
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
January 15, 2012

• 5176: Proposed by Kenneth Korbin, New York, NY

Solve: x
2 + xy + y2 = 32

y2 + yz + z2 = 42

z2 + xz + x2 = 52.

• 5177: Proposed by Kenneth Korbin, New York, NY

A regular nonagon ABCDEFGHI has side 1.

Find the area of 4ACF .

• 5178: Proposed by Neculai Stanciu, Buzău, Romania

Prove: If x, y and z are positive real numbers such that xyz ≥ 7 + 5
√

2, then

x2 + y2 + z2 − 2(x+ y + z) ≥ 3.

• 5179: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Find all positive real solutions (x1, x2, . . . , xn) of the system

x1 +
√
x2 + 11 =

√
x2 + 76,

x2 +
√
x3 + 11 =

√
x3 + 76,

· · · · · · · · ·
xn−1 +

√
xn + 11 =

√
xn + 76,

xn +
√
x1 + 11 =

√
x1 + 76.

• 5180: Paolo Perfetti, Department of Mathematics, “Tor Vergata” University, Rome,
Italy

Let a, b and c be positive real numbers such that a+ b+ c = 1. Prove that

1 + a

bc
+

1 + b

ac
+

1 + c

ab
≥ 4√

a2 + b2 − ab
+

4√
b2 + c2 − bc

+
4√

a2 + c2 − ac
.
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• 5181: Proposed by Ovidiu Furdui, Cluj, Romania

Calculate: ∞∑
n=1

∞∑
m=1

n ·m
(n+m)!

.

Solutions

• 5158: Proposed by Kenneth Korbin, New York, NY

Given convex cyclic quadrilateral ABCD with integer length sides AB = BC = x, and
CD = DA = x+ 1.

Find the distance between the incenter and the circumcenter.

Solution by Michael Brozinsky, Central Islip, NY

Since the perpendicular bisector of the base of an isosceles triangle passes through the
vertex angle and the circumcenter of that triangle, it follows (by considering isosceles
triangles CBA and CDA) that the line segment joining B and D is a diameter of the
circumcircle, and thus the inscribed angles A and C are right angles.

The circumcenter E is also the circumcenter of right triangle BAC, and thus it is the

midpoint of the hypotenuse BD, and so it is

√
x2 + (x+ 1)2

2
from B. The incenter F

(being equidistant from BA and BD) is on the angle bisector of angle A and also on

BD (by symmetry as triangles ABD and CBD are congruent), and so
BF

FD
=

x

x+ 1
(since an angle bisector of a triangle divides the opposite side into segments proportional
to the adjacent sides).

Since BF + FD =
√
x2 + (x+ 1)2 we have BF =

x

2x+ 1
·
√
x2 + (x+ 1)2 and hence the

distance between E and F is√
x2 + (x+ 1)2 ·

(
1

2
− x

2x+ 1

)
=

√
2x2 + 2x+ 1

4x+ 2
.

Comments: Most of the solvers realized that there is no need to restrict x to being an
integer; x can be any positive real number. David Stone and John Hawkins also
mentioned in their solution that even though the inradius (ρ) and the circumradius (r)
grow large with x, as does the difference r − ρ, the distance d between the centers has

the limiting value of

√
2

4
≈ 0.35355339. So for large x, the incircle and the circumcircle

are relatively concentric.

Also solved by Paul M. Harms, North Newton, KS; David E. Manes,
Oneonta, NY; Charles McCracken, Dayton, OH; Boris Rays of Brooklyn,
NY; David Stone and John Hawkins (jointly), Statesboro, GA, and the
proposer.
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• 5159: Proposed by Kenneth Korbin, New York, NY

Given square ABCD with point P on diagonal AC and with point Q at the midpoint of
side AB.

Find the perimeter of cyclic quadrilateral ADPQ if its area is one unit less than the
area of square ABCD.

