
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
January 15, 2013

• 5224: Proposed by Kenneth Korbin, New York, NY

Let T1 = T2 = 1, T3 = 2, and Tn = Tn−1 + Tn−2 + Tn−3. Find the value of

∞∑
n=1

Tn
πn
.

• 5225: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

Find infinitely many integer squares x that are each the sum of a square and a cube and
a fourth power of positive integers a, b, c. That is, x = a2 + b3 + c4.

• 5226: Proposed by D. M. Bătinetu-Giurgiu, “Matei Basarab” National College,
Bucharest and Neculai Stanciu, “George Emil Palade” Secondary School,
Buzău, Romania

Calculate: ∫ b

a

n
√
x− a

(
1 + n
√
b− x

)
n
√
x− a+ 2 n

√
−x2 + (a+ b)x− ab+ n

√
b− x

dx,

where 0 < a < b and n > 0.

• 5227: Proposed by José Luis Dı́az-Barrero, Polytechnical University of Catalonia,
Barcelona, Spain

Compute

lim
n→∞

n∏
k=1

(
(n+ 1) +

√
nk

n+
√
nk

)
.

• 5228: Proposed by Mohsen Soltanifar, University of Saskatchewan, Saskatoon, Canada

Given a random variable X with non-negative integer values. Assume the nth moment
of X is given by

E (Xn) =
∞∑
k=1

fn(k)P (X ≥ k) n = 1, 2, 3, · · · ,

1



where fn is a non-negative function defined on N . Find a closed form expression for fn.

• 5229: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let β > 0 and let (xn)n∈N be the sequence defined by the recurrence relation

x1 = a > 0, xn+1 = xn +
n2β

x1 + x2 · · ·+ xn
.

1) Prove that lim
n→∞

xn =∞.

2) Calculate lim
n→∞

xn
nβ
.

Solutions

• 5206: Proposed by Kenneth Korbin, New York, NY

The distances from the vertices of an equilateral triangle to an interior point P are√
a,
√
b, and

√
c respectively, where a, b, and c are positive integers.

Find the minimum and the maximum possible values of the sum a+ b+ c if the side of
the triangle is 13.

Solution 1 by Brian D. Beasley, Presbyterian College, Clinton ,SC

We show that a+ b+ c has a minimum value of 170 and a maximum value of 296. We

model the given triangle using vertices A(0, 0), B(13, 0), and C(13/2, 13
√

3/2). Then
the centroid of triangle ABC is G(13/2, 13

√
3/6). Let P (x, y) be a point interior to

4ABC. We denote AP =
√
a, BP =

√
b, and CP =

√
c for positive integers a, b, and c;

due to the symmetry of the equilateral triangle, we may assume without loss of
generality that a ≤ b ≤ c. It is then straightforward to verify that

a+ b+ c = AG2 +BG2 + CG2 + 3PG2 = 169 + 3PG2.

Since AG2 = 169/3 is not an integer, we know P 6= G, so the minimum value of a+ b+ c
is greater than 169 and thus must be at least 170. In fact, taking P to be (6, 2

√
3)

achieves this minimum value of 170, with (a, b, c) = (48, 61, 61).

Next, we note that x2 + y2 = a and (13− x)2 + y2 = b, so x = (a− b+ 169)/26. If a = 1,
then P lies on the circle x2 + y2 = 1, so 1/2 < x < 1 and hence 14 ≤ a− b+ 169 ≤ 25. A
quick check produces (a, b, c) = (1, 147, 148) for x = 23/26 and y = 7

√
3/26, so the

maximum value of a+ b+ c is no smaller than 296. If a ≥ 2, then PG is less than the
distance from G to either (

√
2/2,
√

6/2) or (
√

2, 0), the intersections of the circle
x2 + y2 = 2 with the triangle. This yields

PG2 <
175

3
− 13
√

2 < 40,

so a+ b+ c < 169 + 3(40) = 289. Hence the maximum value of a+ b+ c is 296.

Solution 2 by Paul M. Harms, North Newton, KS
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Put the equilateral triangle of the problem on a coordinate system with

A(−6.5, 0), B(0, 6.5
√

3), C(6.5, 0) with P(x , y).

Then

a = (x+ 6.5)2 + y2,
b = x2 + (y − 6.5

√
3)2,

c = (x− 6.5)2 + y2.

