
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
Sept. 15, 2019

5547: Proposed by Kenneth Korbin, New York, NY

Given Heronian Triangle ABC with AC = 10201 and BC = 10301. Observe that the
sum of the digits of AC is 4 and the sum of the digits of BC is 5. Find AB if the sum of
its digits is 3.

(An Heronian Triangle is one whose side lengths and area are integers.)

5548: Proposed by Michel Bataille, Reoun, France

Given nonzero real numbers p and q, solve the system
2p2x3 − 2pqxy2 − (2p− 1)x = y

2q2y3 − 2pqx2y + (2q + 1)y = x

5549: Proposed by Arkady Alt, San Jose, CA

Let P be an arbitrary point in 4 ABC that has side lengths a, b, and c .
a) Find minimal value of

F (P ) :=
a2

da (P )
+

b2

db (P )
+

c2

dc (P )
;

b) Prove the inequality
a2

da (P )
+

b2

db (P )
+

c2

dc (P )
≥ 36r, where r is the inradius.

5550: Proposed by Ángel Plaza, University of the Las Palmas de Gran Canaria, Spain

Prove that
∞∑
n=4

n−2∑
k=2

1

k
(
n
k

) =
1

2
.

5551: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain
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Let α1, α2, . . . , αn with n ≥ 2 be positive real numbers. Prove that the following
inequality holds:

1 +
1

n2

∑
1≤i<j≤n

(√
αiαj+1 −

√
αjαi+1

)2
αiαj

≤

(
1

n

n∑
k=1

(
αk+1

αk

)2
)1/2

(Here the subscripts are taken modulo n.)

5552: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Find all differentiable functions f : < → < such that f ′(x)− f(−x) = ex,∀x ∈ <, with
f(0) = 0.

Solutions

5529: Proposed by Kenneth Korbin, New York, NY

Convex cyclic quadrilateral ABCD has integer length sides and integer area. The
distance from the incenter to the circumcenter is 91. Find the length of the sides.

Solution 1 by David E. Manes, Oneonta, NY

Let ABCD be a bicentric quadrilateral with inradius r and circumradius R and side
lengths AB = a, BC = b, CD = c and DA = d. Then a+ c = b+ d since the
quadrilateral has an inscribed circle. Denote the diagonals AC = p and BD = q.
Finally, let D = 2R represent the diameter of the circumscribed circle. If x = 91 denotes
the distance between the incenter and the circumcenter, then Fuss’ theorem gives a
relation between r, R and x = 91; namely;

1

(R− x)2
+

1

(R+ x)2
=

1

r2
.

Solving this equation for r, one obtains

r =
R2 − x2√
2(R2 + x2)

=
R2 − 912√
2(R2 + 912)

.

Substituting values for R > 91 in this equation, one quickly finds that if R = 221, then
r = 120. Therefore,

pq = 2r
(
r +
√

4R2 + r2
)

= 2(120)
(

120 +
√

4 · 2212 + 1202
)

= 138720.

Consider the quadrilateral with side lengths a = AB = 170, b = BC = 408,
c = CD = 408 and d = DA = 170. Then a+ c = b+ d = 578 = s, the semi-perimeter of
ABCD. Moreover,

a2 + c2 = 1702 + 4082 = b2 + d2 = D2 = 4422 = p2;

hence, the quadrilateral is a kite. It consists of two congruent right triangles with a
common hypotenuse, the diameter D of the circumscribed circle which is also the
diagonal p = AC. For the given side lengths, note that the circumradius R is given by

R =
1

2

√
a2 + c2 =

1

2

√
1702 + 4082 =

1

2

√
b2 + d2 = 221.
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and the inradius r is given by

r =
pq

2
√
pq + 4R2

=
138720

2
√

138720 + 4(221)2
= 120.

Since the quadrilateral ABCD is a kite, the two diagonals p = AC and q = BD are
perpendicular so that sin θ = 1, where θ is the angle between p and q. Therefore, the
following formulas for the area K of ABCD all agree:

K =
√

(s− a)2(s− c)2 =
√

(578− 170)2(578− 408)2

=
√
abcd =

√
(ab)2 = ab = 170 · 408

= r
(
r +

√
4R2 + r2

)
sin θ = 120

(
120 +

√
4 · 2212 + 1202

)
= 69360.

Finally, the four sides a, b, c, d of a bicentric quadrilateral with inradius r = 120,
circumradius R = 221 and semi-perimeter s = 578 are the four roots of the quartic
equation

y4 − 2sy3 +
(
s2 + 2r2 + 2r

√
4R2 + r2

)
y2 − 2rs

(√
4R2 + r2 + r

)
y + r2s2 = 0.

Therefore,
y4 − 1156y3 + 472804y2 − 80180160y + 4810809600 = 0,

(y − 408)2(y − 170)2 = 0.

Hence, the roots are 170 and 408, each of multiplicity two. This completes the solution.

