Problems

Ted Eisenberg, Section Editor

```
**************************************************************
```

This section of the Journal offers readers an opportunity to exchange interesting mathematical problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics, Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions can be sent e-mail to eisenbt@013.net. Solutions to previously stated problems can be seen at http://www.ssma.org/publications.

Solutions to the problems stated in this issue should be posted before
September 15, 2017

- 5451: Proposed by Kenneth Korbin, New York, NY

Given triangle $A B C$ with sides $a=8, b=19$ and $c=22$. The triangle has an interior point P where $\overline{A P}, \overline{B P}$, and $\overline{C P}$ each have positive integer length. Find $\overline{A P}$ and $\overline{B P}$, if $\overline{C P}=4$.

- 5452: Proposed by Roger Izard, Dallas, TX

Let point O be the orthocenter of a given triangle $A B C$. In triangle $A B C$ let the altitude from B intersect line segment $A C$ at E, and the altitude from C intersect line segment $A B$ at D. If $A C$ and $A B$ are unequal, derive a formula which gives the square of $B C$ in terms of $A C, A B, E O$, and $O D$.

- 5453: Proposed by D.M. Bătinetu-Giurgiu, "Matei Basarab" National College, Bucharest, Romania and Neculai Stanciu, "George Emil Palade" School, Buzău, Romania

If $a, b, c \in(0,1)$ or $a, b, c \in(1, \infty)$ and m, n are positive real numbers, then prove that

$$
\frac{\log _{a} b+\log _{b} c}{m+n \log _{a} c}+\frac{\log _{b} c+\log _{c} a}{m+n \log _{b} a}+\frac{\log _{c} a+\log _{a} b}{m+n \log _{c} b} \geq \frac{6}{m+n}
$$

- 5454: Proposed by Arkady Alt, San Jose, CA

Prove that for integers k and l, and for any $\alpha, \beta \in\left(0, \frac{\pi}{2}\right)$, the following inequality holds:

$$
k^{2} \tan \alpha+l^{2} \tan \beta \geq \frac{2 k l}{\sin (\alpha+\beta)}-\left(k^{2}+l^{2}\right) \cot (\alpha+\beta) .
$$

- 5455: Proposed by José Luis Díaz-Barrero, Barcelona Tech, Barcelona, Spain

Find all real solutions to the following system of equations:

$$
\begin{aligned}
\frac{1}{a}+\frac{1}{b}+\frac{1}{c} & =\frac{1}{a b c} \\
a+b+c & =a b c+\frac{8}{27}(a+b+c)^{3}
\end{aligned}
$$

- 5456: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

Let k be a positive integer. Calculate

$$
\lim _{x \rightarrow \infty} \mathrm{e}^{-x} \sum_{n=k}^{\infty}(-1)^{n}\binom{n}{k}\left(\mathrm{e}^{x}-1-x-\frac{x^{2}}{2!}-\cdots-\frac{x^{n}}{n!}\right)
$$

Solutions

- 5433: Proposed by Kenneth Korbin, New York, NY

Solve the equation: $\sqrt[4]{x+x^{2}}=\sqrt[4]{x}+\sqrt[4]{x-x^{2}}$, with $x>0$.

Solution 1 by Anthony J. Bevelacqua, University of North Dakota, Grand Forks, ND

Let $f(x)=\sqrt[4]{x}+\sqrt[4]{x-x^{2}}-\sqrt[4]{x+x^{2}}$. Then $f(x)$ is continuous on $[0,1]$. We have $f(1 / 2)>0$ and $f(1)<0$. By the Intermediate Value Theorem our original equation has at least one solution with $x>0$.

Now consider

$$
\begin{aligned}
\sqrt[4]{x+x^{2}}=\sqrt[4]{x}+\sqrt[4]{x-x^{2}} & \Longrightarrow \sqrt[4]{1+x}=1+\sqrt[4]{1-x} \\
& \Longrightarrow \sqrt[4]{1+x}-\sqrt[4]{1-x}=1 \\
& \Longrightarrow \sqrt{1+x}-2 \sqrt[4]{1-x^{2}}+\sqrt{1-x}=1 \\
& \Longrightarrow \sqrt{1+x}+\sqrt{1-x}=1+2 \sqrt[4]{1-x^{2}} \\
& \Longrightarrow 1+x+2 \sqrt{1-x^{2}}+1-x=1+4 \sqrt[4]{1-x^{2}}+4 \sqrt{1-x^{2}} \\
& \Longrightarrow 1-2 \sqrt{1-x^{2}}=4 \sqrt[4]{1-x^{2}} \\
& \Longrightarrow 1-4 \sqrt{1-x^{2}}+4\left(1-x^{2}\right)=16 \sqrt{1-x^{2}} \\
& \Longrightarrow 5-4 x^{2}=20 \sqrt{1-x^{2}} \\
& \Longrightarrow 25-40 x^{2}+16 x^{4}=400\left(1-x^{2}\right) \\
& \Longrightarrow 16 x^{4}+360 x^{2}-375=0
\end{aligned}
$$

As a quadratic in x^{2} the roots of this polynomial are

$$
x^{2}=\frac{-360 \pm 160 \sqrt{6}}{32}=\frac{-45 \pm 20 \sqrt{6}}{4}
$$

and so

$$
x= \pm \frac{\sqrt{-45 \pm 20 \sqrt{6}}}{2}
$$

This is a positive real number only if we choose both signs positive. Thus our original equation has at most one positive real solution.
Our last two paragraphs show that

$$
x=\frac{\sqrt{20 \sqrt{6}-45}}{2}
$$

is the unique positive real solution to our original equation.

Solution 2 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State University, San Angelo, TX

Since $x>0$, we lose no solutions if we divide by $\sqrt[4]{x}$ to obtain

$$
\sqrt[4]{1+x}=1+\sqrt[4]{1-x}
$$

If we let $X=\sqrt[4]{1+x}$ and $Y=\sqrt[4]{1-x}$, then $X^{4}+Y^{4}=2$ and we can solve for $X Y$ in the following steps:

$$
\begin{aligned}
X-Y & =1 \\
(X-Y)^{4} & =1 \\
X^{4}-4 X^{3} Y+6 X^{2} Y^{2}-4 X Y^{3}+Y^{4} & =1 \\
X^{4}+Y^{4}-2 X Y\left(2 X^{2}-3 X Y+2 Y^{2}\right) & =1 \\
-2 X Y\left[2(X-Y)^{2}+X Y\right] & =-1 \\
2 X Y(X Y+2) & =1 \\
2 X^{2} Y^{2}+4 X Y-1 & =0 \\
X Y & =\frac{-2 \pm \sqrt{6}}{2} .
\end{aligned}
$$

The condition $X Y=\sqrt[4]{1-x^{2}} \geq 0$ implies that

$$
\begin{aligned}
\sqrt[4]{1-x^{2}} & =\frac{\sqrt{6}-2}{2} \\
1-x^{2} & =\left(\frac{\sqrt{6}-2}{2}\right)^{4}=\frac{49-20 \sqrt{6}}{4} \\
x^{2} & =1-\frac{49-20 \sqrt{6}}{4}=\frac{20 \sqrt{6}-45}{4}
\end{aligned}
$$

Because $x>0$, our solution is

$$
x=\frac{\sqrt{20 \sqrt{6}-45}}{2}
$$

Solution 3 by Brian D. Beasley, Presbyterian College, Clinton, SC

Solution. Since $x>0$, we may divide the given equation by $\sqrt[4]{x}$ to produce

$$
\sqrt[4]{1+x}=1+\sqrt[4]{1-x}
$$

Squaring both sides then yields $\sqrt{1+x}=1+2 \sqrt[4]{1-x}+\sqrt{1-x}$, or $\sqrt{1+x}-\sqrt{1-x}-1=2 \sqrt[4]{1-x}$. Squaring yet again produces

$$
(1+x)+(1-x)+1-2 \sqrt{1+x}+2 \sqrt{1-x}-2 \sqrt{1-x^{2}}=4 \sqrt{1-x}
$$

or $3-2 \sqrt{1-x^{2}}=2 \sqrt{1+x}+2 \sqrt{1-x}$. We square once more to obtain

$$
9-12 \sqrt{1-x^{2}}+4\left(1-x^{2}\right)=4(1+x)+4(1-x)+8 \sqrt{1-x^{2}}
$$

and thus $5-4 x^{2}=20 \sqrt{1-x^{2}}$. Squaring for the last time yields $25-40 x^{2}+16 x^{4}=400\left(1-x^{2}\right)$ and hence $16 x^{4}+360 x^{2}-375=0$. Finally, the only real positive solution of this equation is

$$
x=\sqrt{-\frac{45}{4}+5 \sqrt{6}}=\frac{\sqrt{-45+20 \sqrt{6}}}{2} .
$$

Addendum. It is interesting to note that this solution is approximately 0.99872354 , very close to 1 . In particular, this implies that $49 / 4$ is a good rational approximation of $5 \sqrt{6}$, which also means that $7 / 2$ is a good rational approximation of $\sqrt[4]{150}$.

Also solved by Arkady Alt, San Jose, CA; Hatef I. Arshagi, Guilford Technical Community College, Jamestown, NC; Jeremiah Bartz, University of North Dakota, Grand Forks, ND; Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland Beach, FL; Paul M. Harms, North Newton, KS; Aykut Ismailov, Shumen, Bulgaria; Kee-Wai Lau, Hong Kong, China; David E. Manes, SUNY at Oneonta, Oneonta, NY; Boris Rays, Brooklyn, NY; Brandon Richardson (student), Auburn University at Montgomery, AL; Toshihiro Shimizu, Kawasaki, Japan; Trey Smith, Angelo State University, San Angelo, TX; Albert Stadler, Herrliberg, Switzerland; Anna V. Tomova (three solutions), Varna, Bulgaria, and the proposer.