Let L = a+ b+ c and, temporarily, consider the domain of L to be the triangle and its
interior. Using partial derivatives we find that L has a minimum of 169 at x = 0, and

y =
13
√

3

6
. At this point a = b = c =

169

3
. Other extremes may occur along the

boundary of the domain. Checking for extremes along AC, we find an absolute
maximum of 338 at each vertex and a minimum of 211.25 when x = 0. The absolute

minimum is then 169 and occurs at the one point

(
0,

13
√

3

6

)
. At this point for a

minimum L, the numbers a, b,and c are not integers. Then to satisfy the problem L
must be at least 170. Also, the absolute maximum found above occurs at the vertices,
and not at a point interior to the triangle, so this maximum will not satisfy the problem.

Consider L along (0, y) where 0 < y < 6.5
√

3. Here

a = c = (6.5)2 + y2

b =
(
y − 6.5

√
3
)2
.

Then y = 6.5
√

3−
√
b, so a = c = 4 (6.5)2 + b2 − 13

√
3b with 0 <

√
b < 6.5

√
3.

We see that a, b and c will be integers when b is three times a perfect square. For these
values of b, L is a minimum of 170 when b = 3(16) = 48, a = c = 61. For these values of
b, L is a maximum of 269, when b = 3(1) = 3, a = c = 133. This minimum value of L
satisfies the problem since the point is interior to the triangle with integer values for a, b,
and c.

To check interior points for a maximum L, we check points close to a vertex, since for
the general domain, the maximum occurs at a vertex.

Let us consider circles with radius
√
b where b is an integer and the center of the circle is

B.
For the problem, we only need to consider the portion of the circle interior to the
triangle and in the first quadrant. Consider a first quadrant point P , interior to the
triangle and on the circle with center at B and radius

√
b. Using the law of cosines for

4ABP and 4PBC, we have
a = 132 + b− 2(13)

√
b cos θ and

c = 132 + b− 2(13)
√
b cos (60◦ − θ) ,where 0 < θ < 60◦.

When θ = 60◦, we have integers for a, b, and c when b is a perfect square, but P is then
on a side of the triangle and not interior to the triangle. When b = 1, the possible
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integers for c are 145, 146, and 147. We find that when c = 147, and b = 1, a = 148 with
L = 296. For a fixed positive integer b and 30◦ < θ < 60◦, the maximum (a+ c) occurs
at 60◦. Checking other values of b, we find that the maximum L is less than 296 for
integers b > 1.

Thus for positive integers, a, b and c with P interior to the triangle, the minimum L is
170 and the maximum L is 296.

Solution 3 by Kee-Wai Lau, Hong Kong, China

We show that the minimum is 170 and the maximum is 296. The minimum occurs when
a = 61, b = 48 and c = 61 and the maximum occurs when a = 148, b = 1 and c = 147.

Denote the triangle by ABC with PA =
√
a, PB =

√
b, PC =

√
c. Let 6 PBA = θ and

6 PBC=φ. Applying the cosine formula respectively to triangle PBA and PBC we
obtain

cos θ =
169 + b− a

26
√
b

and cosφ =
169 + b − c

26
√

b
.

Hence sin θ =

√
676b− (169 + b− a)2

26
√
b

and sinφ =

√
676b− (169 + b− c)2

26
√
b

.

Since

sin θ sinφ = cos θ cosφ− cos(θ + φ) = cos θ cosφ− 1

2
, so(√

676b− (169 + b− a)2
)(√

676b− (169 + b− c)2
)

= (169 + b− a)(169 + b− c)− 338b.

Squaring both sides, expanding and simplifying, we obtain the equation

a2 − (169 + b+ c)a+ b2 + c2 − bc− 169b− 169c+ 28561 = 0. Hence

a =
1

2

(
169 + b+ c±

√
3

√(√
b+
√
c+ 13

) (√
b+
√
c− 13

) (√
b−
√
c+ 13

) (√
c−
√
b+ 13

))
.

By considering the special case a = b = c =
169

3
, we see that in fact

a =
1

2

(
169 + b+ c−

√
3

√(√
b+
√
c+ 13

) (√
b+
√
c− 13

) (√
b−
√
c+ 13

) (√
c−
√
b+ 13

))
.

We now obtain the minimum and maximum values of a+ b+ c stated above with the
help of a computer. Here we impose the restrictions 1 ≤ b ≤ 168, b ≤ c ≤ a ≤ 168 by
symmetry,

√
a+
√
b > 13,

√
b+
√
c > 13,

√
c+
√
a > 13, and that a is a positive integer.