Solution 2 by Ed Gray, Highland Beach, FL

We start with Fuss’ Theorem which says: Given R = circumradius, r = inradius,, x =
distance between the incenter and the circumcenter, then:

1.
1

(R+ x)2
+

1

(R− x)2
=

1

r2

2.
(R− x)2 + (R+ x)2

(R+ x)2 · (R− x)2
=

1

r2

3.
R2 − 2Rx+ x2 +R2 + 2Rx+ x2

(R2 − x2)2
=

1

r2

4. 2r2 · (R2 + x2) = (R2 − x2)2

5. 2 · r2 ·R2 + 2 · r2 · x2 = R4 − 2 ·R2 · x2 + x4

Writing (5) as a quadratic in R2,

6. R4 − (2 · r2 + 2 · x2)R2 + x4 − 2 · r2 · x2 = 0, with solution
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7. 2R2 = 2r2 + 2x2 +
√

4r4 + 8 · r2 · x2 + 4x4 − 4(x4 − 2 · r2 · x2)

The + sign is used to ensureR ≥ r
√

2.

8. 2R2 = 2(r2 + x2) +
√

4r4 + 16 · r2 · x2, and

9. R2 = r2 + x2 + r
√
r2 + 4x2

Letting x = 91, consider the discriminant:

10. D2 = r2 + 33124

11. (D − r)(D + r) = 22 · 72 · 132

(D − r) and (D + r) must have the same parity since their sum is even. Since their
product is even, each factor is even. D − r must be less than 2 · 7 · 13, D + r must be
greater than 2 · 7 · 13. We try for a solution assuming that r is an integer. The possible
values for D− r are, 2, 14, 26, 98. Since x = 91, the disparity between r and R cannot be
exceedingly large. Accordingly, we start with the largest value for D − r.

12. D − r = 98

13. D + r = 338

14. 2D = 436, D = 218, r = 120. Substituting these values into (9),

15. R2 = 14400 + 8281 + 120 · 218 = 48841. Then:

16. R = 221.

To get an idea of the character of the sides, we co-ordinate the quantities in a Cartesian
coordinate system. For convenience, we put the circumcenter, O, at the origin, (0, 0).
The incenter, I, will be on the positive y−axis and have coordinates (0, 91). With
r = 120, notice that the incircle has its extreme point on the y− axis with coordinates
(0, 211). The upper extreme for the circumcenter is (0, 221), so that they only differ by
10. The lower extreme for the incircle has coordinates (0,−29). Clearly, picturing the
sides shows the quadrilateral must have two long sides for the lower two, and two much
shorter sides for the upper two, suggesting a kite-like shape for the quadrilateral. In fact,
we will pursue this concept, placing vertex A at (0, 221), vertex C at (0,−221). Vertex B
will have x > 0, y > 0, Vertex D will have x < 0, y > 0. We have AB = AD,BC +DC,
and, of course, as in all bi-centric quadrilaterals, AB + CD = BD + CB.

Now consider the side AB. It is tangent to the incircle at point T , so that IT is
perpendicular to AB. Triangle AIT is a right triangle, with hypotenuse AI = 130, leg
IT = r = 120.
So that AT = 50. Let 6 TAI = t. We note that cos(t) = 5/13, sin(t) = 12/13. The
equation of side AB is y = mx+ b, where

m = tan(t− 90) =
sin(t− 90)

cos(t− 90)
=

(sin(t) · cos(90)− cos(t) · sin(90)

cos(t) · cos(90) + sin(t) · sin(90)
=

(−5/13)

(12/13)
= − 5

12
.

When x = 0, y = 221, so the equation of the chord AB is: 17. y = 2215x/12. The
equation of the circumcircle is: 18. x2 + y2 = 48841.
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The coordinates of vertex B can be found by solving (17), (18) simultaneously.

19. x2 + (215x/12)2 = 48841

20. x2 + 488412210 · x/12 + (25x2)/144 = 48841

21. x2(1 + 25/144) = 2210x/12

22. (169/144)x = 2210/12

23. x = (2210/12) · (144/169) = (12) · (13.07692308) = 156.9230769

24. y = 2215(156.9230769)/12 = 22165.38461538 = 155.6153846

25. The coordinates of vertex B = (156.9230769, 155.6153846)

Using the distance formula, we can compute the length of side AB.

26. AB =
√

(156.92307690)2 + (221155.6153846)2

27. AB =
√

24624.85206 + 4275.147931

28. AB =
√

28900) = 170.

29. We can now compute the length of chord BC by the Law of Cosines, using 4ABC.

We have: (BC)2 = 1702 + 44222 · 170 · 442 · (5/13) 30.
(BC)2 = 28900 + 19536457800 = 166464

31. BC = 408.

The sides appear to be 170, 170, 408, 408. As noted, integer area did not come into play,

Explicitly. We show that, indeed, the area is an integer by using Brahmaguptas formula:

32. A =
√

(s− a)(s− b)(s− c)(s− d) =
√

408 · 408 · 170 · 170 = 408 · 170 = 69, 360.