- 5434: Proposed by Titu Zvonaru, Comnesti, Romania and Neculai Stanciu, "George Emil Palade" General School, Buzău, Romania

Calculate, without using a calculator or log tables, the number of digits in the base 10 expansion of 2^{96}.

Solution 1 by Ed Gray, Highland Beach, FL

$$
\left(2^{12}\right)^{8}=2^{96}>\left(4 \cdot 10^{3}\right)^{8}=4^{8} \cdot 10^{24}>6 \cdot 10^{4} \cdot 10^{24}=6 \cdot 10^{28} .
$$

Also

$$
\left(2^{8}\right)^{12}=2^{96}<\left(3 \cdot 10^{2}\right)^{12}=3^{12} \cdot 10^{24}<\left(6 \cdot 10^{5}\right) \cdot 10^{24}=6 \cdot 10^{29} .
$$

Therefore, $6 \cdot 10^{28}<2^{96}<6 \cdot 10^{29}$. So $n=29$.

Solution 2 by Paul M. Harms, North Newton, KS

We see that

$$
4\left(10^{3}\right)<2^{12}=4096<4.1\left(10^{3}\right) .
$$

Then

$$
16\left(10^{6}\right)<2^{24}<16.81\left(10^{6}\right)<17\left(10^{6}\right) .
$$

Taking the fourth power of the appropriate terms we obtain,
$16^{4}\left(10^{24}\right)=65536\left(10^{24}\right)=0.65536\left(10^{29}\right)<2^{96}<17^{4}\left(10^{24}\right)=83521\left(10^{24}\right)=0.83521\left(10^{29}\right)$.
Since 2^{96} is bounded by integers who have 29 digits in the base 10 expansion, the integer 2^{96} must also have 29 digits in its base 10 expansion.

Solution 3 by Bruno Salgueiro Fanego, Viveiro, Spain

The required number of digits is 29 because, as we shall show, $10^{28} \leq 2^{96}<10^{29}$. More exactly, we shall prove that $1<\frac{2^{96}}{10^{28}}<10$. Since

$$
\frac{2^{96}}{10^{28}}=\left(\frac{2^{24}}{10^{7}}\right)^{4}=\left(\frac{\left(2^{12}\right)^{2}}{10^{7}}\right)^{4}=\left(\frac{4096^{2}}{10^{7}}\right)^{4}=\left(\frac{1,6777216 \cdot 10^{7}}{10^{7}}\right)^{4}=(1,6777216)^{4}
$$

we obtain that
$\left.1^{4}<\frac{2^{96}}{10^{28}}<1,68\right)^{4}$, that is $1<\frac{2^{96}}{10^{28}}<(2.8224)^{2}$ and, hence, $1<\frac{2^{96}}{10^{28}}<3^{2}<10$.
Note: another way to show that $10^{28}<2^{96}$ is, for example:

$$
\begin{aligned}
\left.\left.\left.\begin{array}{c}
5^{2}<2^{5} \\
5<2^{3}
\end{array}\right\} \Rightarrow \begin{array}{c}
5^{2}<2^{5} \\
5^{3}<2^{9}
\end{array}\right\} \Rightarrow 5^{5}<2^{5} \cdot 5^{3}<2^{12} \Rightarrow \begin{array}{c}
5^{5}<2^{12} \\
5^{2}<2^{5}
\end{array}\right\} & \Rightarrow 5^{7}<2^{5} \cdot 5^{5}<2^{17} \Rightarrow \\
& \Rightarrow 2^{7} \cdot 5^{7}<2^{24} \Rightarrow \\
& \Rightarrow\left(10^{7}\right)^{4}<\left(2^{24}\right)^{4} \Rightarrow \\
& \Rightarrow 10^{28}<2^{96}
\end{aligned}
$$

Solution 4 by Toshihiro Shimizu, Kawasaki, Japan

Since $10^{3}<2^{10}=1024<1.03 \times 10^{3}$ and $2^{96}=\left(2^{10}\right)^{9} \times 2^{6}=\left(2^{10}\right)^{9} \times 10 \times 6.4$ we have

$$
6.4 \times 10 \times 10^{3 \times 9}<2^{96}<6.4 \times 10 \times 10^{3 \times 9} \times(1.03)^{9}
$$

We evaluate 1.03^{9}. We have $1.03 \times 1.03 \times 1.03=1.0609 \times 1.03=1.092727<1.1$ and $1.1 \times 1.1 \times 1.1=1.331<1.4$ (I never use calculator.) Therefore, we have

$$
10^{28}<6.4 \times 10^{28}<2^{96}<6.4 \times 1.4 \times 10^{28}=8.96 \times 10^{28}<10^{29}
$$

Therefore, the number of digits in 2^{96} is 29 .
Also solved by Brian D. Beasley, Presbyterian College, Clinton, SC; Hatef I. Arshagi, Guilford Technical Community College, Jamestown, NC; Kee-Wai Lau, Hong Kong, China; Albert Stadler, Herrliberg, Switzerland; David Stone and John Hawkins, Georgia Southern University, Statesboro, GA, and the proposers.

- 5435: Proposed by Valcho Milchev, Petko Rachov Slaveikov Seconday School, Bulgaria Find all positive integers a and b for which $\frac{a^{4}+3 a^{2}+1}{a b-1}$ is a positive integer.

Solution 1 by Moti Levy, Rehovot, Israel

This solution is based on similar problem and solution which appeared in [1].
$\frac{a^{4}+3 a^{2}+1}{a b-1}$ may be replaced by equivalent expression with symmetric polynomial in the numerator.

Indeed,

$$
\frac{a^{4}+3 a^{2}+1}{a b-1}=\frac{a^{2}\left(a^{2}+b^{2}+3\right)-(a b-1)(a b+1)}{a b-1}
$$

Now, a and $a b-1$ satisfy the equation $b * a+(-1) *(a b-1)=1$, which implies that a and $a b-1$ are relatively prime and clearly a^{2} and $a b-1$ are also relatively prime.
Thus, $\frac{a^{4}+3 a^{2}+1}{a b-1}$ is a positive integer if and only if $\frac{a^{2}+b^{2}+3}{a b-1}$ is a positive integer.
We call the ordered pair (a, b) a solution if

$$
\begin{equation*}
\frac{a^{2}+b^{2}+3}{a b-1}=m \tag{1}
\end{equation*}
$$

where m is a positive integer. The set of solutions is not empty since $(1,2)$ is a solution. We exclude (a, a) from the set of solutions since $\frac{2 a^{2}+3}{a^{2}-1}=2+\frac{5}{a^{2}-1} \notin N$ for all $a>0$. Equation (1) is re-written as follows

$$
\begin{equation*}
a^{2}-m a b+b^{2}=-(m+3) \tag{2}
\end{equation*}
$$

It is easily verified (see (3)) that if (a, b) is a solution then $(m a-b, a)$ is a solution as well.

$$
\begin{equation*}
(m a-b)^{2}-m(m a-b) a+a^{2}=a^{2}-m a b+b^{2} \tag{3}
\end{equation*}
$$

Let $\left(a_{0}, b_{0}\right)$ be the "smallest" solution in the sense that $a_{0}+b_{0} \leq a+b$, where (a, b) is any solution.

$$
a_{0}+b_{0} \leq\left(m a_{0}-b_{0}\right)+a_{0}
$$

or

$$
\begin{gather*}
\frac{2 b_{0}}{a_{0}} \leq m \tag{4}\\
\frac{2 b_{0}}{a_{0}} \leq \frac{a_{0}^{2}+b_{0}^{2}+3}{a_{0} b_{0}-1} \\
0 \leq-2 a_{0} b_{0}^{2}+2 b_{0}+a_{0}^{3}+3 a_{0} \tag{5}
\end{gather*}
$$

Let $\left(a_{0}, a_{0}+k\right)$ be a solution. Then substituting in (5) gives,

$$
\begin{aligned}
0 & \leq-2 a_{0}\left(a_{0}+k\right)^{2}+2\left(a_{0}+k\right)+a_{0}^{3}+3 a_{0} \\
& =-2 k^{2} a_{0}-4 k a_{0}^{2}+2 k-a_{0}^{3}+5 a_{0}
\end{aligned}
$$

Solving $-2 k^{2} a_{0}-4 k a_{0}^{2}+2 k-a_{0}^{3}+5 a_{0} \geq 0$, we get

$$
\frac{1}{2 a_{0}}\left(1-2 a_{0}^{2}-\sqrt{6 a_{0}^{2}+2 a_{0}^{4}+1}\right) \leq k \leq \frac{1}{2 a_{0}}\left(1-2 a_{0}^{2}+\sqrt{6 a_{0}^{2}+2 a_{0}^{4}+1}\right)
$$

hence, k will have positive values only if

$$
\sqrt{6 a_{0}^{2}+2 a_{0}^{4}+1}+1 \geq 2 a_{0}^{2}
$$

This inequality holds for $a_{0}=1$ and $a_{0}=2$. For $a_{0}=1$, possible values for k are 1 or 2 ; for $a_{0}=2$, possible value for k is 1 .

Thus we have to check the following set of potential solutions: $\{(1,2),(1,3),(2,1)\}$. Clearly $(1,2)$ and $(2,1)$ are solutions, but $(1,3)$ is not.