This completes the solution.

Solution 4 by Albert Stadler of Herrliberg, Switzerland

Let α = 6 APB, β = 6 BPC, γ = 6 CPA. Then by the law of cosines,

cosα =
a+ b− 169

2
√
ab

, cosβ =
b+ c− 169

2
√
bc

, cos γ =
c+ a− 169

2
√
ca

.

Obviously α+ β + γ = 2π. So

cos γ = cos(α+ β) = cosα cosβ − sinα sinβ,
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(cos γ − cosα cosβ)2 = (1− cos2 α)(1− cos2 β),

cos2 α+ cos2 β + cos2 γ − 2 cosα cosβ cos γ − 1 = 0,

(
a+ b− 169

2
√
ab

)2

+

(
b+ c− 169

2
√
bc

)2

+

(
c+ a− 169

2
√
ca

)2

−2

(
a+ b− 169

2
√
ab

)(
b+ c− 169

2
√
bc

)(
c+ a− 169

2
√
ca

)
= 1,

which is equivalent to

3
(
a2 + b2 + c2 + 134

)
=
(
a+ b+ c+ 133

)2
, (1)

as is seen when multiplying out.

A computer search on the set {(a, b, c)|1 ≤ a, b, c ≤ 169} reveals that only the tuples of
the table in the appendix satisfy (1) The minimal value of a+ b+ c is 170 and the
maximal value is 296.

Editor’s note: Ken Korbin, proposer of the problem, also worked with the formula:

3
(
a2 + b2 + c2 + 134

)
=
(
a+ b+ c+ 133

)2
.

Albert presented a table listing all possible values satisfying the conditions of the
problem. His appendix consisted of a table containing 258 rows for the various values of
a, b and c; a few of rows are reproduced below.

David Stone and John Hawkins of Statesboro, GA noted that it can be shown
that the quantity

√
a+
√
b+
√
c, the sum of the distances from P to the three vertices,

achieves its minimum of
√

3s at the centroid of the triangle, and it achieves its
maximum of 2s at any vertex (where “s” is a positive integer representing the side
length of the equilateral triangle.)

They also observed that because it is defined as the sum of the square of the distances to
the vertices, the quantity a+ b+ c can properly be called the moment of inertia of the
triangle about the point P . They showed that this moment of inertia of an
equilateral triangle is minimized when P is the centroid and maximized at any vertex.
The same conclusion holds for a square and, they hypothesize, for any regular polygon.

Stadler′s Table
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a b c a+ b+ c

48 61 61 170

49 57 64 170

49 64 57 170

...
...

...
...

1 147 148 296

147 1 148 296

157 1 144 302

157 144 1 302

Also solved by Farideh Firoozbakht and Jahangeer Kholdi (jointly), Isfahan,
Iran; Adrian Naco, Polytechnic University, Tirana, Albania, David Stone
and John Hawkins (jointly), Georgia Southern University, Statesboro GA,
and the proposer.

• 5207: Proposed by Roger Izard, Dallas, TX

Consider the following four algebraic terms:

T1 = a2 (b+ c) + b2 (a+ c) + c2 (a+ b)

T2 = (a+ b)(a+ c)(b+ c)

T3 = abc

T4 =
b+ c− a

a
+
a+ c− b

b
+
a+ b− c

c

Suppose that
T1 · T2
(T3)

2 =
616

9
. What values would then be possible for T4?

Solution by David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA

We show the possible values of T4 are
13

3
and −37

3
.

For convenience, let T5 =
a+ b

c
+
b+ c

a
+
a+ c

b
.

Note that

T4 =
b+ c− a

a
+
a+ c− b

b
+
a+ b− c

c

=
b+ c

a
− 1 +

a+ c

b
− 1 +

a+ b

c
− 1

6



= T5 − 3.

Now we expand and simplify:

T2 = (a+ b)(a+ c)(b+ c) = a2b+ abc+ ab2 + b2c+ a2c+ ac2 + abc+ bc2

=
a

c
T3 + 2T3 +

b

c
T3 +

b

a
T3 +

a

b
T3 +

c

b
T3 +

c

a
T3

= T3

(
2 +

a+ b

c
+
b+ c

a
+
a+ c

b
)

= T3 (2 + T5) .

Therefore,
T2
T3

= T5 + 2.