33. As a check, r = A/s = 69, 369/578 = 120.

Solution 3 by David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA

For clarity we label the lengths of the sides of quadrilateral ABCD so AB has length
a, BC has length b, CD has length c, and DA has length d.

We will show that a quadrilateral with sides a = d = 408 and b = c = 170 is a cyclic
quadrilateral with integer area and distance from its incenter to its circumcenter is 91.

We were not able to show that this is the only such quadrilateral.

Because our quadrilateral is given to have an incenter, there must be an inscribed circle,
tangent to all four sides (hence, known as a tangential quadrilateral).

Such a cyclic, tangential, quadrilateral is termed a bicentric quadrilateral. (Wikipedia:
https://en.wikipedia.org/wiki/Bicentric quadrilateral).
FromWikipedia(URL https : //en.wikipedia.org/wiki/Pitot theorem), we find the
following:

The Pitot theorem, named after the French engineer Henri Pitot, states that in a
tangential quadrilateral the two sums of lengths of opposite sides are the same. Both
sums of lengths equal the semiperimeter of the quadrilateral.

A convex quadrilateral ABCD with sides a, b, c, d is bicentric if and only if opposite
sides satisfy Pitot’s theorem for tangential quadrilaterals and the cyclic quadrilateral
property that opposite angles are supplementary; that is,
opposite sides equal: a+ c = b+ d
opposite angles are supplementary: A+B = C +D = π.

For a bicentric quadrilateral, Fuss’ Theorem gives a relation between the inradius r, the
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circumradius R and the distance x between the incenter and the circumcenter:

1

(R− x)2
+

1

(R+ x)2
=

1

r2

Some relevant facts about a bicentric quadrilateral:
(1) the area is given by A =

√
abcd

(2) the inradius is given by r =
A

s
=

√
abcd

s
=

√
abcd

a+ c
=

√
abcd

b+ d
.

By (2), the inradius of our quadrilateral must be rational. There are no a priori
restrictions on the circumradius R.

However, well first look for integer values for r and R.

Substituting our known value, x = 91, into Fuss’ Theorem and solving for r yields

r =
R2 − 912√

(R+ 91)2 + (R− 91)2
=

R2 − 912√
2(R2 + 912)

.

At the worst, the quantity inside the radical must be the square of a rational; well
impose the condition that it be the square of an integer:

2(R2 + 912) = z2 so r =
R2 − 912

z
.

Thus, z must be even; say z = 2w:
2(R2 + 912) = (2w)2 = 4w2.

R2 + 912 = 2w2

(3) R2 − 2w2 = −912.

This is a Pell-like equation. With some initial assistance from Excel, we can find
infinitely many solutions in integers. Because R must be larger than 91, the smallest
valid solution is R = 221, w = 169, soz = 338.
This yields an integer value for r : r = 120.

Now the fun begins we must find values for a, b, c, d.

We want

120 =

√
abcd

a+ c
=
abcd

b+ d
,

1202(a+ c)2 = abcd and 1202(b+ d)2 = abcd.

Using the prime factorization of 120 and applying some ingenuity, we find that the values
a = d = 408 and b = c = 170. satisfy the conditions.
This would make our quadrilateral a (convex) kite, which is automatically a tangential
quadrilateral.

However, the lengths of the sides by themselves do not completely specify a
quadrilateral. We must proscribe its shape.

Noting that
a = d = 408 = 34 · 12
and
b = c = 170 = 34 · 5, we build the quadrilateral so the principal diagonal
AC = 442 = 34 · 13.

This forces ABC and ADC to be right triangles (scaled-up copies of the 5-12-13
triangle), with AC being a diameter of the circumcircle.
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Hence, our quadrilateral is inscribed in a circle, hence is cyclic and bicentric, as
required. The difference x between the incenter and the circumcenter must equal 91 by
our derivation of R, r.  

 
 

D 

A C 

B 

OC 

OI 

d c 

b 
a 

In fact, the only kite which is cyclic is one formed by two congruent right triangles
joined along the hypotenuse (= the diameter). Its sometimes known as a right kite.

Comment: We make no claim that our solution is unique. For instance, even after R and
r were determined, the conditions r2(a+ c)2 = abcd and r2(b+ d)2 = abcd could admit
other solutions (although a computer search found none).

Moreover, the Pell equation R2 − 2w2 = −912 has infinitely many solutions.

Using

(
R0

w0

)
=

(
221
169

)
or

(
299
221

)
or

(
637
455

)
as a base, we can generate infinitely

many more solutions by the recursive scheme(
Rk+1

wk+1

)
=

(
3 4
2 3

)(
Rk
wk

)
.

Of the solutions that we have checked, each produces a rational, non-integer value for
the inradius r (which is acceptable but makes it much more difficult to find a, b, c, d). So
there could be many other solutions to the problem.

Also solved by Ioannis D. Sfikas, National and Kapodistrian University of
Athens, Greece and the proposer.