Solution by Trey Smith, San Angelo, TX

Fix a point E on AB such that PE is perpendicular to AB. Similarly, fix a point F on
AD such that PF is perpendicular to AD. Let k =length(AB). AQPD is a cyclic
quadrilateral, so it must be the case that 6 QPD is a right angle, since it and 6 DAQ are
supplementary. Now 6 FPE is also a right angle which forces 6 QPE ∼= 6 DPF . And
since 4EPQ and 4FPD are both right triangles with PE ∼= PF , it is the case that
4FPD ∼= 4EPQ. Finally, observing that EQ ∼= FD ∼= EB we have that E is the

midpoint of QB and so the length of AE is
3k

4
.

Since 4FPD ∼= 4EPQ, it is easy to see that the area of AQPD is the same as the area

of square AEPF . Thus, the area of AQPD is
9k2

16
and so the difference in the area of

ABCD and AQPD is
7k2

16
. Setting this equal to 1 and solving, we obtain k =

4√
7

.

Now

length(AQ) =
k

2
=

2√
7
,

length(QP ) = length(PD) =

√(
k

4

)2

+

(
3k

4

)2

=
k
√

10

4
=

√
10√
7
, and

length(DA) = k =
4√
7
.

Summing these, we obtain the perimeter
6 + 2

√
10√

7
=

6
√

7 + 2
√

70

7
.

Comment by David Stone and John Hawkins. It is easy to show that the point P

must be located
3

4
of the way from A to C along the diagonal AC in order to make

ADPQ a cyclic quadrilateral.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Tania Moreno
Garćıa, UHO, Cuba jointly with Jose P. Suárez, ULPGC, Spain; Paul M.
Harms, North Newton, KS; Caleb Hemmick, Kaleb Davis, Logan Belgrave
and Brianna Leever (jointly, students at Taylor University), Upland, IN;
Kee-Wai Lau, Hong Kong, China; Sugie Lee, Jon Patton, and Matthew Fox
(jointly, students at Taylor University), Upland, IN; David E. Manes,
Oneonta, NY; Aaron Milauksas, Daniel Perrine, Kari Webster (jointly,
students at Taylor University), Upland, IN; Tom Peller, Stephen Chou and
Tal Knighton (jointly, students at Taylor University), Upland, IN; Boris
Rays, Brooklyn, NY; David Stone and John Hawkins (jointly), Statesboro,
GA, and the proposer.
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• 5160: Proposed by Michael Brozinsky, Central Islip, NY

In Cartesianland, where immortal ants live, there are n (where n ≥ 2) roads {li} whose
equations are

li : x cos

(
2πi

n

)
+ y sin

(
2πi

n

)
= i,where i = 1, 2, 3, . . . ,n.

Any anthill must be located so that the sum of the squares of its distances to these n

lines is
n(n+ 1)(2n+ 1)

6
. Two queen ants are (im)mortal enemies and have their anthills

as far apart as possible. If the distance between these queens’ anthills is 4 units, find n.

Solution by Kee-Wai Lau, Hong Kong, China

We show that the anthills are 2 csc

(
π

n

)
units apart for n ≥ 3. In the present case that

they are 4 units apart, we see that n = 6. If n = 2, then the anthill can be located
anywhere on the y−axis, so that the distance between them can be as large as possible.

For simplicity, we denote π/n by m. Let the coordinates of an anthill be (r cos θ, r sin θ),
where r ≥ 0 and 0 ≤ θ ≤ 2π. Its distance to li is given by

|r cos θ cos (2mi) + r sin θ sin (2mi)− i| = |r cos (2mi− θ)− i|.

Since
n∑

i=1

i2 =
n(n+ 1)(2n+ 1)

6
, so according to the rule for location , we have

n∑
i=1

(r cos(2mi− θ)− i)2 =
n∑

i=1

i2. Clearly the origin satisfies the rule. If r 6= 0, then

n∑
i=1

(
r cos2 (2mi− θ)− 2i cos(2mi− θ)) = 0. (1)

As cos2 (2mi− θ) =
1

2
(1 + cos (4mi− 2θ)) , so (1) is equivalent to

rn+ r cos 2θ
n∑

i=1

cos(4mi) + r sin 2θ
n∑

i=1

(4mi)

−4 cos θ
n∑

i=1

i cos(2mi) − 4 sin θ
n∑

i=1

i sin(2mi) = 0. (2)