Similarly, T1 = T3T5, so
T1
T3

= T5.

Therefore,
616

9
=
T1 · T2
(T3)

2 =
T1
T3

T2
T3

= T5 (T5 + 2).

Hence,

T 2
5 + 2T5 −

616

9
= 0(

T5 +
28

3

)(
T5 −

22

3

)
= 0. Thus,

T5 = −28

3
or T5 =

22

3
, so,

T4 = −28

3
− 3 = −37

3
or T4 =

22

3
− 3 =

13

3
.

Comment: The question still unanswered—do there exist values of a, b, and c which
make all of this happen?

Editor’s remark: The above question was answered by Albert Stadler of Herrliberg,
Switzerland. In his solution to this problem he stated that both values obtained for T4

are actually assumed: for instance for (a, b, c) =

(
1, 1,
−17 +

√
253

6

)
and for

(a, b, c) =

(
1, 1,

4 +
√

7

3

)
.

Also solved by Arkady Alt, San Jose, CA; Brian D. Beasley, Presbyterian
College, Clinton, SC; Elsie M. Campbell, Dionne T. Bailey, and Charles
Diminnie, Angelo State University, San Angelo, TX; Ben Carani, Jordan
Melendez, Caleb Stevenson (students at Taylor University), Upland, IN;
Paul M. Harms, North Newton, KS; Enkel Hysnelaj, University of
Technology, Sydney Australia and Elton Bojaxhiu, Kriftel, Germany;
Samuel David Judge, Justin Wydra, and Karen Wydra (students at Taylor
University), Upland, IN; Kee-Wai Lau, Hong, Kong, China; Adrian Naco,
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Polytechnic University, Tirana, Albania; Paolo Perfetti, Department of
Mathematics “Tor Vergata University,” Rome, Italy; Jungmin Song, Nate
Armstrong and Alex Senyshyn (students at Taylor University), Upland IN;
Howard Sporn, Great Neck, NY, and the proposer.

• 5208: Proposed by D. M. Bătinetu-Giurgiu, Bucharest and Neculai Stanciu,
Buzău, Romania

Let the sequence of positive real numbers {an}n≥1, N ∈ Z+ be such that

lim
n→∞

an+1

n2 · an
= b. Calculate:

lim
n→∞

(
n+1
√
an+1

n+ 1
−

n
√
an
n

)
.

Solution 1 by Anastasios Kotronis, Athens, Greece

Setting zn := an
n2n , we have

zn+1

zn
=
an+1

n2an

[(
1 +

1

n

)n]−2 (
1 +

1

n

)−2
→ be−2, (1)

and by Cesàro Stolz:

lim
n→+∞

z1/nn = exp

(
lim

n→+∞

ln zn
n

)
= exp

(
lim

n→+∞
ln
zn+1

zn

)
= exp

(
ln lim
n→+∞

zn+1

zn

)
= be−2. (2)

On account of (1) and (2):(n+ 1)z
1

n+1

n+1

nz
1/n
n


n

=

(
1 +

1

n

)n zn+1

zn
z
− 1

n+1

n+1 → e,

so

n+1
√
an+1

n+ 1
−

n
√
an
n

= z1/nn


(n+1)z

1
n+1
n+1

nz
1/n
n

− 1

ln

 (n+1)z
1

n+1
n+1

nz
1/n
n

 ln

(n+ 1)z
1

n+1

n+1

nz
1/n
n


n

→ be−2,

since

lim
n→+∞

(n+1)z
1

n+1
n+1

nz
1/n
n

− 1

ln

 (n+1)z
1

n+1
n+1

nz
1/n
n

 = lim
n→+∞

exp

ln

 (n+1)z
1

n+1
n+1

nz
1/n
n

− 1

ln

 (n+1)z
1

n+1
n+1

nz
1/n
n


8



= lim
x→0

ex − 1

x
= 1.

Solution 2 by proposers

We have

(1) lim
n→∞

n
√
an
n2

= lim
n→∞

n

√
an
n2n

= lim
n→∞

an+1

(n+ 1)2n+2 ·
n2n

an
= lim

n→∞
an+1

(n+ 1)2 an
· 1

e2n
=

b

e2
, where

en =
(
1 + 1

n

)n
. (The second equality in the chain follows from the Cauchy-D’Alembert

criteria.)