5530: Proposed by Arsalan Wares, Valdosta State University, Valdosta, GA

Polygon ABCD is an 11 by 12 rectangle (AB > AD). Points P,Q,R, and S are on sides
AB,BC,CD, and DA, respectively, such that PR and SQ are parallel to AD and AB,
respectively. Moreover, X = PR ∩QS. If the perimeter of rectangle PBQX is 5/7 the
perimeter of rectangle SAPX, and the perimeter of rectangle RCQX is 9/10 the
perimeter of rectangle PBQX, find the area of rectangle SDRX.

Solution 1 by Bruno Salgueiro Fanego, Viveiro, Spain

Let u = SD and v = DR. Then AS = AD−SD = 11−u and RC = DC−DR = 12− v.

Since BQ = AS, PB = RC, and QC = SD, the perimeter of rectangles
PBQX, SAPX, and RCQX are, respectively,
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2(PB +BQ) = 2(12− v + 11− u), 2(AS +AP ) = 2(11− u+ v), and
2(RC +QC) = 2(12− v + u).

Hence,

2(12− v + 11− u) =

(
5

7

)
2(11− u+ v), and 2(12− v + u) =

(
9

10

)
2(12− v + 11− u),

which implies (u, v) = (5, 8), so the area of rectangle SDRX is SD ·DR = uv = 40.

Solution 2 by David A. Huckaby, Angelo State University, San Angelo, TX

From the given dimensions of rectangle ABCD, we have PX +RX = 11 and
QX + SX = 12. Since the perimeter of rectangle PBQX is 5

7 the perimeter of rectangle
SAPX, we have BQ+ PX +BP +QX = 5

7 (AP + SX +AS + PX), that is,
2PX + 2QX = 5

7 (2SX + 2PX) or PX +QX = 5
7 (SX + PX). Similarly, since the

perimeter of rectangle RCQX is 9
10 the perimeter of rectangle PBQX, we have

QX +RX = 9
10 (QX + PX).

So we have the following system of four equations in four unknowns:

PX +RX = 11
QX +SX = 12

2

7
PX +QX −5

7
SX = 0

− 9

10
PX +

1

10
QX +RX = 0

Solving this systems yields PX = 6, QX = 4, RX = 5, and SX = 8, whence the area of
rectangle SDRX is (RX)(SX) = (5)(8) = 40.

Also solved by Ashland University Undergraduate Problem Solving Group,
Ashland, Ohio; Michel Bataille, Rouen, France; Ed Gray, Highland Beach,
FL; David E. Manes, Oneonta, NY; David Stone and John Hawkins, Georgia
Southern University, Statesboro, GA, and the proposer.)

5531: Proposed by Daniel Sitaru, National Economic College “Theodor Costescu,”
Drobeta Turnu-Severin, Mehedinti, Romania

For real numbers x, y, z prove that if x, y, z > 1 and xyz = 2
√

2, then

xy + yz + zx + yx + zy + xz > 9.

Solution 1 by Ioannis D. Sfikas, National and Kapodistrian University of
Athens, Greece

If f(t) = t ln

(
2
√

2

t

)
, with t > 1, the f ′(t) = ln

(
2
√

2

t

)
− 1, and for f ′(tk) = 0, we have

tk =
2
√

2

e
> 1. So, we have: f(t) ≥ f

(
2
√

2

e

)
=

2
√

2

e
ln

(
2
√

2 · e

2
√

2

)
=

2
√

2

e
.

Furthermore, we have:
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xy ≥ 1 + y lnx, yx ≥ 1 + x ln y, yx ≥ 1 + z ln y,

zy ≥ 1 + y ln z, zx ≥ 1 + x ln z, xz ≥ 1 + z ln z,

So, we have:

xy + yz + zx + yx + zy + xz ≥ 6 + x ln(yz) + y ln(xz) + z ln(xy)

= 6 + x ln

(
2
√

2

x

)
+ y ln

(
2
√

2

y

)
+ z ln

(
2
√

2

z

)

≥ 6 + 3 · 2
√

2

e
> 9.

Solution 2 by Adrian Naco, Polytechnic University of Tirana, Albania

Since, x > 1, y > 1, and using the Bernoulli inequality, we have that

xy = [1 + (x− 1)]y > 1 + y(x− 1). (2)

Acting analogously it implies that,

xy + yz + zx + yx + zy + xz > 6 + 2(xy + yz + zx)− 2(x+ y + z). (3)

To prove the given inequality (1), it is enough to prove the following equivalent
inequalities,

6 + 2(xy+ yz+ zx)− 2(x+ y+ z) > 9 or equivalently (xy+ yz+ zx)− (x+ y+ z) >
3

2

Let

f(x, y, z) = (xy + yz + zx)− (x+ y + z)− 3

2
. g(x, y, z) = xyz − 2

√
2

and using Langrange Multipliers method, we have that,

F (x, y, z) = f(x, y, z)− λg(x, y, z) = (xy + yz + zx)− (x+ y + z)− 3

2
− λ(xyz − 2

√
2).