For sin(x/2) 6= 0 and positive integers k, we have the following known results,

k∑
i=1

cos(ix) =
sin(kx/2) cos(k + 1)x/2

sin(x/2)
,

k∑
i=1

sin(ix) =
sin(kx/2) sin(k + 1)x/2

sin(x/2)
,

k∑
i=1

i cos(ix) =
(k + 1) cos(kx)k cos(k + 1)x− 1

4 sin2(x/2)
,

k∑
i=1

i sin(ix) =
(k + 1) sin(kx)− k sin(k + 1)x

4 sin2(x/2)
,
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which can be proved readily by induction on k. Thus for n ≥ 3, we have

n∑
i=1

cos(4mi) =
n∑

i=1

sin(4mi) = 0,
n∑

i=1

i cos(2mi) =
n

2
,

n∑
i=1

sin(2mi) =
−n cot(m)

2
,

and from (2) we deduce that for m− π < θ < m,

r =
2 sin(m− θ)

sinm
. (3)

Together with the origin, (3) represents the locus of a circle. In rectangular coordinates
the equation of the circle is (x− 1)2 (y + cotm)2 = csc2m. Thus the distance between
the anthills equals the diameter 2 cscm of the circle and this completes the solution.

Also solved by Paul M. Harms, North Newton, KS; David Stone and John
Hawkins (jointly), Statesboro, GA, and the proposer.

• 5161: Proposed by Paolo Perfetti, Department of Mathematics, University “Tor
Vergata,” Rome, Italy

It is well known that for any function f : < → <, continuous or not, the set of points on
the y-axis where it attains a maximum or a minimum can be at most denumerable.
Prove that any function can have at most a denumerable set of inflection points, or give
a counterexample.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

Let C be the Cantor ternary set, defined by

C = [0, 1]−
∞⋃

m=1

3m−1−1⋃
k=0

(
3k + 1

3m
,
3k + 2

3m

)
(see [1] as a reference). It is well known that C is uncountable and has Lebesgue
measure zero. (Therefore C does not contain any interval).

For any point x ∈ [0, 1] define the distance from x to C by d(x,C) = inf
y∈C
|x− y|. If

x ∈ [0, 1] there is (at least) one point y(x) ∈ C such that d(x,C) = |x− y(x)|, since C is
closed. Furthermore d(x,C) = 0 if and only if x ∈ C.

Define a real function f : [0, 1] −→ R by f(x) = (x− y(x))3, if the point y(x) ∈ C that is
closest to x is unique, and put f(x) = 0 if there is not a unique closest point to x.
Extend f to a 1-periodic function to the whole of the real line. f is a piecewise cubic
polynomial (and therefore f is piecewise differentiable). Any point of the form n+ y
where n is an integer and y ∈ C is an inflection point.

We produce a second counterexample and show that there is even a continuously
differentiable function with uncountably many inflection points by “lifting” the previous
example to a continuously differentiable function. We put C∗ = {n+ y|n an integer,
y ∈ C} and define

f(x) =

∫ x

0
d2 (t, C∗) dt.

f is differentiable and f ′(x) = d2(x,C∗) where f ′(x is continuous, since d(x,C∗) is. The
derivative is zero if and only if x ∈ C∗. The points of zero derivatives are uncountable,
since C∗ is uncountable, and every point of C∗ is an inflection point.
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Reference: [1] <http://en.wikipedia.org/wiki/Cantor set>

Solution 2 by proposer

We propose the counter example.

Let f(x) =

∫ x

0
ρ(t, C)dt where 0 ≤ x ≤ 1, C is a Cantor set (ternary for example) and

let ρ(t, C) = inft′∈C |t− t′| = mint′∈C |t− t′| (the equality due to the
closeness of C = C).

We know that C is non-denumerable and nowhere dense. The nowhere density means
that for any t ∈ C, t ∈ C, there exists an open interval I = (a, b) such that t < a < b < t′

and I ∩ C = ∅.
Now we observe that:

1) f(x) is differentiable since ρ(t, C) is continuous, and

2) f ′(x) = 0 if x ∈ C and f ′(x) > 0 if x 6∈ C, (this is due to the closeness of C).