(2) Denote un =
n+1
√
an+1

n
√
an

· n

n+ 1
, ∀n ≥ 2 and we deduce that

(3) lim
n→∞

un = lim
n→∞

(
n+1
√
an+1

(n+ 1)2
· n2

n
√
an
· n+ 1

n

)
=

b

e2
· e

2

b
· 1 = 1, respectively

(4) lim
n→∞

un − 1

lnun
= 1.

(5) lim
n→∞

unn = lim
n→∞

(
an+1

an
· 1

n+1
√
an+1

·
(

n

n+ 1

)n)
=

lim
n→∞

(
an+1

n2an
· (n+ 1)2

n+1
√
an+1

· 1

en
·
(

n

n+ 1

)2
)

= b · e
2

b
· 1

e
· 1 = e.

(6) Denote xn =

(
n+1
√
an+1

n+ 1
−

n
√
an
n

)
=

n
√
an
n
·
(

n+1
√
an+1

n
√
an

· n

n+ 1
− 1

)
=

n
√
an
n

(un − 1) =
n
√
an
n
· un − 1

lnun
· lnun =

n
√
an
n2
· un − 1

lnun
· lnunn.

By (1), (4), (5) and (6) we obtain

(7) L = lim
n→∞

(
n+1
√
an+1

n+ 1
−

n
√
an
n

)
= lim

n→∞
xn =

b

e2
· 1 · ln e =

b

e2
.

Also solved by Arkady Alt, San-Jose, CA; Kee-Wai Lau, Hong Kong, China;
Adrian Naco, Polytechnic University, Tirana, Albania; and Albert Stadler,
Herrliberg, Switzerland.

• 5209: Proposed by Tom Moore, Bridgewater, MA

We noticed that 27 is a cube and 28 is an even perfect number. Find all pairs of
consecutive integers such that one is cube and the other is an even perfect number.

Solution by Kee-Wai Lau, Hong Kong, China

We show that 27 and 28 are the only consecutive integers such that one is cube and the
other is an even perfect number.

It is well known that every even perfect number is of the form 2p−1 (2p − 1), where
2p − 1 is a prime. Suppose 2p−1 (2p − 1) = a3 + 1, where a is an odd integer, then since
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a3 + 1 = (a+ 1)(a2 − a+ 1), we have a+ 1 = 2p−1 and a2 − a+ 1 = 2p − 1. Hence
a2 − a+ 1 = 2a+ 1 or a = 3. This gives the pair 27 and 28.

Next we suppose that 2p−1 (2p − 1) = b3 − 1, where b is an odd integer, then since
b3 − 1 = (b− 1)

(
b2 + b− 1

)
, we have b− 1 = 2p−1 and b2 + b+ 1 = 2p − 1. Hence

b2 + b+ 1 = 2b− 3 or b2 − b+ 4 = 0, which gives no real solutions.

This completes the solution.

Also solved by Dionne Bailey, Elsie Campbell and Charles Diminnie, Angelo
Sate University, San Angelo TX; Brian D. Beasley, Presbyterian College,
Clinton, SC; Farideh Firoozbakht and Jahangeer Kholdi (jointly), Isfahan,
Iran; Paul M. Harms, North Newton, KS; David E. Manes, SUNY College
at Oneonta, Oneonta, NY; David Stone and John Hawkins (jointly), Georgia
Southern University, Statesboro, GA; Albert Stadler, Herrliberg,
Switzerland, and the proposer.

• 5210: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let a, b, c, d be four positive real numbers. Prove that

1 +
1

8

(
a

b+ c
+

b

c+ d
+

c

d+ a
+

d

a+ b

)
>

2
√

3

3
.

Solution by Dionne Bailey, Elsie Campbell, Charles Diminnie, and Andrew
Siefker, Angelo State University, San Angelo, TX

We will establish the slightly improved inequality

1 +
1

8

(
a

b+ c
+

b

c+ d
+

c

d+ a
+

d

a+ b

)
>

7

6
.

This is a little better than the given result because

7

6
− 2
√

3

3
=

7− 4
√

3

6
=

1

6
(
7 + 4

√
3
) > 0.

We begin with the following known inequality:
If x1, x2, . . . , xn > 0, then

(x1 + x2 + . . .+ xn)

(
1

x1
+

1

x2
+ . . .+

1

xn

)
≥ n2. (1)

This follows from applying the Cauchy-Schwarz Inequality to the vectors

x =
(√

x1,
√

x2, . . . ,
√

xn
)

and y =

(
1
√

x1
,

1
√

x2
, . . . ,

1
√

xn

)
.