For $(1,2)$ and $(2,1)$ the value of m is 8 . We conclude that the sole value of m is 8 . It follows from (3) that the pairs $\left(a_{n}, b_{n}\right)$ (and by symmetry $\left.\left(b_{n}, a_{n}\right)\right)$, which satisfy condition (1) are expressed by the recurrence formulas

$$
\begin{aligned}
a_{n+1} & =8 a_{n}-b_{n} \\
b_{n+1} & =a_{n}
\end{aligned}
$$

which are equivalent to the recurrence formulas

$$
\begin{align*}
a_{n+2} & =8 a_{n+1}-a_{n} \tag{6}\\
b_{n+2} & =8 b_{n+1}-b_{n}
\end{align*}
$$

We have two sets of initial conditions:

1) $a_{0}=1, a_{1}=6, b_{0}=2, b_{1}=1$; the pairs resulting from these initial conditions are $(1,2),(6,1),(47,6),(370,47), \ldots$

$$
\begin{aligned}
& a_{n}=\left(\frac{1}{2}-\frac{1}{\sqrt{15}}\right)(4-\sqrt{15})^{n}+\left(\frac{1}{2}+\frac{1}{\sqrt{15}}\right)(4+\sqrt{15})^{n} \\
& b_{n}=\left(1+\frac{7}{2 \sqrt{15}}\right)(4-\sqrt{15})^{n}+\left(1-\frac{7}{2 \sqrt{15}}\right)(4+\sqrt{15})^{n}
\end{aligned}
$$

2) $a_{0}=2, a_{1}=15, b_{0}=1, b_{1}=2$; the pairs resulting from these initial conditions are $(2,1),(15,2),(118,15),(929,118), \ldots$

$$
\begin{aligned}
& a_{n}=\left(1-\frac{7}{2 \sqrt{15}}\right)(4-\sqrt{15})^{n}+\left(1+\frac{7}{2 \sqrt{15}}\right)(4+\sqrt{15})^{n} \\
& b_{n}=\left(\frac{1}{2}+\frac{1}{\sqrt{15}}\right)(4-\sqrt{15})^{n}+\left(\frac{1}{2}-\frac{1}{\sqrt{15}}\right)(4+\sqrt{15})^{n}
\end{aligned}
$$

Reference:

[1] La Gaceta de la RSME, Vol. 18 (2015), No. 1, "Solution to Problem 241, by Roberto de la Cruz Moreno".

Solution 2 by Anthony Bevelacqua, University of North Dakota, Grand Forks, ND

1) There are no solutions to our problem with $a=b$. We have $a^{4}+3 a^{2}+1 \equiv 5 \bmod \left(a^{2}-1\right)$. Assume there is a solution with $a=b$. Then $a^{2}-1$ divides $a^{4}+3 a^{2}+1$ so $a^{4}+3 a^{2}+1 \equiv 0 \bmod \left(a^{2}-1\right)$. Thus $5 \equiv 0 \bmod \left(a^{2}-1\right)$ and so $a^{2}-1$ divides 5 . But then $a^{2}=2$ or $a^{2}=6$, a contradiction in either case.
2) The only solutions with $a \leq 4$ are $(a, b)=(1,2),(2,1),(1,6)$ and $(2,15)$.

Suppose (a, b) is a solution to our problem. If $a=1$ then $b-1$ divides 5 so $b-1=1$ or $b-1=5$. Both $(1,2)$ and $(1,6)$ are solutions. If $a=2$ then $2 b-1$ divides 29 so $2 b-1=1$ or $2 b-1=29$. Both $(2,1)$ and $(2,15)$ are solutions. If $a=3$ then $3 b-1$ divides 109 so $3 b-1=1$ or $3 b-1=109$, a contradiction. If $a=4$ then $4 b-1$ divides $305=5 \cdot 61$ so $4 b-1 \in\{1,5,61,305\}$, a contradiction.
3) $a b-1$ divides $a^{4}+3 a^{2}+1$ if and only if $a b-1$ divides $a^{2}+b^{2}+3$.

We have

$$
\begin{aligned}
(a b-1)\left(a^{3} b+3 a b+a^{2}+3\right) & =a^{4} b^{2}+3 a^{2} b^{2}+a^{3} b+3 a b-a^{3} b-3 a b-a^{2}-3 \\
& =a^{4} b^{2}+3 a^{2} b^{2}-a^{2}-3
\end{aligned}
$$

and so

$$
b^{2}\left(a^{4}+3 a^{2}+1\right)-(a b-1)\left(a^{3} b+3 a b+a^{2}+3\right)=a^{2}+b^{2}+3
$$

Thus if $a b-1$ divides $a^{4}+3 a^{2}+1$ then $a b-1$ divides $a^{2}+b^{2}+3$. Conversely suppose $a b-1$ divides $a^{2}+b^{2}+3$. Then $a b-1$ divides $b^{2}\left(a^{4}+3 a^{2}+1\right)$. Since $a b-1$ and b^{2} are relatively prime we have that $a b-1$ divides $a^{4}+3 a^{2}+1$.

Now if $k>0$ and (a, b) is a solution to $a^{2}+b^{2}+3=k(a b-1)$ then b is a root of the polynomial $a^{2}+x^{2}+3=k(a x-1)$ which can be rewritten as $x^{2}-k a x+\left(a^{2}+3+k\right)=0$. Thus if b^{\prime} is the other root we have, by Vieta's formulas, $b+b^{\prime}=k a$ and $b b^{\prime}=a^{2}+3+k$. The first shows that b^{\prime} is an integer and the second shows that $b^{\prime}>0$. Thus $\left(a, b^{\prime}\right)$ is another solution to $a^{2}+b^{2}+3=k(a b-1)$.
4) If $a b-1$ divides $a^{2}+b^{2}+3$ then $a^{2}+b^{2}+3=8(a b-1)$. Suppose there are positive integers a, b, k such that $a^{2}+b^{2}+3=k(a b-1)$. For this fixed k let S be the set of all positive integer pairs (a, b) such that $a^{2}+b^{2}+3=k(a b-1)$. Choose an $(a, b) \in S$ such that $a+b$ is minimal. Without loss of generality we have $a \leq b$. Since $a \neq b$ by 1) we have $a<b$. Now $\left(a, b^{\prime}\right)$ is another solution. Since $a+b$ is minimal we have $a+b \leq a+b^{\prime}$ and hence $b \leq b^{\prime}$. Thus

$$
b^{2} \leq b b^{\prime}=a^{2}+3+k \Longrightarrow k \geq b^{2}-a^{2}-3
$$

and so

$$
\begin{aligned}
a^{2}+b^{2}+3 & =k(a b-1) \\
& \geq\left(b^{2}-a^{2}-3\right)(a b-1) \\
& =a b^{3}-b^{2}-a^{3} b+a^{2}-3 a b+3
\end{aligned}
$$

Hence

$$
3 a b+2 b^{2} \geq a b^{3}-a^{3} b \Longrightarrow 3 a+2 b \geq a b^{2}-a^{3}
$$

Since $a<b$ we have $3 a+2 b<5 b$ and $a b^{2}-a^{3}=a(b+a)(b-a)>a b$. Thus $5 b>a b$ and so $a<5$. By 2) the only possible (a, b) are then $(1,2),(1,6)$, and $(2,15)$. Each of these gives $k=8$.

Thus 3) and 4) show that our original problem is equivalent to finding all positive integers a and b such that $a^{2}+b^{2}+3=8(a b-1)$. We could rewrite this as $(a-4 b)^{2}-15 b^{2}=-11$ and apply the theory of equations of the form $x^{2}-D y^{2}=N$ as found in, say, section 58 of Nagell's Number Theory. Instead we will determine the solutions by "Vieta jumping" as in the proof of (4).

Let S be the set of all positive integers pairs (a, b) such that $a^{2}+b^{2}+3=8(a b-1)$.
Clearly if $(a, b) \in S$ then $(b, a) \in S$, and, by 1) there are no $(a, b) \in S$ with $a=b$. Recall that if $(a, b) \in S$ then $\left(a, b^{\prime}\right) \in S$ where $b+b^{\prime}=8 a$ and $b b^{\prime}=a^{2}+11$.
5) For any $(a, b) \in S$ define $\rho(a, b)=\left(b^{\prime}, a\right)$ and $\lambda(a, b)=(b, 8 b-a)$. Then $\rho(a, b) \in S$, $\lambda(a, b) \in S$, and $\lambda(\rho(a, b))=(a, b)$.

Let $(a, b) \in S$. We have $\left(a, b^{\prime}\right) \in S$ and hence $\rho(a, b)=\left(b^{\prime}, a\right) \in S$. Now

$$
\begin{aligned}
b^{2}+(8 b-a)^{2}+3 & =64 b^{2}-16 a b+\left(a^{2}+b^{2}+3\right) \\
& =64 b^{2}-16 a b+8(a b-1) \\
& =64 b^{2}-8 a b-8 \\
& =8(b(8 b-a)-1)
\end{aligned}
$$

so $\lambda(a, b)=(b, 8 b-a) \in S$. Finally,

$$
\lambda(\rho(a, b))=\lambda\left(b^{\prime}, a\right)=\left(a, 8 a-b^{\prime}\right)
$$

where

$$
8 a-b^{\prime}=8 a-\frac{a^{2}+11}{b}=\frac{8 a b-a^{2}-11}{b}=\frac{b^{2}}{b}=b
$$

6) The only $(a, b) \in S$ such that $a<b \leq 10$ are $(a, b)=(1,2)$ and $(1,6)$.

Since $a^{2}+b^{2}+3 \equiv 0 \bmod 8$ we see that a and b must have opposite parity and neither can be divisible by 4 . Moreover the only such solutions with a or b less than 4 are $(1,2)$ and $(1,6)$ by 2$)$. This leaves only

$$
(a, b)=(5,6),(6,7),(6,9),(5,10),(7,10),(9,10)
$$

and none of these satisfy $a^{2}+b^{2}+3=8(a b-1)$.
7) Let $(a, b) \in S$ such that $b \geq 11$. If $a<b$ then $b^{\prime}<a$

Suppose first that $b^{\prime} \leq 10$. Assume $a \leq b^{\prime}$. Since $\left(a, b^{\prime}\right) \in S$ we have $a \neq b^{\prime}$. Thus $a<b^{\prime} \leq 10$. So, by 6), we must have $a=1$. But if $a=1$ we have $b=1$ or $b=6$, a contradiction with $b \geq 11$. Hence $b^{\prime}<a$.