Fx = y + z − 1− λyz = 0

Fy = x+ z − 1− λxz = 0

Fz = x+ y − 1− λxy = 0

Fλ = −xyz + 2
√

2 = 0

Subtracting side by side, each couple of the last three first equations, we get the
following:

(z − 1)(x− y) = 0

(y − 1)(x− z) = 0

(x− 1)(z − y) = 0

xyz = 2
√

2
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So, x = y = z =
√

2, is the only solution (since x > 1, y > 1, z > 1). Finally,

minf(x, y, z) = f(
√

2;
√

2;
√

2) = 2 + 2 + 2− 3
√

2− 3

2
=

3

2
(3− 2

√
2) > 0.

Note. Even if we consider the case when x = 1, we have that,

f(1, y, z) = y+yz+z−1−z−y− 3

2
= 2
√

2)− 5

2
> f(

√
2;
√

2;
√

2) =
3

2
(3−2

√
2) > 0.

Solution 3 by Moti Levy, Rehovot, Israel

Let f (u, v) := uv + vu, u, v > 1. By verifying that the Hessian of f (u, v) is positive
semi-definite, it becomes evident that f (u, v) is convex function in the domain u, v > 1.

Hess (uv + vu) =

[
uv−2(v − 1)v + vu ln2 v uv−1 + vu−1 + vuv−1 lnu+ uvu−1 ln v

uv−1 + vu−1 + vuv−1 lnu+ uvu−1 ln v (u− 1)uvu−2 + uv ln2 v

]
Then by Jensen’s inequality

xy + yz + zx + yx + zy + xz (1)

= f (x, y) + f (y, z) + f (z, x) ≥ 3f

(
x+ y + z

3
,
y + z + x

3

)
By AM-GM inequality,

xyz = 2
√

2 =⇒ x+ y + z

3
≥ 3

√
2
√

2 =
√

2. (2)

Inequalities (1) and (2) imply the required result,

xy + yz + zx + yx + zy + xz ≥ 3f
(√

2,
√

2
)

= 6
(√

2
)√2

> 9.

Also solved by Khaled Abd Imouti, Zaki Al Arzousi School, Damascus,
Syria, (communicated to SSM by Daniel Sitaru of Romania); Michael
Brozinsky, Central Islip, NY; Ed Gray, Highland Beach, FL; Tran Hong
(student), Cao Lang School, Dong Thap, Vietnam (communicated to SSM
by Daniel Sitaru of Romania) and the proposer.

5532: Proposed by Arkady Alt, San Jose, CA

Let a, b, c be positive real numbers and let an =
an+ b

an+ c
, n ∈ N . For any natural number

m find lim
n→∞

nm∏
k=n

ak.

Solution 1 by Brian Bradie, Christopher Newport University, Newport
News, VA

For large n,

an =
an+ b

an+ c
=

1 + b
an

1 + c
an

∼ 1 +
b− c
an

.

10



Thus,

ln
mn∏
k=n

ak =
mn∑
k=n

ln ak ∼
mn∑
k=n

b− c
an

=
b− c
a

(Hmn −Hn−1) ,

where Hn denotes the nth Harmonic number. Now,

Hn ∼ lnn+ γ,

where γ is the Euler-Mascheroni constant, so

Hmn −Hn−1 ∼ ln
mn

n− 1

and

ln

mn∏
k=n

ak ∼
b− c
a

ln
mn

n− 1
.

Thus,

lim
n→∞

ln
mn∏
k=n

ak =
b− c
a

lnm,

and

lim
n→∞

mn∏
k=n

ak = exp

(
b− c
a

lnm

)
= m(b−c)/a.

Solution 2 by Moti Levy, Rehovot, Israel

We rewrite the product as

mn∏
k=n

ak =

mn∏
k=n

(
1 +

α

k + β

)
, α =

b− c
a

, β =
c

a
.

ln

mn∏
k=n

ak =

mn∑
k=n

ln

(
1 +

α

k + β

)
=

mn∑
k=n

(
α

k + β
+O

(
1

k2

))
=

mn∑
k=n

(
α

k
+O

(
1

k2

))

lim
n→∞

ln

mn∏
k=n

ak = lim
n→∞

mn∑
k=n

α

k
= α lim

n→∞

mn∑
k=n

1

k

mn∑
k=n

1

k
=

1

n

(m−1)n∑
k=0

1

1 + k
n

lim
n→∞

1

n

(m−1)n∑
k=0

1

1 + k
n

=

∫ m−1

0

1

1 + x
dx = lnm.

lim
n→∞

ln

mn∏
k=n

ak = α lnm,

hence
mn∏
k=n

ak = mα = m
b−c
a .

