3

[
23 + 1 −23 + 2
−3 6

]
=
−1

3

[
9 −6
−3 6

]
=

[
−3 2

1 −2

]
.

Assume

Mn =
(−1)n

3

[
22n+1 + 1 −22n+1 + 2
−4n + 1 4n + 2

]
and observe

Mn+1 = MnM

=
(−1)n

3

[
22n+1 + 1 −22n+1 + 2
−4n + 1 4n + 2

] [
−3 2

1 −2

]
=

(−1)n

3

[
−3(22n+1 + 1) + (−22n+1 + 2) 2(22n+1 + 1)− 2(−22n+1 + 2)

−3(−4n + 1) + (4n + 2) 2(−4n + 1)− 2(4n + 2)

]
=

(−1)n+1

3

[
22(n+1)+1 + 1 −22(n+1)+1 + 2
−4n+1 + 1 4n+1 + 2

]
.

Using the aforementioned group isomorphism and simplifying, we conclude

fn(z) =
(22n+1 + 1)z − 22n+1 + 2

(−4n + 1)z + 4n + 2
=

(2 · 4n + 1)z + (2− 2 · 4n)

(1− 4n)z + (2 + 4n)
.
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Notice that the map fn(z) is undefined for z =
4k + 2

4k − 1
where 1 ≤ k ≤ n. Consequently

lim
n→+∞

f(z) does not exist for these values of z. Furthermore,

lim
n→+∞

fn(z) = lim
n→+∞

(2 · 4n + 1)z + (2− 2 · 4n)

(1− 4n)z + (2 + 4n)

= lim
n→+∞

(
2 + 1

4n

)
z +

(
2
4n − 2

)(
1

4n
− 1

)
z +

(
2

4n
+ 1

)
=

2z − 2

−z + 1

= −2

(
1− z
1− z

)
.

Note f(1) = 1 so fn(1) = 1 for all n ≥ 1. It follows that

lim
n→+∞

f(z) =


DNE if z =

4n + 2

4n − 1
where n ∈ Z>0

1 if z = 1
−2 otherwise.

(DNE = does not exist)

Comment by Editor : David Stone and John Hawkins of Georgia Southern
University stated the following in their solution: “The appearance of so many sums of
powers of 4 prompts us to offer a candidate for the cutest representation of f (n)(z) :

f (n)(z) =
(2 · 111 . . . ...14 + 1) z − 2 · 111 . . . 14
−111 . . . ...14z + (111 . . . 14 + 1)

,

where each of the base 4 repunits has n− 1 digits.”

Solution 5 by Toshihiro Shimizu, Kawasaki, Japan

Let fn (z) =
anz + bn
cnz + dn

. Then, we have

an+1z + bn+1

cn+1z + dn+1
= fn+1 (z)

= fn
(

2− 3z

z − 2

)
=

(bn − 3an) z + 2 (an − bn)

(dn − 3cn) z + 2 (cn − dn)

Therefore, we have an+1 = bn − 3an, bn+1 = 2an − 2bn and cn+1 = dn − 3cn,
dn+1 = 2cn − 2dn. Since f0 (z) = z , a0 = 1, b0 = c0 = 0 and d0 = 1. Since
bn = an+1 + 3an, we have

an+2 + 3an+1 = 2an − 2 (an+1 + 3an)

an+2 + 5an+1 + 4an = 0
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and a1 = b0 − 3a0 = −3. Thus, we have

an =
1

3
(−1)n +

2

3
(−4)n

bn = an+1 + 3an

=
1

3
(−1)n+1 +

2

3
(−4)n+1 + (−1)n + 2 (−4)n

=
2

3
(−1)n − 2

3
(−4)n .

Similarly, we have cn+2 + 5cn+1 + 4cn = 0 and c1 = d0 − 3c0 = 1. Thus, we have

cn =
1

3
(−1)n − 1

3
(−4)n

dn = cn+1 + 3cn

=
2

3
(−1)n +

1

3
(−4)n

Therefore,

fn (z) =
((−1)n + 2 (−4)n) z + (2 (−1)n − 2 (−4)n)

((−1)n − (−4)n) z + (2 (−1)n + (−4)n)
.