Suppose now that $b^{\prime} \geq 11$. Again assume $a \leq b^{\prime}$. Then, as in the last paragraph, $a<b^{\prime}$. We have

$$
b b^{\prime}=a^{2}+11<\left(b^{\prime}\right)^{2}+11 \Longrightarrow b<b^{\prime}+\frac{11}{b^{\prime}} \leq b^{\prime}+1
$$

and so $b \leq b^{\prime}$. Now swapping b and b^{\prime} we have

$$
b b^{\prime}=a^{2}+11<b^{2}+11 \Longrightarrow b^{\prime}<b+\frac{11}{b} \leq b+1
$$

and so $b^{\prime} \leq b$. Thus $b=b^{\prime}$. Since $8 a=b+b^{\prime}=2 b$ we have $b=4 a$. But then

$$
a^{2}+16 a^{2}+3=8\left(4 a^{2}-1\right) \Longrightarrow 11=15 a^{2}
$$

a contradiction. Hence $b^{\prime}<a$.
Finally,
8) $(a, b) \in S$ if and only if $\{a, b\}=\left\{s_{n}, s_{n+1}\right\}$ or $\{a, b\}=\left\{t_{n}, t_{n+1}\right\}$ for $n \geq 0$ where

$$
s_{0}=1, s_{1}=2, \text { and } s_{n}=8 s_{n-1}-s_{n-2} \text { for } n \geq 2
$$

and

$$
t_{0}=1, t_{1}=6, \text { and } t_{n}=8 t_{n-1}-t_{n-2} \text { for } n \geq 2
$$

Note that $\lambda^{n}(1,2)=\left(s_{n}, s_{n+1}\right)$ and $\lambda^{n}(1,6)=\left(t_{n}, t_{n+1}\right)$ for all $n \geq 0$.
Since $(1,2)$ and $(1,6) \in S$ we see that $(a, b) \in S$ for any $\{a, b\}=\left\{s_{n}, s_{n+1}\right\}$ or $\{a, b\}=\left\{t_{n}, t_{n+1}\right\}$ and $n \geq 0$ by (5).

Now suppose $(a, b) \in S$. Since $(b, a) \in S$ as well, we can suppose without loss of generality that $a<b$. By 5) and 7) there exists an integer $d \geq 0$ such that $\rho^{d}(a, b)=\left(a^{*}, b^{*}\right)$ with $a^{*}<b^{*} \leq 10$. By (6) we must have $\rho^{d}(a, b)=(1,2)$ or $\rho^{d}(a, b)=(1,6)$. Since $(a, b)=\lambda^{d}\left(\rho^{d}(a, b)\right)$ we have $(a, b)=\lambda^{d}(1,2)$ or $(a, b)=\lambda^{d}(1,6)$.

Thus $a b-1$ divides $a^{4}+3 a^{2}+1$ if and only if a and b are consecutive elements of either of the sequences s_{n} or t_{n} given above. Since the first few terms of s_{n} are
$1,2,15,118,929,7314,57583, \ldots$ and the first few terms of t_{n} are
$1,6,47,370,2913,22934,180559, \ldots$ the first few solutions to our problem (with $a \leq b$) are

$$
(a, b)=(1,2),(2,15),(15,118),(118,929),(929,7314),(7314,57583), \ldots
$$

and

$$
(a, b)=(1,6),(6,47),(47,370),(370,2913),(2913,22934),(22934,180559), \ldots
$$

Also solved by Ed Gray, Highland Beach, FL; Kenneth Korbin, NewYork, NY; Toshihiro Shimizu, Kawasaki, Japan; Anna V. Tomova (three solutions), Varna, Bulgaria, and the proposer.

- 5436: Proposed by Arkady Alt, San Jose, CA

Find all values of the parameter t for which the system of inequalities

$$
\mathbf{A}=\left\{\begin{array}{l}
\sqrt[4]{x+t} \geq 2 y \\
\sqrt[4]{y+t} \geq 2 z \\
\sqrt[4]{z+t} \geq 2 x
\end{array}\right.
$$

a) has solutions;
b) has a unique solution.

Solution by the Proposer

a) Note that $(\mathbf{A}) \Longleftrightarrow\left\{\begin{array}{l}t \geq 16 y^{4}-x \\ t \geq 16 z^{4}-y \\ t \geq 16 x^{4}-z\end{array} \Longrightarrow 3 t \geq 16 y^{4}-x+16 z^{4}-y+16 x^{4}-z=\right.$ $\left(16 x^{4}-x\right)+\left(16 y^{4}-y\right)+\left(16 z^{4}-z\right) \geq 3 \min _{x}\left(16 x^{4}-x\right) \Longrightarrow t \geq \min _{x}\left(16 x^{4}-x\right)$.
For $x \in\left(0, \frac{1}{16}\right)$, using the AM-GM Inequality, we obtain
$x-16 x^{4}=x\left(1-16 x^{3}\right)=\sqrt[3]{x^{3}\left(1-16 x^{3}\right)^{3}}=\sqrt[3]{\frac{\left(48 x^{3}\right)\left(1-16 x^{3}\right)^{3}}{48}} \leq$
$\sqrt[3]{\frac{1}{48} \cdot\left(\frac{48 x^{3}+3-3 \cdot 16 x^{3}}{4}\right)^{4}}=\sqrt[3]{\frac{1}{48} \cdot\left(\frac{3}{4}\right)^{4}}=\frac{3}{16}$. And since $x-16 x^{4} \leq 0$ for
$x \notin\left(0, \frac{1}{16}\right)$, then for all x the inequality $x-16 x^{4} \leq \frac{3}{16}$ holds. Since the upper bound is $\frac{3}{16}$ for values
$x-16 x^{4}$ is attainable when $x=\frac{1}{4}$, then $\max \left(x-16 x^{4}\right)=\frac{3}{16} \Longleftrightarrow$ $\min _{x}\left(16 x^{4}-x\right)=-\frac{3}{16}$.
Thus $t \geq-\frac{3}{16}$ is a necessary condition for the solvability of system (A).
Let's prove sufficiency.
Let $t \geq-\frac{3}{16}$. Since function $h(x)$ is continuous in R and $\min _{x}\left(16 x^{4}-x\right)=-\frac{3}{16}$, then $\left[-\frac{3}{16}, \infty\right)$ is the range of $h(x)$. This means that for any $t \geq-\frac{3}{16}$ the equation $16 x^{4}-x=t$
has solution in R and since for any u which is a solution of the equation $16 x^{4}-x=t$ the triple $(x, y, z)=(u, u, u$,$) is a solution of the system (A) then for such t$ system (A) solvable as well.

Remark.

Actually the latest reasoning about the solvability of system (A) if $t \geq-\frac{3}{16}$ is redundant for (a) because suffices to note that for such t the triple $(x, y, z)=\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$ satisfies to (A).

But for (b) criteria of solvability of equation $16 x^{4}-x=t$ in form of inequality $t \geq-\frac{3}{16}$ is
important.
b) Note that system (A) always have more the one solution if $t>-\frac{3}{16}$.

Indeed, let for any $t_{1}, t_{2} \in\left(-\frac{3}{16}, t\right)$ such that $t_{1} \neq t_{2}$ equation $16 u^{4}-u=t_{i}$ has solution $u_{i}, i=1,2$.

Then $u_{1} \neq u_{2}$ and two distinct triples $\left(u_{1}, u_{1}, u_{1}\right),\left(u_{2}, u_{2}, u_{2}\right)$ satisfy to the system (A).
Let $t=-\frac{3}{16}$.Then $-\frac{3}{16} \geq 16 y^{4}-x \Longrightarrow-\frac{3}{16}+x-y \geq 16 y^{4}-y \geq-\frac{3}{16}$.
Hereof $x-y \geq 0 \Longleftrightarrow x \geq y$. Similarly $-\frac{3}{16} \geq 16 z^{4}-y$ and $-\frac{3}{16} \geq 16 x^{4}-z$ implies $y \geq z$ and $z \geq x$, respectively. Thus in that case $x=y=z$ and all solutions of the system (A) are represented by solutions of one equation $16 x^{4}-x=-\frac{3}{16} \Longleftrightarrow$ $16 x^{4}-x+\frac{3}{16}=0 \Longleftrightarrow 256 x^{4}-16 x+3=0$ which has only root $\frac{1}{4}$ because $256 x^{4}-16 x+3=(4 x-1)^{2}\left(16 x^{2}+8 x+3\right)$.
Thus, system (A) has unique solution iff $t=\frac{1}{4}$.
Also solved by Ed Gray, Highland Beach,FL; Kee-Wai Lau, Hong Kong, China; Moti Levy, Rehovot, Israel; David Stone and John Hawkins, Georgia

Southern University, Statesboro, GA, and Toshihiro Shimizu, Kawasaki, Japan.

- 5437: Proposed by José Luis Díaz-Barrero, Barcelona Tech, Barcelona, Spain

Let $f: C-\{2\} \rightarrow C$ be the function defined by $f(z)=\frac{2-3 z}{z-2}$. If
$f^{n}(z)=(\underbrace{f \circ f \circ \ldots \circ f}_{n})(z)$, then compute $f^{n}(z)$ and $\lim _{n \rightarrow+\infty} f^{n}(z)$.