The non-denumerability of C implies the non-denumerability of set of points x where
f ′(x) = 0 and moreover they are inflection points because f ′(x) > 0 if x 6∈ C.
The nowhere density of C together with ρ(t, C) > 0 imply that the ordinates of two
different points are necessarily different so getting the non-denumerability of the
ordinates of these inflection points.

Editor’s comment: Several readers stated that at most there can be a denumerable
number of inflection points. Michael Fried of Kibbutz Revivim in Israel was one
them, but upon seeing Paolo’s proof he wrote:

Yes, Paolo is right. The mistake in my objection was to assume implicitly that the
inflection points corresponded to distinct maximum/minimum values of the derivative
function. This would indeed imply that the distinct ordinates of the inflection points
were as numerous as the those of the maximum/minimum, and, therefore, at most
denumerable.

But think about what this function ρ(t, C) = inf
t′∈C
|t− t′| looks like.

The set of all points at which the function ρ has a minimum is precisely the Cantor set,
as Paolo claimed, so that set is non-denumerable. All its minimum values, which occur
at every point of the Cantor set, however, are all equal to zero. As for its maximum
values, there is one for each step in the process producing the ternary Cantor set (i.e.
one maximum value for each “removal of the middle third”), so that the ordinates of the
maximum values of ρ are denumerable. There is no contradiction, then, of the fact that
the maximum/minimum values of the functions can be at most denumerable.

Hence, we have the following situation:

1) ρ is the derivative function of f(x) =

∫ x

0
ρ(t, C)dt where 0 ≤ x ≤ 1. Therefore, f has

a non-denumerable set of infection points.

2) Since f is defined as an integral, it is an increasing function. Therefore, the value of f
at each inflection point is unique.

Very interesting!

———————–
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Each of the other solvers came up with the opposite conclusion, namely that the number
of inflection points must be at most denumerable. Their reasoning is reflected in Michael
Brozinsky’s argument. He stated: “If a function f(x) has an inflection point at x = x0
then there is an open interval ax0 < x < bx0 containing x0 such that the concavity on
(ax0 , x0) and (x0, bx0) is different and thus (ax0 , bx0) cannot contain another inflection
point of f(x). Thus the inflection points of f(x) are isolated points and hence at most
denumerable. (We can, without loss of generality, take ax0 and bx0 to be rational since
the rational numbers are dense and then associate to x0 the midpoint of the

aforementioned interval, i.e., the rational number
ax0 + bx0

2
. Since the rationals are

denumerable, the inflection points of f(x) are at most denumerable.”

David Stone and John Hawkins were in correspondence with me about this
problem because I took issue with their solution, which was in the spirit of Michael
Brozinsky’s. I sent them Paolo’s proof and Michael Fried’s comment about it, and they
responded as follows:

John and I looked at Paolo’s counterexample and Michael’s comment and now the
reason for the confusion is clear. We’re using the standard calculus notion – an
inflection point is a place where the concavity changes. Moreover, concavity is defined
over an interval, not at a point. You can see our meaning in the proof we sent you. . ..
But Paolo and Michael seem to be using a different definition, more like “an inflection
point is a place where the derivative achieves a max or min”. Their work never mentions
“concavity” – not in their mind at all. Wikipedia mostly agrees with this notion. (It’s
not an issue here, but what if the derivative didn’t exist? What would be meant by
“inflection point”?) I think we are all correct, subject to the differing definitions (and
the problem statement proscribed no particular meaning of the term “inflection point”).
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

As editor of this column, I agree with them, that both solutions are correct, depending
upon which definition of inflection point is used. But using the change in concavity
definition of an inflection point makes this problem much less challenging than using the
extremities of the first derivative definition. Here is what Albert (proof #1) wrote about
his initial thoughts on the problem.