If z 6= 1, we have

fn (z) =

((
1
4

)n
+ 2
)
z +

(
2
(
1
4

)n − 2
)((

1
4

)n − 1
)
z +

(
2
(
1
4

)n
+ 1
)

→ 2z − 2

−z + 1

= −2 (n→ +∞) .

If z = 1, the value of fn (z) is always 1 and its limit is also 1.

Solution 6 by Kee-Wai Lau, Hong Kong, China

It can easily be proved by induction that

fn(z) =
2(22n − 1)− (22n+1 + 1)z

(22n − 1)z − 2(22n−1 + 1)
,

whenever z /∈ Sn, where Sn = {2} ∪
{

2(22k−1 + 1)

22k − 1
: k = 1, 2, 3, · · · , n

}
.

Clearly, lim
n→∞

fn(1) = 1 and if z /∈ T, where T = {1, 2} ∪
{

2(22k−1 + 1

22k − 1
, k = 1, 2, 3 · · ·

}
,

then lim
n→∞

fn(z) = −2.

Also solved by Arkady Alt, San Jose, CA; Hatef I. Arshagi, Guilford
Technical Community College, Jamestown, NC; Brian D. Beasley,
Presbyterian College, Clinton, SC; Brian Bradie, Christopher Newport
University, Newport News,VA; Bruno Salgueiro Fanego Viveiro, Spain; Ed
Gray, Highland Beach, FL; Moti Levy (two solutions), Rehovot, Israel;
Francisco Perdomo and Ángel Plaza, Universidad de Las Palmas de Gran
Canaria, Spain; Trey Smith, Angelo State University, San Angelo, TX;
Albert Stadler, Herrliberg, Switzerland; David Stone and John Hawkins,
Georgia Southern University, Statesboro, GA, and the proposer.
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5438: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let k ≥ 0 be an integer and let α > 0 be a real number. Prove that

x2k

(1− x2)α
+

y2k

(1− y2)α
+

z2k

(1− z2)α
≥ xkyk

(1− xy)α
+

ykzk

(1− yz)α
+

xkzk

(1− xz)α
,

for x, y, z ∈ (−1, 1).

Solution 1 by Albert Stadler, Herrliberg, Switzerland

We note that by the Binomial theorem,

t2k

(1− t2)α
= t2k

∞∑
j=0

(
−α
j

)(
−t2
)j

=
∞∑
j=0

(
−α
j

)
t2k+2j , −1 < t < 1,

where (−1)j
(
−α
j

)
=
α(α+ 1) · · · (α+ j − 1)

j!
> 0 for all indices j ≥ 0.

Therefore, by the AM−GM inequality,

x2k

(1− x2)α
+

y2k

(1− y2)α
+

z2k

(1− z2)α
=

1

2

∑
cycl

(
x2k

(1− x2)α
+

y2k

(1− y2)α

)

=
1

2

∑
cycl

∞∑
j=0

(−1)j
(
−α
j

)(
x2k+2j + y2k+2j

)

≥
∑
cycl

∞∑
j=0

(−1)j
(
−α
j

)
|xy|k+y

≥
∑
cycl

∞∑
j=0

(−1)j
(
−α
j

)
(xy)k+y

=
∑
cycl

(xy)k

(1− xy)α
, as claimed.

Solution 2 by Hatef I. Arshagi, Guilford Technical Community College,
Jamestown, NC

It is well known that for any real numbers a, b, c

a2 + b2 + c2 ≥ ab+ bc+ ca. (1)

We show that a, b ∈ (−1, 1)√
(1− a2)(1− b2) ≤ 1− ab. (2)

Suppose that to the contrary
√

(1− a2)(1− b2) > 1− ab, by squaring both sides of the
inequality, we get 1− a2 − b2 + a2b2 > 1− 2ab+ a2b2, which implies that
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−a2 − b2 + 2ab = −(a− b)2 > 0, which is impossible, that is, (2) is proved. From (2), we
can conclude that

1√
(1− a2)(1− b2)

≥ 1

1− ab
. (3)

Now, using (1) and (3), we write

x2k

(1− x2)α
+

y2k

(1− y2)α
+

z2k

(1− z2)α

≥ xkyk

((1− x2)(1− y2)
α
2

+
ykzk

((1− y2)(1− z2))
α
2

+
zkxk

((1− z2)(1− x2))
α
2

=
xkyk(√

(1− x2)(1− y2)
)α +

ykzk(√
(1− y2)(1− z2)

)α +
zkxk(√

(1− z2)(1− x2)
)α

≥ xkyk

(1− xy)α
+

ykzk

(1− yz)α
+

zkxk

(1− zx)α
.