Solution 3 by Albert Stadler, Herrliberg, Switzerland
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The Euler gamma function Γ(x) satisfies the functional equation Γ(x+ 1) = xΓ(x).
Therefore

mn∏
k=n

ak =
mn∏
k=n

k + b
a

k + c
a

=
Γ
(
mn+ 1 + b

a

)
Γ
(
n+ b

a

) ·
Γ
(
n+ b

a

)
Γ
(
mn+ 1 + c

a

)
.

Stirling’s asymptotic formula for the Euler gamma function states that

Γ(x) =

√
2π

x

(x
e

)x(
1 +O

(
1

x

))
, as x→∞ . So,

mn∏
k=n

ak ∼

√√√√ 2π

mn+ 1 +
b

a

mn+ 1 +
b

a
e


mn+1+ b

a

√√√√ 2π

n+
b

a

n+
b

a
e


n+ b

a

·

√√√√ 2π

n+
c

a

n+
c

a
e

n+ c
a

√√√√ 2π

mn+ 1 +
c

a

mn+ 1 +
c

a
e

mn+1+ c
a

∼

∼

(
mn+ 1 +

b

a

) b
a

(
n+

b

a

) b
a

·

(
n+ 1 +

c

a

) c
a(

mn+ 1 +
c

a

) c
a

∼ m
b−c
a as n→∞.

Solution 4 by Michel Bataille, Rouen, France

We show that the required limit is m(b−c)/a.

We shall use the following well-known result about the Gamma function: if s is a
positive real number, then

lim
n→∞

n! · ns

s(s+ 1)(s+ 2) · · · (s+ n)
= Γ(s).

For n ≥ 2, we have

nm∏
k=n

(ak + b) = anm−n+1
nm∏
k=n

(
b

a
+ k

)
= anm−n+1 ·

nm∏
k=0

(
b
a + k

)
n−1∏
k=0

(
b
a + k

)
so that, as n→∞,

nm∏
k=n

(ak + b) ∼ anm−n+1 · (nm)!(nm)b/a

Γ(b/a)
· Γ(b/a)

(n− 1)!(n− 1)b/a
= Km,n ·

(
nm

n− 1

)b/a
where Km,n = anm−n+1 · (nm)!

(n−1)! .

Similarly,
nm∏
k=n

(ak + c) ∼ Km,n ·
(
nm
n−1

)c/a
and it follows that

nm∏
k=n

ak ∼
(
nm

n− 1

)(b−c)/a
.

12



Since lim
n→∞

nm
n−1 = m, we obtain that lim

n→∞

nm∏
k=n

ak = m(b−c)/a.

Solution 5 by Kee-Wai Lau, Hong Kong, China

We have ln ak = ln

(
1 +

b− c
ak + c

)
=

b− c
ak + c

+O

(
1

k2

)
as k →∞, where the constant

implied by O depends at most on a, b, c. Hence

mn∑
k=n

ln ak = (b− c)
nm∑
k=n

1

ak + c
+O

(
1

n

)
.

For x > 0, let f(x) be the decreasing function
1

ax+ c
so that

1

a
ln

(
anm+ c

an+ c

)
=

∫ nm

n

dx

ax+ c
<

nm∑
k=n

1

ak + c
<

∫ nm

n−1

dx

ax+ c
=

1

a
ln

(
anm+ c

an+ c− a

)
.

It follows that lim
n→∞

nm∑
k=n

1

ak + c
=

lnm

a
. Thus

lim
n→∞

nm∏
ki=n

ak = e

lim
n→∞

nm∑
k=n

1

ak + c
= m(b−c)/a.

Also solved by Ed Gray, Highland Beach, FL; G. C. Greubel, Newport
News,VA; and the proposer.

5533: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Find the value of the sum
+∞∑
n=1

n2αn

(n− 1)!

for any real number α > 0. (Here, 0! = 1! = 1).

Solution 1 by Dionne Bailey, Elsie Campbell, Charles Diminnie, and Trey
Smith, Angelo State University, San Angelo, TX

The solution is (
α3 + 3α2 + α

)
eα =

∞∑
n=1

n2αn

(n− 1)!

for all real α. To avoid encountering the disputed expression 00 in our work, we note
first that for α = 0, (

α3 + 3α2 + α
)
eα = 0 =

∞∑
n=1

n2αn

(n− 1)!
.

For α 6= 0, we proceed as follows. Since

eα =

∞∑
n=0

αn

n!
,

13



we have

αeα =
∞∑
n=0

αn+1

n!
=
∞∑
n=1

αn

(n− 1)!
.

Then, if we differentiate with respect to α, we obtain

(α+ 1) eα =
∞∑
n=1

nαn−1

(n− 1)!

and hence, (
α2 + α

)
eα =

∞∑
n=1

nαn

(n− 1)!
.

Differentiate again with respect to α to get

(
α2 + 3α+ 1

)
eα =

∞∑
n=1

n2αn−1

(n− 1)!

and therefore, (
α3 + 3α2 + α

)
eα =

∞∑
n=1

n2αn

(n− 1)!
.

Comment: Once we know the answer, we can verify this result directly as follows. As
noted above, when α = 0,

(
α3 + 3α2 + α

)
eα = 0 =

∞∑
n=1

n2αn

(n− 1)!
.