Solution 1 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State University, San Angelo, TX

Assume first that $z \neq 2$ and $f^{n}(z)$ exists for all $n \geq 1$. Then, direct computation yields

$$
\begin{equation*}
f^{2}(z)=\frac{10-11 z}{5 z-6} \quad \text { and } \quad f^{3}(z)=\frac{42-43 z}{21 z-22} . \tag{1}
\end{equation*}
$$

When these are combined with the formula for $f(z)$, it appears that there is a sequence $\left\{x_{n}\right\}$ of positive integers such that

$$
\begin{equation*}
f^{n}(z)=\frac{2 x_{n}-\left(2 x_{n}+1\right) z}{x_{n} z-\left(x_{n}+1\right)} \tag{2}
\end{equation*}
$$

for all $n \geq 1$. Since $f(z)=\frac{2-3 z}{z-2}$, we have $x_{1}=1$. Further, if (2) holds for some $n \geq 1$, then

$$
\begin{aligned}
f^{n+1}(z) & =f\left(f^{n}(z)\right) \\
& =\frac{2-3 f^{n}(z)}{f^{n}(z)-2} \\
& =\frac{2-3\left[\frac{2 x_{n}-\left(2 x_{n}+1\right) z}{x_{n} z-\left(x_{n}+1\right)}\right]}{\left[\frac{2 x_{n}-\left(2 x_{n}+1\right) z}{x_{n} z-\left(x_{n}+1\right)}\right]-2} \\
& =\frac{2\left[x_{n} z-\left(x_{n}+1\right)\right]-3\left[2 x_{n}-\left(2 x_{n}+1\right) z\right]}{\left[2 x_{n}-\left(2 x_{n}+1\right) z\right]-2\left[x_{n} z-\left(x_{n}+1\right)\right]} \\
& =\frac{\left(8 x_{n}+2\right)-\left(8 x_{n}+3\right) z}{\left(4 x_{n}+1\right) z-\left(4 x_{n}+2\right)} .
\end{aligned}
$$

This suggests that $x_{n+1}=4 x_{n}+1$ for $n \geq 1$. These conditions on $\left\{x_{n}\right\}$ are consistent with the formula for $f(z)$ and property (2). Note finally that

$$
x_{1}=1=\frac{3}{3}=\frac{4-1}{3}, \quad x_{2}=5=\frac{15}{3}=\frac{4^{2}-1}{3}, \quad \text { and } \quad x_{3}=21=\frac{63}{3}=\frac{4^{3}-1}{3} .
$$

This leads us to conjecture that $x_{n}=\frac{4^{n}-1}{3}$ and hence,

$$
f^{n}(z)=\frac{2\left(\frac{4^{n}-1}{3}\right)-\left[2\left(\frac{4^{n}-1}{3}\right)+1\right] z}{\left(\frac{4^{n}-1}{3}\right) z-\left[\left(\frac{4^{n}-1}{3}\right)+1\right]}=\frac{2\left(4^{n}-1\right)-\left(2 \cdot 4^{n}+1\right) z}{\left(4^{n}-1\right) z-\left(4^{n}+2\right)}
$$

for all $n \geq 1$.
If $f^{n}(z)$ exists for all $n \geq 1$, let $P(n)$ be the statement

$$
\begin{equation*}
f^{n}(z)=\frac{2\left(4^{n}-1\right)-\left(2 \cdot 4^{n}+1\right) z}{\left(4^{n}-1\right) z-\left(4^{n}+2\right)} \tag{3}
\end{equation*}
$$

If $n=1$,

$$
\begin{aligned}
\frac{2(4-1)-(2 \cdot 4+1) z}{(4-1) z-(4+2)} & =\frac{6-9 z}{3 z-6} \\
& =\frac{2-3 z}{z-2}
\end{aligned}
$$

and thus, $P(1)$ is true. Assume that $P(n)$ is true, i.e.,

$$
f^{n}(z)=\frac{2\left(4^{n}-1\right)-\left(2 \cdot 4^{n}+1\right) z}{\left(4^{n}-1\right) z-\left(4^{n}+2\right)}
$$

for some $n \geq 1$. Then,

$$
\begin{aligned}
f^{n+1}(z) & =f\left(f^{n}(z)\right) \\
& =\frac{2-3\left[\frac{2\left(4^{n}-1\right)-\left(2 \cdot 4^{n}+1\right) z}{\left(4^{n}-1\right) z-\left(4^{n}+2\right)}\right]}{\left[\frac{2\left(4^{n}-1\right)-\left(2 \cdot 4^{n}+1\right) z}{\left(4^{n}-1\right) z-\left(4^{n}+2\right)}\right]-2} \\
& =\frac{2\left[\left(4^{n}-1\right) z-\left(4^{n}+2\right)\right]-3\left[2\left(4^{n}-1\right)-\left(2 \cdot 4^{n}+1\right) z\right]}{\left[2\left(4^{n}-1\right)-\left(2 \cdot 4^{n}+1\right) z\right]-2\left[\left(4^{n}-1\right) z-\left(4^{n}+2\right)\right]} \\
& =\frac{\left[2\left(4^{n}-1\right)+3\left(2 \cdot 4^{n}+1\right)\right] z-\left[2\left(4^{n}+2\right)+6\left(4^{n}-1\right)\right]}{\left[2\left(4^{n}-1\right)+2\left(4^{n}+2\right)\right]-\left[2 \cdot 4^{n}+1+2\left(4^{n}-1\right)\right] z} \\
& =\frac{\left(2 \cdot 4^{n+1}+1\right) z-2\left(4^{n+1}-1\right)}{\left(4^{n+1}+2\right)-\left(4^{n+1}-1\right) z} \\
& =\frac{2\left(4^{n+1}-1\right)-\left(2 \cdot 4^{n+1}+1\right) z}{\left(4^{n+1}-1\right) z-\left(4^{n+1}+2\right)}
\end{aligned}
$$

and therefore, $P(n+1)$ is also true. By Mathematical Induction, $P(n)$ is true for all $n \geq 1$.
Because formula (3) required the assumption that $f^{n}(z)$ exists for all $n \geq 1$, we need to determine if there are points $z \in C \backslash\{2\}$ for which there is a positive integer m such that
$f^{n}(z)$ does not exist for $n>m$. The existence of $f^{n}(z)$ requires that $z, f(z), \ldots$, $f^{n-1}(z) \neq 2$. Therefore, we have to find all points z for which $f^{m}(z)=2$ for some $m \geq 1$. One way to do this is to consider the inverse function

$$
f^{-1}(z)=\frac{2 z+2}{z+3}
$$

and describe

$$
f^{-m}(z)=(\underbrace{f^{-1} \circ f^{-1} \circ \ldots \circ f^{-1}}_{m})(z)
$$

in a manner similar to that used to find formula (3). If we do so, we see that for $z \neq-3$,

$$
f^{-m}(z)=\frac{\left(4^{m}+2\right) z+2\left(4^{m}-1\right)}{\left(4^{m}-1\right) z+2 \cdot 4^{m}+1}
$$

In particular,

$$
f^{-m}(2)=\frac{\left(4^{m}+2\right) \cdot 2+2\left(4^{m}-1\right)}{\left(4^{m}-1\right) \cdot 2+2 \cdot 4^{m}+1}=\frac{4^{m+1}+2}{4^{m+1}-1}
$$

If $z_{m}=\frac{4^{m+1}+2}{4^{m+1}-1}$ for some $m \geq 1$, then it follows that $f^{m}\left(z_{m}\right)=2$ and hence, $f^{n}\left(z_{m}\right)$ is undefined for $n>m$. Therefore, $\lim _{n \rightarrow+\infty} f^{n}\left(z_{m}\right)$ does not exist for these points.

Let

$$
S=\{2\} \cup\left\{\frac{4^{m+1}+2}{4^{m+1}-1}: m \in N\right\}
$$

For $z \notin S, f^{n}(z)$ exists for all $n \geq 1$. If $z=1$, then $z \notin S$ and (3) implies that

$$
\begin{aligned}
f^{n}(1) & =\frac{2\left(4^{n}-1\right)-\left(2 \cdot 4^{n}+1\right)}{\left(4^{n}-1\right)-\left(4^{n}+2\right)} \\
& =\frac{-3}{-3} \\
& =1
\end{aligned}
$$

for all $n \geq 1$. Hence, $\lim _{n \rightarrow+\infty} f^{n}(1)=1$. For all other values of $z \notin S$,

$$
\begin{aligned}
\lim _{n \rightarrow+\infty} f^{n}(z) & =\lim _{n \rightarrow+\infty} \frac{2\left(4^{n}-1\right)-\left(2 \cdot 4^{n}+1\right) z}{\left(4^{n}-1\right) z-\left(4^{n}+2\right)} \\
& =\lim _{n \rightarrow+\infty} \frac{2\left(1-4^{-n}\right)-\left(2+4^{-n}\right) z}{\left(1-4^{-n}\right) z-\left(1+2 \cdot 4^{-n}\right)} \\
& =\frac{2-2 z}{z-1}=-2
\end{aligned}
$$

Therefore, for $z \notin S$,

$$
\lim _{n \rightarrow+\infty} f^{n}(z)= \begin{cases}1 & \text { if } z=1 \\ -2 & \text { otherwise }\end{cases}
$$

Solution 2 by Henry Ricardo, Westchester Math Circle, NY

We take advantage of the well-known homomorphism between 2×2 matrices and Möbius transformations: $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \leftrightarrow f(z)=\frac{a z+b}{c z+d}$. In this relation, the n-fold composition $f^{n}(z)$ corresponds to the nth power of A. Here we are dealing with powers of the matrix $A=\left(\begin{array}{cc}-3 & 2 \\ 1 & -2\end{array}\right)$.