Solution 3 by Moti Levy, Rehovot, Israel

Since
|a|k

(1− |a|)α
≥ ak

(1− a)α
, a ∈ (−1, 1) then

|x|k |y|k

(1− |x| |y|)α
+

|y|k |z|k

(1− |y| |z|)α
+

|z|k |x|k

(1− |z| |x|)α
≥ xkyk

(1− xy)α
+

ykzk

(1− yz)α
+

zkxk

(1− zx)α
.

Therefore, we can assume that x, y, z ∈ (0, 1) . Using the generalized binomial theorem,

1

(1− u)α
=

∞∑
n=0

(
n+ α− 1

n

)
un =

∞∑
n=0

Γ (n+ a)

n!Γ (α)
un, |u| < 1.

x2k

(1− x2)α
=

∞∑
n=0

Γ (n+ a)

n!Γ (α)
x2(n+k)

xkyk

(1− xy)α
=
∞∑
n=0

Γ (n+ a)

n!Γ (α)
(xy)n+k

By the inequality a2 + b2 + c2 ≥ ab+ bc+ ca, a, b, c ≥ 0,(
xn+k

)2
+
(
yn+k

)2
+
(
zn+k

)2
≥ xn+kyn+k + yn+kzn+k + zn+kkn+k.
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x2k

(1− x2)α
+

y2k

(1− y2)α
+

z2k

(1− z2)α

=
∞∑
n=0

Γ (n+ a)

n!Γ (α)
x2(n+k) +

∞∑
n=0

Γ (n+ a)

n!Γ (α)
y2(n+k) +

∞∑
n=0

Γ (n+ a)

n!Γ (α)
z2(n+k)

=

∞∑
n=0

Γ (n+ a)

n!Γ (α)

(
x2(n+k) + y2(n+k) + z2(n+k)

)
≥
∞∑
n=0

Γ (n+ a)

n!Γ (α)

(
xn+kyn+k + yn+kzn+k + zn+kkn+k

)
=
∞∑
n=0

Γ (n+ a)

n!Γ (α)
xy(n+k)y(n+k) +

∞∑
n=0

Γ (n+ a)

n!Γ (α)
y(n+k)z(n+k) +

∞∑
n=0

Γ (n+ a)

n!Γ (α)
z(n+k)k(n+k)

=
xkyk

(1− xy)α
+

ykzk

(1− yz)α
+

zkxk

(1− zx)α
.

Solution 4 by Kee-Wai Lau, Hong Kong, China

We first note that

0 < (1− x2)(1− y2) = (1− xy)2 − (x− y)2 ≤ (1− x)2.

Hence by the AM-GM inequality, we have

x2k

(1− x2)α
+

y2k

(1− y2)α
≥ 2|xkyk|√

(1− x2)α(1− y2)α
≥ 2|xkyk|

(1− xy)α
.

Similarly,

y2k

(1− y2)α
+

z2k

(1− z2)α
≥ 2|ykzk|

(1− yz)α
and

z2k

(1− z2)α
+

x2k

(1− x2)α
≥ 2|zkxk|

(1− zx)α
.

Adding these inequalities, we easily deduce the inequality of the problem.

Also solved by Ed Gray, Highland Beach, FL; Nicusor Zlota, “Traian Vuia”
Technical College, Focsani, Romania; Toshihiro Shimizu, Kawasaki, Japan,
and the proposer.

Mea Culpa

For a variety of reasons, mostly caused by sloppy bookkeeping, those listed below were
not credited for having solved the following problems, but should have been.
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5427: Paul M. Harms, North Newton, KS.

5428: Ed Gray, Highland Beach, FL;
David Stone and John Hawkins, Georgia Southern University, Statesboro,
GA.

5429: Brian D. Beasley, Presbyterian College, Clinton, SC.

5431: Albert Stadler, Herrliberg, Switzerland.
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