For α 6= 0,

(
α3 + 3α2 + α

)
eα =

(
α3 + 3α2 + α

) ∞∑
n=1

αn−1

(n− 1)!

=
∞∑
n=1

αn+2

(n− 1)!
+
∞∑
n=1

3αn+1

(n− 1)!
+
∞∑
n=1

αn

(n− 1)!

=

∞∑
n=3

αn

(n− 3)!
+

∞∑
n=2

3αn

(n− 2)!
+

∞∑
n=1

αn

(n− 1)!

= 3α2 +
(
α+ α2

)
+
∞∑
n=3

[
1

(n− 3)!
+

3

(n− 2)!
+

1

(n− 1)!

]
αn

= α+ 4α2 +

∞∑
n=3

(n− 2) (n− 1) + 3 (n− 1) + 1

(n− 1)!
αn

= α+ 4α2 +
∞∑
n=3

n2αn

(n− 1)!

=

∞∑
n=1

n2αn

(n− 1)!
.

Solution 2 by Ioannis D. Sfikas, National and Kapodistrian University of
Athens, Greece
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We have:
n2 = (n− 1)(n− 2) + 3(n− 1) + 1,

for n ∈ N with n ≥ 1. So we have:

n2αn

(n− 1)!
=

αn

(n− 3)!
+

3αn

(n− 2)!
+

αn

(n− 1)!
,

and
+∞∑
n=1

n2αn

(n− 1)!
= α3

+∞∑
n=1

αn−3

(n− 3)!
+ 3α2

+∞∑
n=1

αn−2

(n− 2)!
+ α

+∞∑
n=1

αn−1

(n− 1)!

= α3eα + 3α2eα + αeα = (α3 + 3α2 + α)eα.

Solution 3 by Moti Levy, Rehovot, Israel

Let F (z) be the generating function of the sequence
(

n2

(n−1)!

)∞
n=1

,

F (z) :=

∞∑
n=1

n2

(n− 1)!
zn.

Then by two repeated integrations, one may write,∫ z

0

1

v

∫ v

0

1

u
F (u) du =

∞∑
n=1

1

(n− 1)!
zn = zez.

Now we can express F (z) by

F (z) = z
d
(
z d(ze

z)
dz

)
dz

= z
(
z2 + 3z + 1

)
ez.

We conclude that
∞∑
n=1

n2αn

(n− 1)!
= α

(
α2 + 3α+ 1

)
eα, for α ∈ C.

Remark: the value of the sum holds true for any complex number α. There is no reason
to restrict to positive real numbers.

Solution 4 by Henry Ricardo, Westchester Area Math Circle, NY

We start with the power series expansion ez =
∑∞

n=0 z
n/n!, convergent for all complex

numbers z and note that the series may be differentiated term-by-term.

Then

d

dz
(ez) =

∞∑
n=0

nzn−1

n!
=
∞∑
n=1

zn−1

(n− 1)!
, z

d

dz
(ez) =

∞∑
n=1

zn

(n− 1)!
,

d

dz

{
z
d

dz
(ez)

}
=
∞∑
n=1

nzn−1

(n− 1)!
, z

d

dz

{
z
d

dz
(ez)

}
=
∞∑
n=1

nzn

(n− 1)!
,

d

dz

[
z
d

dz

{
z
d

dz
(ez)

}]
=
∞∑
n=1

n2zn−1

(n− 1)!
,
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and, finally,

z
d

dz

[
z
d

dz

{
z
d

dz
(ez)

}]
=

∞∑
n=1

n2zn

(n− 1)!
. (∗)

After some tedious but simple differentiations and multiplications, the left-hand side of
(∗) becomes zez(z2 + 3z + 1). Letting z = α ∈ C in (∗) gives us

∞∑
n=1

n2αn

(n− 1)!
= αeα(α2 + 3α+ 1).

Solution 5 by Kee-Wai Lau, Hong Kong, China

Since
n2

(n− 1)!
=

1

(n− 3)!
+

3

(n− 2)!
+

1

(n− 1)!
for n ≥ 3, so

+∞∑
n=1

n2αn

(n− 1)!
= α+ 4α2 +

+∞∑
n=3

αn

(n− 3)!
+ 3

+∞∑
n=3

αn

(n− 2)!
+

+∞∑
n=3

αn

(n− 1)!

= α+ 4α2 + α3eα + 3α2(eα − 1) + α(eα − 1− α)

= αeα
(
α2 + 3α+ 1

)
.

Solution 6 by Arkady Alt, San Jose, CA

Since ex =
+∞∑
n=1

xn−1

(n− 1)!
then (xex)′ =

(
+∞∑
n=1

xn

(n− 1)!

)′
⇐⇒ ex + xex =

+∞∑
n=1

nxn−1

(n− 1)!

and, therefore,
(
xex + x2ex

)′
=

(
+∞∑
n=1

nxn

(n− 1)!