Now we invoke a known result that is a consequence of the Cayley-Hamilton theorem: If $A \in M_{2}(C)$ and the eigenvalues λ_{1}, λ_{2} of A are not equal, then for all $n \geq 1$ we have

$$
A^{n}=\lambda_{1}^{n} B+\lambda_{2}^{n} C \text {, where } B=\frac{1}{\lambda_{1}-\lambda_{2}}\left(A-\lambda_{2} I_{2}\right) \text { and } C=\frac{1}{\lambda_{2}-\lambda_{1}}\left(A-\lambda_{1} I_{2}\right) \cdot(*)
$$

(See, for example, Theorem 2.25(a) in Essential Linear Algebra with Applications by T. Andreescu, Birkhäuser, 2014.)

The eigenvalues of the given matrix A are -1 and -4 , so we apply (*) to get

$$
\begin{aligned}
A^{n} & =\frac{(-1)^{n}}{3}\left(A+4 I_{2}\right)-\frac{(-4)^{n}}{3}\left(A+I_{2}\right) \\
& =\left(\frac{(-1)^{n}-(-4)^{n}}{3}\right) A+\left(\frac{4 \cdot(-1)^{n}-(-4)^{n}}{3}\right) I_{2} \\
& =\left(\begin{array}{cc}
\frac{1}{3}(-1)^{n}\left(1+2 \cdot 4^{n}\right) & \frac{2}{3}(-1)^{n}+\frac{2}{3}(-1)^{n+1} 4^{n} \\
\frac{1}{3}(-1)^{n}+\frac{1}{3}(-1)^{n+1} 4^{n} & \frac{1}{3}(-1)^{n}\left(2+4^{n}\right)
\end{array}\right) .
\end{aligned}
$$

After some simplification, we see that

$$
f^{n}(z)=\frac{\left(2 \cdot 4^{n}+1\right) z-2\left(4^{n}-1\right)}{\left(1-4^{n}\right) z+\left(4^{n}+2\right)} .
$$

Finally, we note that $f^{n}(1)=3 / 3=1$; and, for $z \neq 1$, we have

$$
\lim _{n \rightarrow+\infty} f^{n}(z)=\lim _{n \rightarrow+\infty} \frac{\left(2 \cdot 4^{n}+1\right) z-2\left(4^{n}-1\right)}{\left(1-4^{n}\right) z+\left(4^{n}+2\right)}=\frac{2(z-1)}{1-z}=-2 .
$$

Therefore,

$$
\lim _{n \rightarrow+\infty} f^{n}(z)= \begin{cases}1 & \text { if } z=1 \\ -2 & \text { if } z \neq 1\end{cases}
$$

Solution 3 by David E. Manes, Oneonta, NY

We will show by induction that

$$
f^{(n)}(z)=\frac{2-\frac{2 a_{n}+1}{a_{n}} z}{z-\frac{a_{n}+1}{a_{n}}}
$$

where $a_{n}=\frac{4^{n}-1}{3}$. If $n=1$, then $a_{1}=1$ and $f^{(1)}(z)=\frac{(2-3 z)}{(z-2)}=f(z)$. Therefore, the result is true for $n=1$. Assume the positive integer $n \geq 1$ and the given formula is valid
for $f^{(n)}(z)$. Then

$$
\begin{aligned}
f^{(n+1)}(z) & =f\left(f^{(n)}(z)=\frac{2-3\left(\frac{2-\frac{2 a_{n}+1}{a_{n}} z}{z-\frac{a_{n}+1}{a_{n}}}\right)}{\left(\frac{2-\frac{2 a_{n}+1}{a_{n}} z}{z-\frac{a_{n}+1}{a_{n}}}\right)-2}=\frac{2 z-2\left(\frac{a_{n}+1}{a_{n}}\right)-6+3\left(\frac{2 a_{n}+1}{a_{n}}\right) z}{2-\frac{2 a_{n}+1}{a_{n}} z-2 z+2\left(\frac{a_{n}+1}{a_{n}}\right)}\right. \\
& =\frac{2 a_{n} z-2 a_{n}-2-6 a_{n}+6 a_{n} z+3 z}{2 a_{n}-2 a_{n} z-z-2 a_{n} z+2 a_{n}+2}=\frac{-2-8 a_{n}+\left(8 a_{n}+3\right) z}{-\left(4 a_{n}+1\right) z+(4 n+2)} \\
= & \frac{2+8 a_{n}-\left(8 a_{n}+3\right) z}{\left(4 a_{n}+1\right) z-(4 n+2)}=\frac{2+8\left(\frac{4^{n}-1}{3}\right)-\left(8\left(\frac{4^{n}-1}{3}\right)+3\right) z}{\left(4\left(\frac{4^{n}-1}{3}\right)+1\right) z-\left(4\left(\frac{4^{n}-1}{3}\right)+2\right)} \\
= & \frac{\left(-2+2 \cdot 4^{n+1}\right)-\left(1+2 \cdot 4^{n+1}\right) z}{\left(4^{n+1}-1\right) z-\left(4^{n+1}+2\right)} \\
= & \left.\frac{2-\left(\frac{2 \cdot 4^{n+1}+1}{4^{n+1}-1}\right) z}{z-\left(\frac{4^{n+1}+2}{4^{n+1}-1}\right)}=\frac{2-\left(\frac{2 \cdot 4^{n+1}+1}{3}\right.}{\frac{4^{n+1}-1}{3}}\right) z \\
= & \frac{2-\left(\frac{2 a_{n+1}+1}{a_{n+1}}\right) z}{z-\left(\frac{a_{n+1}+1}{a_{n+1}}\right)}
\end{aligned}
$$

where $a_{n+1}=\frac{\left(4^{n+1}-1\right)}{3}$. Note that $\frac{4^{n+1}+2}{3}=\frac{4^{n+1}-1}{3}+1=a_{n+1}+1$ and

$$
\frac{2 \cdot 4^{n+1}+1}{3}=\frac{2 \cdot 4^{n+1}-2}{3}+1=2\left(\frac{4^{n+1}-1}{3}\right)+1=2 a_{n+1}+1 .
$$

Hence, the result is true for the integer $n+1$ so that by the principle of mathematical induction the result is valid for all positive integers n.
For the limit question, note that if $f(z)=z$, then $z=1$ or $z=-2$. Therefore, one of the fixed points of f is $z=1$ so that $f^{(n)}(1)=1$ for each positive integer n and $\lim _{n \rightarrow+\infty} f^{(n)}(1)=1$. Moreover, observe that

$$
\lim _{n \rightarrow+\infty} \frac{1}{a_{n}}=\lim _{n \rightarrow+\infty} \frac{3}{4^{n}-1}=0 .
$$

Therefore, if $z \neq 1$, then
$\lim _{n \rightarrow+\infty} f^{(n)}(z)=\lim _{n \rightarrow+\infty}\left(\frac{2-\frac{2 a_{n}+1}{a_{n}} z}{z-\frac{a_{n}+1}{a_{n}}}\right)=\frac{\left(2-\lim _{n \rightarrow+\infty}\left(2+\frac{1}{a_{n}}\right) z\right)}{\left(z-\lim _{n \rightarrow+\infty}\left(1+\frac{1}{a_{n}}\right)\right)}=\frac{2-2 z}{z-1}=-2$.

Hence,

$$
\lim _{n \rightarrow+\infty} f^{(n)}(z)= \begin{cases}1, & \text { if } \mathrm{z}=1 \\ -2, & \text { if } z \neq 1\end{cases}
$$

Solution 4 by Jeremiah Bartz, University of North Dakota, Grand Forks, ND

Recall the map $f(z)=\frac{a z+b}{c z+d} \mapsto\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ gives a group isomorphism between group of fractional linear transformations

$$
\left\{f: f(z)=\frac{a z+b}{c z+d} \text { where } a, b, c, d \in C \text { and } a d-b c \neq 0\right\}
$$

under function composition and the group

$$
G L(2, C)=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]: a, b, c, d \in C \text { and } a d-b c \neq 0\right\}
$$

under matrix multiplication.
To compute $f^{n}(z)$, let $M=\left[\begin{array}{rr}-3 & 2 \\ 1 & -2\end{array}\right]$. Using induction, we show

$$
M^{n}=\frac{(-1)^{n}}{3}\left[\begin{array}{rr}
2^{2 n+1}+1 & -2^{2 n+1}+2 \\
-4^{n}+1 & 4^{n}+2
\end{array}\right] .
$$

Observe $M^{1}=\frac{-1}{3}\left[\begin{array}{rr}2^{3}+1 & -2^{3}+2 \\ -3 & 6\end{array}\right]=\frac{-1}{3}\left[\begin{array}{rr}9 & -6 \\ -3 & 6\end{array}\right]=\left[\begin{array}{rr}-3 & 2 \\ 1 & -2\end{array}\right]$.
Assume

$$
M^{n}=\frac{(-1)^{n}}{3}\left[\begin{array}{rr}
2^{2 n+1}+1 & -2^{2 n+1}+2 \\
-4^{n}+1 & 4^{n}+2
\end{array}\right]
$$

and observe

$$
\begin{aligned}
M^{n+1} & =M^{n} M \\
& =\frac{(-1)^{n}}{3}\left[\begin{array}{rr}
2^{2 n+1}+1 & -2^{2 n+1}+2 \\
-4^{n}+1 & 4^{n}+2
\end{array}\right]\left[\begin{array}{rr}
-3 & 2 \\
1 & -2
\end{array}\right] \\
& =\frac{(-1)^{n}}{3}\left[\begin{array}{rr}
-3\left(2^{2 n+1}+1\right)+\left(-2^{2 n+1}+2\right) & 2\left(2^{2 n+1}+1\right)-2\left(-2^{2 n+1}+2\right) \\
-3\left(-4^{n}+1\right)+\left(4^{n}+2\right) & 2\left(-4^{n}+1\right)-2\left(4^{n}+2\right)
\end{array}\right] \\
& =\frac{(-1)^{n+1}}{3}\left[\begin{array}{rr}
2^{2(n+1)+1}+1 & -2^{2(n+1)+1}+2 \\
-4^{n+1}+1 & 4^{n+1}+2
\end{array}\right]
\end{aligned}
$$