I have given problem 5161 a few thoughts. It is clear that the number of inflection
points is countable if the function f(x) is sufficiently smooth, let’s say two times
continuously differentiable. The inflection points are then the extrema of the function
f ′(x), and the set of (local) extrema of a function is countable. So if we want to find a
counterexample we should concentrate on more “exotic” functions. I have in mind to
construct a counterexample that is based on the Cantor set. We start from the function
f(x) = x defined on the interval [0, 1] and replace linear segments by cubics in the
following sense: if 0 < a < b < 1 then we replace the function f(x) = x by

g(x) = a+ 3
(x− a)2

(b− a)
− 2

(x− a)3

(b− a)2
. Then g(a) = a, g(b) = b, g′(a) = g′(b) = 0. In the first

iteration we take a = 1/3, b = 2/3 and do the replacement for the third in the middle.
We continue the Cantor construction and do similar replacements for the first and third
third. Continuing this way we get a continuous function that is piecewise differentiable
(multiple times). We now have to analyze in more detail what happens at the points of
the Cantor set, and see whether all these points are inflection points. Kind regards -
Albert
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Also solved by: Michael Brozionsky, Central Islip, NY; Michael N. Fried,
Kibbtuz Revivim, Israel, and David Stone and John Hawkins (jointly),
Statesboro, GA,

• 5162: Proposed by José Luis Dı́az-Barrero and José Gibergans-Báguena, Barcelona,
Spain

Let a, b, c be the lengths of the sides of an acute triangle ABC. Prove that√
b2 + c2 − a2
a2 + 2bc

+

√
c2 + a2 − b2
b2 + 2ca

+

√
a2 + b2 − c2
c2 + 2ab

≤
√

3.

Solution by Dionne Bailey, Elsie Campbell, and Charles Diminnie, San
Angelo, TX

Using the Law of Cosines and the Arithmetic - Geometric Mean Inequality, we get

b2 + c2 − a2 = 2bc cosA

and
a2 + 2bc = b2 + c2 − 2bc cosA+ 2bc ≥ 4bc− 2bc cosA = 2bc (2− cosA) .

Since 0 < A <
π

2
, we have

b2 + c2 − a2

a2 + 2bc
≤ 2bc cosA

2bc (2− cosA)
=

cosA

2− cosA
=

1

2 secA− 1

and hence, √
b2 + c2 − a2
a2 + 2bc

≤ 1√
2 secA− 1

.

Further, equality is attained if and only if b = c.

Similar steps show that√
c2 + a2 − b2

b2 + 2ca
≤ 1√

2 secB − 1
and

√
a2 + b2 − c2

c2 + 2ab
≤ 1√

2 secC − 1
,

with equality if and only if a = b = c.

Consider the function f (x) =
1√

2 secx− 1
on

(
0,
π

2

)
. Since

f ′′ (x) =
− secx

(
sec3 x− 2 sec2 x+ secx+ 1

)
(2 secx− 1)

5
2

=
− secx

[
secx (secx− 1)2 + 1

]
(2 secx− 1)

5
2

< 0
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on

(
0,
π

2

)
, it follows that f (x) is concave down on

(
0,
π

2

)
. Then, by Jensen’s Theorem

and our comments above,√
b2 + c2 − a2
a2 + 2bc

+

√
c2 + a2 − b2
b2 + 2ca

+

√
a2 + b2 − c2
c2 + 2ab

≤ f (A) + f (B) + f (C)

≤ 3f

(
A+B + C

3

)
= 3f

(
π

3

)
= 3 · 1√

3

=
√

3,

with equality if and only if a = b = c. That is, if and only if 4ABC is equilateral.

Also solved by Kee-Wai Lau, Hong Kong, China; David E. Manes, Oneonta,
NY; Charles McCracken, Dayton, OH, and the proposers.

• 5163: Proposed by Pedro H. O. Pantoja, Lisbon, Portugal

Prove that for all n ∈ N

∫ ∞
0

xn

2

coth
x

2
− 1

dx =
∞∑

k1=1

· · ·
∞∑

kn=1

1

k1 · · · kn (k1 + · · ·+ kn)
.

Solution 1 by G. C. Greubel, Newport News, VA

It can be seen that

coth
x

2
− 1 =

2

ex − 1
.

With this the integral in question becomes

I =

∫ ∞
0

xn

2

(
coth

x

2
− 1

)
dx

=

∫ ∞
0

xn

ex − 1
dx

I = Γ(n+ 1)ζ(n+ 1).

Now we have to show that the n− sums are equal to the same value. This can be done
by considering the integral ∫ ∞

0
e−axdx =

1

a
.