)′
⇐⇒ ex

(
x2 + 3x+ 1

)
=

+∞∑
n=1

n2xn−1

(n− 1)!
.

Hence,
+∞∑
n=1

n2αn

(n− 1)!
= αeα

(
α2 + 3α+ 1

)
Editor′s Comment: David Stone and John Hawkins of Georgia Southern
University in Statesboro, GA, generalized the procedure used in (4) and (6) above,

and showed that

∞∑
n=1

n3αn

(n− 1)!
= (α4 + 6α3 + 7α2 + α)en.

Also solved by Hatef I. Arshagi, Guilford Technical Community College,
Jamestown, NC; Michel Bataille, Rouen, France; Naren Bhandari, Bajura
School, Nepal, India; Brian Bradie, Christopher Newport University,
Newport, News, VA; Michael Brozinsky, Central Islip, NY; Bruno Salgueiro
Fanego,Viveiro, Spain; Ed Gray, Highland Beach, FL; G. C. Greubel,
Newport News,VA; David E. Manes, Oneonta, NY; Adrian Naco,
Polytechnic University of Tirana, Albania; Angel Plaza, University of Las
Palmas de Gran Canaria, Spain; Ravi Prakash, Oxford University Press,
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New Delhi, India; Albert Stadler, Herrliberg, Switzerland; David Stone and
John Hawkins of Georgia Southern University, Statesboro, GA, and the
proposer.

5534: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Calculate

∫ 1

0

∫ 1

0
(x+ y) ln(x− xy + y)dxdy.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

We note that∫ 1

0

∫ 1

0
(x+ y) ln(x− xy + y)dxdy =

∫ 1

0

∫ 1

0
(x+ y) ln(1− (1− x)(1− y))dxdy =

= −
∞∑
k=1

1

k

∫ 1

0

∫ 1

0
(x+ y)(1− x)k(1− y)kdxdy = −2

∞∑
k=1

1

k

k!

(k + 2)!

1

(k + 1)
=

= −2

∞∑
k=1

1

k(k + 1)2(k + 2)
= −2

∞∑
k=1

(
1

2k
− 1

(k + 2)2
− 1

2(k + 2)

)
= 2

(
1

2
+

1

4
− π1

6
+ 1

)
=

=
π2

3
− 7

2
where we have used that for natural numbers m and n,∫ 1

0
xm(1− x)ndx =

m!n!

(m+ n+ 1)!
and

∞∑
k=1

1

k2
=
π2

6
.

Solution 2 by Ioannis D. Sfikas, National and Kapodistrian University of
Athens, Greece

We prove that

∫ 1

0

∫ 1

0
(x+ y) ln(x− xy + y)dxdy =

π2

3
− 7

2
. By symmetry we have:

I =

∫ 1

0

∫ 1

0
(x+ y) ln(x− xy + y)dxdy. =

∫ 1

0
2

∫ 1

0
ln(x− xy + y)dxdy.

and integration by parts we have:∫ 1

0
ln(x− xy + y)dxdy = −

∫ 1

0

y(1− x)

(1− x)y + x
dy = −1 +

∫ 1

0

dy

y + x
1−x

= −1− x lnx

1− x
.

So we have;

I = −2

∫ 1

0
x

(
1 +

x lnx

1− x

)
dx = −1− 2

∫ 1

0

x2 lnx

1− x
dx,

and if x = et, then:

I = −1 + 2

∫ +∞

0

te−3t

1− e−t
dt = −1 + 2

∫ +∞

0
te−3t

∑
n≥0

e−ntdt
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= −1 + 2
∑
n≥0

∫ +∞

0
te−(n+3)tdt = −1 + 2

∑
n≥0

1

(n+ 3)2

= −1 + 2

∑
n≥0

1

n2
− 1− 1

4



= −1 + 2

(
π2

6
− 5

4

)
=
π2

3
− 7

2
.

Also solved by Michel Bataille, Rouen, France; Brian Bradie, Christopher
Newport University, Newport News, VA; Bruno Salgueiro Fanego, Viveiro,
Spain; Ed Gray, Highland Beach, FL; G. C. Greubel, Newport News,VA;
Kee-Wai Lau, Hong Kong, China; Moti Levy, Rehovot, Israel, and the
proposer.

Mea Culpa

Received from Ed Gray, Highland Beach, FL.

“I have been reviewing my solution to 5523 which you published in the last column. I
regret to say that the case for P = 2 is not correct. The problem is that the formula for
the circumscribed circle, R, is not satisfied. R = abc/4A. If you recall, we got excited
about discovering more than 1 solution, later found to be incorrect. You sent a note
asking if there could be three solutions? P=2, area = 420, sides (25,39,56), diameter 65.
And if so, are there still others? The answer is that there is only 1 solution, the one you
sent. I would be most happy if you printed my error in the next column.”

Arkady Alt of San Jose, CA should have been credited with having solved problem
5525. Mea Culpa.
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