Using the aforementioned group isomorphism and simplifying, we conclude

$$
f^{n}(z)=\frac{\left(2^{2 n+1}+1\right) z-2^{2 n+1}+2}{\left(-4^{n}+1\right) z+4^{n}+2}=\frac{\left(2 \cdot 4^{n}+1\right) z+\left(2-2 \cdot 4^{n}\right)}{\left(1-4^{n}\right) z+\left(2+4^{n}\right)} .
$$

Notice that the map $f^{n}(z)$ is undefined for $z=\frac{4^{k}+2}{4^{k}-1}$ where $1 \leq k \leq n$. Consequently $\lim _{n \rightarrow+\infty} f(z)$ does not exist for these values of z. Furthermore,

$$
\begin{aligned}
\lim _{n \rightarrow+\infty} f^{n}(z) & =\lim _{n \rightarrow+\infty} \frac{\left(2 \cdot 4^{n}+1\right) z+\left(2-2 \cdot 4^{n}\right)}{\left(1-4^{n}\right) z+\left(2+4^{n}\right)} \\
& =\lim _{n \rightarrow+\infty} \frac{\left(2+\frac{1}{4^{n}}\right) z+\left(\frac{2}{4^{n}}-2\right)}{\left(\frac{1}{4^{n}}-1\right) z+\left(\frac{2}{4^{n}}+1\right)} \\
& =\frac{2 z-2}{-z+1} \\
& =-2\left(\frac{1-z}{1-z}\right) .
\end{aligned}
$$

Note $f(1)=1$ so $f^{n}(1)=1$ for all $n \geq 1$. It follows that

$$
\begin{aligned}
\lim _{n \rightarrow+\infty} f(z)=\{ & \left\{\begin{aligned}
\text { DNE } & \text { if } z=\frac{4^{n}+2}{4^{n}-1} \text { where } n \in Z_{>0} \\
1 & \text { if } z=1 \\
-2 & \text { otherwise. }
\end{aligned}\right. \\
& (\text { DNE }=\text { does not exist })
\end{aligned}
$$

Comment by Editor : David Stone and John Hawkins of Georgia Southern

University stated the following in their solution: "The appearance of so many sums of powers of 4 prompts us to offer a candidate for the cutest representation of $f^{(n)}(z)$:

$$
f^{(n)}(z)=\frac{\left(2 \cdot 111 \ldots \ldots 1_{4}+1\right) z-2 \cdot 111 \ldots 1_{4}}{-111 \ldots \ldots 1_{4} z+\left(111 \ldots 1_{4}+1\right)}
$$

where each of the base 4 repunits has $n-1$ digits."

Solution 5 by Toshihiro Shimizu, Kawasaki, Japan

Let $f^{n}(z)=\frac{a_{n} z+b_{n}}{c_{n} z+d_{n}}$. Then, we have

$$
\begin{aligned}
\frac{a_{n+1} z+b_{n+1}}{c_{n+1} z+d_{n+1}} & =f^{n+1}(z) \\
& =f^{n}\left(\frac{2-3 z}{z-2}\right) \\
& =\frac{\left(b_{n}-3 a_{n}\right) z+2\left(a_{n}-b_{n}\right)}{\left(d_{n}-3 c_{n}\right) z+2\left(c_{n}-d_{n}\right)}
\end{aligned}
$$

Therefore, we have $a_{n+1}=b_{n}-3 a_{n}, b_{n+1}=2 a_{n}-2 b_{n}$ and $c_{n+1}=d_{n}-3 c_{n}$, $d_{n+1}=2 c_{n}-2 d_{n}$. Since $f^{0}(z)=z, a_{0}=1, b_{0}=c_{0}=0$ and $d_{0}=1$. Since $b_{n}=a_{n+1}+3 a_{n}$, we have

$$
\begin{aligned}
a_{n+2}+3 a_{n+1} & =2 a_{n}-2\left(a_{n+1}+3 a_{n}\right) \\
a_{n+2}+5 a_{n+1}+4 a_{n} & =0
\end{aligned}
$$

and $a_{1}=b_{0}-3 a_{0}=-3$. Thus, we have

$$
\begin{aligned}
a_{n} & =\frac{1}{3}(-1)^{n}+\frac{2}{3}(-4)^{n} \\
b_{n} & =a_{n+1}+3 a_{n} \\
& =\frac{1}{3}(-1)^{n+1}+\frac{2}{3}(-4)^{n+1}+(-1)^{n}+2(-4)^{n} \\
& =\frac{2}{3}(-1)^{n}-\frac{2}{3}(-4)^{n} .
\end{aligned}
$$

Similarly, we have $c_{n+2}+5 c_{n+1}+4 c_{n}=0$ and $c_{1}=d_{0}-3 c_{0}=1$. Thus, we have

$$
\begin{aligned}
c_{n} & =\frac{1}{3}(-1)^{n}-\frac{1}{3}(-4)^{n} \\
d_{n} & =c_{n+1}+3 c_{n} \\
& =\frac{2}{3}(-1)^{n}+\frac{1}{3}(-4)^{n}
\end{aligned}
$$

Therefore,

$$
f^{n}(z)=\frac{\left((-1)^{n}+2(-4)^{n}\right) z+\left(2(-1)^{n}-2(-4)^{n}\right)}{\left((-1)^{n}-(-4)^{n}\right) z+\left(2(-1)^{n}+(-4)^{n}\right)}
$$

If $z \neq 1$, we have

$$
\begin{aligned}
f^{n}(z) & =\frac{\left(\left(\frac{1}{4}\right)^{n}+2\right) z+\left(2\left(\frac{1}{4}\right)^{n}-2\right)}{\left(\left(\frac{1}{4}\right)^{n}-1\right) z+\left(2\left(\frac{1}{4}\right)^{n}+1\right)} \\
& \rightarrow \frac{2 z-2}{-z+1} \\
& =-2 \quad(n \rightarrow+\infty) .
\end{aligned}
$$

If $z=1$, the value of $f^{n}(z)$ is always 1 and its limit is also 1 .

Solution 6 by Kee-Wai Lau, Hong Kong, China

It can easily be proved by induction that

$$
f^{n}(z)=\frac{2\left(2^{2 n}-1\right)-\left(2^{2 n+1}+1\right) z}{\left(2^{2 n}-1\right) z-2\left(2^{2 n-1}+1\right)}
$$

whenever $z \notin S_{n}$, where $S_{n}=\{2\} \cup\left\{\frac{2\left(2^{2 k-1}+1\right)}{2^{2 k}-1}: k=1,2,3, \cdots, n\right\}$.
Clearly, $\lim _{n \rightarrow \infty} f^{n}(1)=1$ and if $z \notin \mathbf{T}$, where $\mathbf{T}=\{1,2\} \cup\left\{\frac{2\left(2^{2 \mathrm{k}-1}+1\right.}{2^{2 \mathrm{k}}-1}, \mathrm{k}=1,2,3 \cdots\right\}$, then $\lim _{n \rightarrow \infty} f^{n}(z)=-2$.

Also solved by Arkady Alt, San Jose, CA; Hatef I. Arshagi, Guilford Technical Community College, Jamestown, NC; Brian D. Beasley, Presbyterian College, Clinton, SC; Brian Bradie, Christopher Newport University, Newport News,VA; Bruno Salgueiro Fanego Viveiro, Spain; Ed Gray, Highland Beach, FL; Moti Levy (two solutions), Rehovot, Israel; Francisco Perdomo and Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain; Trey Smith, Angelo State University, San Angelo, TX; Albert Stadler, Herrliberg, Switzerland; David Stone and John Hawkins, Georgia Southern University, Statesboro, GA, and the proposer.

5438: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

Let $k \geq 0$ be an integer and let $\alpha>0$ be a real number. Prove that

$$
\frac{x^{2 k}}{\left(1-x^{2}\right)^{\alpha}}+\frac{y^{2 k}}{\left(1-y^{2}\right)^{\alpha}}+\frac{z^{2 k}}{\left(1-z^{2}\right)^{\alpha}} \geq \frac{x^{k} y^{k}}{(1-x y)^{\alpha}}+\frac{y^{k} z^{k}}{(1-y z)^{\alpha}}+\frac{x^{k} z^{k}}{(1-x z)^{\alpha}}
$$

for $x, y, z \in(-1,1)$.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

We note that by the Binomial theorem,
$\frac{t^{2 k}}{\left(1-t^{2}\right)^{\alpha}}=t^{2 k} \sum_{j=0}^{\infty}\binom{-\alpha}{j}\left(-t^{2}\right)^{j}=\sum_{j=0}^{\infty}\binom{-\alpha}{j} t^{2 k+2 j},-1<t<1$, where $(-1)^{j}\binom{-\alpha}{j}=\frac{\alpha(\alpha+1) \cdots(\alpha+j-1)}{j!}>0$ for all indices $j \geq 0$.