Using this we then have

S =
∞∑

k1=1

· · ·
∞∑

kn=1

1

k1 · · · kn (k1 + · · ·+ kn)
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=

∫ ∞
0

∞∑
k1=1

· · ·
∞∑

kn=1

1

k1 · · · kn
e−(k1+···+kn)xdx

=

∫ ∞
0

 ∞∑
k1=1

e−k1x

k1

 · · ·
 ∞∑

kn=1

e−knx

kn

 dx

=

∫ ∞
0

 ∞∑
k1=1

e−kx

k1

n

dx

S =

∫ ∞
0

(
− ln

(
1− e−x)

)n
dx.

By making the substitution t = − ln(1− e−x) we then have

S =

∫ ∞
0

tn

et − 1
dt = Γ(n+ 1)ζ(n+ 1).

We have shown that

∫ ∞
0

xn

2

(
coth

x

2
− 1

)
dx and

∞∑
k1=1

· · ·
∞∑

kn=1

1

k1 · · · kn (k1 + · · ·+ kn)
is

each equal to Γ(n+ 1)ζ(n+ 1), thus they are equal to each other.

Solution 2 by Paolo Perfetto, Department of Mathematics, “Tor Vergatta”
University, Rome, Italy

Proof: We write

1

k1 + · · ·+ kn
=

∫ 1

0
tk1+···+kn−1dt

and then

∞∑
k1,...,kn=1

1

k1k2 · · · kn

∫ 1

0
tk1+···+kn−1dt =

∫ 1

0
t−1

∞∑
k1,...,kn=1

tk1+···+kn

k1k2 · · · kn
dt

=

∫ 1

0
t−1(−1)n(ln(1− t))ndt

= (−1)n
∫ 1

0
(1− t)−1(ln t)ndt.

Now we change variables letting ln t = −x. Therefore,

(−1)n
∫ ∞
0

(−x)n

1− e−x
dx =

∫ ∞
0

xn

1− e−x
dx.

The proof concludes by observing that

coth
x

2
− 1 =

e
x
2 + e

−x
2

e
x
2 − e

−x
2

− 1 =
2e
−x
2

e
x
2 − e

−x
2

=
2

1− e−x
.
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Comment by Paolo: Apart from p = 0 the series in the statement is the same as in
problem #174 in the Missouri Journal of Mathematical Sciences, 22(1);
downloadable at < http : //www.math− cs.ucmo.edu/mjms/2010.1/Prob7.pdf >

Solution 3 by Albert Stadler, Herrliberg, Switzerland

We find that:∫ ∞
0

xn

2

(
coth

x

2
− 1

)
dx =

∫ ∞
0

xn

2

(
e

x
2 + e

−x
2

e
x
2 − e

−x
2

− 1

)
dx =

∫ ∞
0

xne−x

1− e−x
dx. (1)

We perform a change of variables: y = 1− e−x, dy = e−xdx. So

∫ ∞
0

xne−x

1− e−x
dx =

∫ 1

0

(− log(1− y))n

y
dy =

∫ 1

0

( ∞∑
k=1

yk

k

)n

y
dy

=

∫ 1

0

∑
k1≥1,k2≥1...,kn≥1

yk1+k2+...+kn−1

k1 · k2 · · · kn
dy

=
∑

k1≥1,k2≥1...,kn≥1

yk1+k2+...+kn−1

k1 · k2 · · · kn

∫ 1

0
yk1+k2+...+kn−1dy

=
∑

k1≥1,k2≥1...,kn≥1

1

k1 · k2 · · · kn (k1 + k2 + . . .+ kn)
.

The interchange of summation and integration is allowed becasue of absolute
convergence (all involved terms are positive).

It is noteworthy that the integral (1) can be explicitly evaluated in terms of the
Riemann zeta function:

∫ ∞
0

xne−x

1− e−x
dx =

∞∑
k=1

∫ ∞
0

xne−kxdx =
∞∑
k=1

1

kn+1

∫ ∞
0

xne−xdx = n!
∞∑
k=1

1

kn+1
= n!ζ(n+ 1).

It is well known that ζ(n+ 1) is a rational multiple of πn+1, if n is odd.
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