Therefore, by the AM-GM inequality,

$$
\begin{aligned}
\frac{x^{2 k}}{\left(1-x^{2}\right)^{\alpha}}+\frac{y^{2 k}}{\left(1-y^{2}\right)^{\alpha}}+\frac{z^{2 k}}{\left(1-z^{2}\right)^{\alpha}} & =\frac{1}{2} \sum_{\text {cycl }}\left(\frac{x^{2 k}}{\left(1-x^{2}\right)^{\alpha}}+\frac{y^{2 k}}{\left(1-y^{2}\right)^{\alpha}}\right) \\
& =\frac{1}{2} \sum_{\text {cycl }} \sum_{j=0}^{\infty}(-1)^{j}\binom{-\alpha}{j}\left(x^{2 k+2 j}+y^{2 k+2 j}\right) \\
& \geq \sum_{\text {cycl }} \sum_{j=0}^{\infty}(-1)^{j}\binom{-\alpha}{j}|x y|^{k+y} \\
& \geq \sum_{\text {cycl }} \sum_{j=0}^{\infty}(-1)^{j}\binom{-\alpha}{j}(x y)^{k+y} \\
& =\sum_{\text {cycl }} \frac{(x y)^{k}}{(1-x y)^{\alpha}}, \quad \text { as claimed. }
\end{aligned}
$$

Solution 2 by Hatef I. Arshagi, Guilford Technical Community College, Jamestown, NC

It is well known that for any real numbers a, b, c

$$
\begin{equation*}
a^{2}+b^{2}+c^{2} \geq a b+b c+c a \tag{1}
\end{equation*}
$$

We show that $a, b \in(-1,1)$

$$
\begin{equation*}
\sqrt{\left(1-a^{2}\right)\left(1-b^{2}\right)} \leq 1-a b \tag{2}
\end{equation*}
$$

Suppose that to the contrary $\sqrt{\left(1-a^{2}\right)\left(1-b^{2}\right)}>1-a b$, by squaring both sides of the inequality, we get $1-a^{2}-b^{2}+a^{2} b^{2}>1-2 a b+a^{2} b^{2}$, which implies that
$-a^{2}-b^{2}+2 a b=-(a-b)^{2}>0$, which is impossible, that is, (2) is proved. From (2), we can conclude that

$$
\begin{equation*}
\frac{1}{\sqrt{\left(1-a^{2}\right)\left(1-b^{2}\right)}} \geq \frac{1}{1-a b} \tag{3}
\end{equation*}
$$

Now, using (1) and (3), we write

$$
\begin{aligned}
& \frac{x^{2 k}}{\left(1-x^{2}\right)^{\alpha}}+\frac{y^{2 k}}{\left(1-y^{2}\right)^{\alpha}}+\frac{z^{2 k}}{\left(1-z^{2}\right)^{\alpha}} \\
\geq & \frac{x^{k} y^{k}}{\left(\left(1-x^{2}\right)\left(1-y^{2}\right)^{\frac{\alpha}{2}}\right.}+\frac{y^{k} z^{k}}{\left(\left(1-y^{2}\right)\left(1-z^{2}\right)\right)^{\frac{\alpha}{2}}}+\frac{z^{k} x^{k}}{\left(\left(1-z^{2}\right)\left(1-x^{2}\right)\right)^{\frac{\alpha}{2}}} \\
= & \frac{x^{k} y^{k}}{\left(\sqrt{\left(1-x^{2}\right)\left(1-y^{2}\right)}\right)^{\alpha}}+\frac{y^{k} z^{k}}{\left(\sqrt{\left.\left(1-y^{2}\right)\left(1-z^{2}\right)\right)^{\alpha}}\right.}+\frac{z^{k} x^{k}}{\left(\sqrt{\left(1-z^{2}\right)\left(1-x^{2}\right)}\right)^{\alpha}} \\
\geq & \frac{x^{k} y^{k}}{(1-x y)^{\alpha}}+\frac{y^{k} z^{k}}{(1-y z)^{\alpha}}+\frac{z^{k} x^{k}}{(1-z x)^{\alpha}} .
\end{aligned}
$$

Solution 3 by Moti Levy, Rehovot, Israel

Since $\frac{|a|^{k}}{(1-|a|)^{\alpha}} \geq \frac{a^{k}}{(1-a)^{\alpha}}, \quad a \in(-1,1)$ then

$$
\frac{|x|^{k}|y|^{k}}{(1-|x||y|)^{\alpha}}+\frac{|y|^{k}|z|^{k}}{(1-|y||z|)^{\alpha}}+\frac{|z|^{k}|x|^{k}}{(1-|z||x|)^{\alpha}} \geq \frac{x^{k} y^{k}}{(1-x y)^{\alpha}}+\frac{y^{k} z^{k}}{(1-y z)^{\alpha}}+\frac{z^{k} x^{k}}{(1-z x)^{\alpha}}
$$

Therefore, we can assume that $x, y, z \in(0,1)$. Using the generalized binomial theorem,

$$
\begin{gathered}
\frac{1}{(1-u)^{\alpha}}=\sum_{n=0}^{\infty}\binom{n+\alpha-1}{n} u^{n}=\sum_{n=0}^{\infty} \frac{\Gamma(n+a)}{n!\Gamma(\alpha)} u^{n}, \quad|u|<1 \\
\frac{x^{2 k}}{\left(1-x^{2}\right)^{\alpha}}=\sum_{n=0}^{\infty} \frac{\Gamma(n+a)}{n!\Gamma(\alpha)} x^{2(n+k)} \\
\frac{x^{k} y^{k}}{(1-x y)^{\alpha}}=\sum_{n=0}^{\infty} \frac{\Gamma(n+a)}{n!\Gamma(\alpha)}(x y)^{n+k}
\end{gathered}
$$

By the inequality $a^{2}+b^{2}+c^{2} \geq a b+b c+c a, \quad a, b, c \geq 0$,

$$
\left(x^{n+k}\right)^{2}+\left(y^{n+k}\right)^{2}+\left(z^{n+k}\right)^{2} \geq x^{n+k} y^{n+k}+y^{n+k} z^{n+k}+z^{n+k} k^{n+k}
$$

$$
\begin{aligned}
& \frac{x^{2 k}}{\left(1-x^{2}\right)^{\alpha}}+\frac{y^{2 k}}{\left(1-y^{2}\right)^{\alpha}}+\frac{z^{2 k}}{\left(1-z^{2}\right)^{\alpha}} \\
& =\sum_{n=0}^{\infty} \frac{\Gamma(n+a)}{n!\Gamma(\alpha)} x^{2^{2(n+k)}}+\sum_{n=0}^{\infty} \frac{\Gamma(n+a)}{n!\Gamma(\alpha)} y^{2(n+k)}+\sum_{n=0}^{\infty} \frac{\Gamma(n+a)}{n!\Gamma(\alpha)} z^{2(n+k)} \\
& =\sum_{n=0}^{\infty} \frac{\Gamma(n+a)}{n!\Gamma(\alpha)}\left(x^{2(n+k)}+y^{2(n+k)}+z^{2(n+k)}\right) \\
& \geq \sum_{n=0}^{\infty} \frac{\Gamma(n+a)}{n!\Gamma(\alpha)}\left(x^{n+k} y^{n+k}+y^{n+k} z^{n+k}+z^{n+k} k^{n+k}\right) \\
& =\sum_{n=0}^{\infty} \frac{\Gamma(n+a)}{n!\Gamma(\alpha)} x y^{(n+k)} y^{(n+k)}+\sum_{n=0}^{\infty} \frac{\Gamma(n+a)}{n!\Gamma(\alpha)} y^{(n+k)} z^{(n+k)}+\sum_{n=0}^{\infty} \frac{\Gamma(n+a)}{n!\Gamma(\alpha)} z^{(n+k)} k^{(n+k)} \\
& =\frac{x^{k} y^{k}}{(1-x y)^{\alpha}}+\frac{y^{k} z^{k}}{(1-y z)^{\alpha}}+\frac{z^{k} x^{k}}{(1-z x)^{\alpha}} .
\end{aligned}
$$

Solution 4 by Kee-Wai Lau, Hong Kong, China

We first note that

$$
0<\left(1-x^{2}\right)\left(1-y^{2}\right)=(1-x y)^{2}-(x-y)^{2} \leq(1-x)^{2} .
$$

Hence by the AM-GM inequality, we have

$$
\frac{x^{2 k}}{\left(1-x^{2}\right)^{\alpha}}+\frac{y^{2 k}}{\left(1-y^{2}\right)^{\alpha}} \geq \frac{2\left|x^{k} y^{k}\right|}{\sqrt{\left(1-x^{2}\right)^{\alpha}\left(1-y^{2}\right)^{\alpha}}} \geq \frac{2\left|x^{k} y^{k}\right|}{(1-x y)^{\alpha}} .
$$

Similarly,

$$
\begin{aligned}
& \frac{y^{2 k}}{\left(1-y^{2}\right)^{\alpha}}+\frac{z^{2 k}}{\left(1-z^{2}\right)^{\alpha}} \geq \frac{2\left|y^{k} z^{k}\right|}{(1-y z)^{\alpha}} \text { and } \\
& \frac{z^{2 k}}{\left(1-z^{2}\right)^{\alpha}}+\frac{x^{2 k}}{\left(1-x^{2}\right)^{\alpha}} \geq \frac{2\left|z^{k} x^{k}\right|}{(1-z x)^{\alpha}} .
\end{aligned}
$$

Adding these inequalities, we easily deduce the inequality of the problem.
Also solved by Ed Gray, Highland Beach, FL; Nicusor Zlota, "Traian Vuia" Technical College, Focsani, Romania; Toshihiro Shimizu, Kawasaki, Japan, and the proposer.

Mea Culpa

For a variety of reasons, mostly caused by sloppy bookkeeping, those listed below were not credited for having solved the following problems, but should have been.

5427: Paul M. Harms, North Newton, KS.
5428: Ed Gray, Highland Beach, FL;
David Stone and John Hawkins, Georgia Southern University, Statesboro, GA.

5429: Brian D. Beasley, Presbyterian College, Clinton, SC.
5431: Albert Stadler, Herrliberg, Switzerland.