If we let x1 = a+ b+ c, x2 = b+ c+ d, x3 = c+ d+ a, and x4 = d+ a+ b, then since
a, b, c, d > 0, statement (1) implies that

a

b+ c
+

b

c+ d
+

c

d+ a
+

d

a+ b

10



>
a

b+ c+ d
+

b

c+ d+ a
+

c

d+ a+ b
+

d

a+ b+ c

=

(
a

b+ c+ d
+ 1

)
+

(
b

c+ d+ a
+ 1

)
+

(
c

d+ a+ b
+ 1

)
+

(
d

a+ b+ c
+ 1

)
− 4

= (a+ b+ c+ d)

(
1

a+ b+ c
+

1

b+ c+ d
+

1

c+ d+ a
+

1

d+ a+ b

)
− 4

=
1

3
(x1 + x2 + x3 + x4)

(
1

x1
+

1

x2
+

1

x3
+

1

x4

)
− 4

≥ 16

3
− 4

=
4

3
.

Therefore,

1 +
1

8

(
a

b+ c
+

b

c+ d
+

c

d+ a
+

d

a+ b

)
> 1 +

1

8

(
4

3

)
=

7

6
,

and our proof is complete.

Comments: Kee-Wai Lau of Hong Kong, China remarked that D.S. Mitrinović(
Analytic Inequalities, Springer Verlag (1970; p. 132)

)
and L. J. Mordell

(
On the

inequality
∑
xr/(xr+ + xr+2) ≥

1

2
n Abh. Math. Sem. Univ. Hamburg 22, (1958; pp

229-241)

)
shown that

a

b+ c
+

b

c+ d
+

c

d+ a
+

d

a+ b
≥ 2.

So the present problem can be sharpened to

1 +
1

8

(
a

b+ c
+

b

c+ d
+

c

d+ a
+

d

a+ b

)
≥ 5

4
.

Albert Stadler of Herrliberg, Switzerland noted that the problem statement is a
generalization of Nesbitt’s inequality to four variables (see
http://en.wikipedia.org/wiki/Nesbitt’s inequality). However this generalization is well
known: see e.g., Pham Kim Hung’s text “Secrets in Inequalities” (GIL Publishing House
2007.) Albert also noted that the inequality can be sharpened to ≥ 1.25, and he
presented the proof in Kim Hung’s text.

Prove that for all non-negative real numbers a,b,c,d,

a

b+ c
+

b

c+ d
+

c

d+ a
+

d

a+ b
≥ 2.

Consider the following expressions

S =
a

b+ c
+

b

c+ d
+

c

d+ a
+

d

a+ b
;

M =
b

b+ c
+

c

c+ d
+

d

d+ a
+

a

a+ b
;

N =
c

b+ c
+

d

c+ d
+

a

d+ a
+

b

a+ b
;

11



We have M +N = 4. According to AM-GM, we get

M+S =
a+ b

b+ c
+
b+ c

c+ d
+
c+ d

d+ a
+
d+ a

a+ b
≥ 4;

N+S =
a+ c

b+ c
+
b+ d

c+ d
+
a+ c

d+ a
+
b+ d

a+ b

=
a+ c

b+ c
+
a+ c

a+ d
+
b+ d

c+ d
+
b+ d

a+ b

≥ 4(a+ c)

a+ b+ c+ d
+

4(b+ d)

a+ b+ c+ d
= 4.

Therefore, M +N + 2S ≥ 8, and S ≥ 2. The equality holds if a = b = c = d or
a = c, b = d = 0 or a=c=0, b=d.

Also solved by Arkady Alt, San Jose, CA; D.M. Bătinetu-Giurgiu,
Bucharest, Neculai Stanciu Buzău and Titu Zvonaru Comănesti, all from
Romania (two solutions); Bruno Salgueiro Fanego, Viveiro, Spain; David E.
Manes, SUNY College at Oneonta, Oneonta, NY; Adrian Naco, Polytechnic
University, Tirana, Albania; Paolo Perfetti, Department of Mathematics,
Tor Vergata University, Rome, Italy; Ángel Plaza, University of Las Palmas
de Gran Canaria, Spain, and the proposer.

• 5211: Proposed by Ovidiu Furdui, Cluj-Napoca, Romania

Let n ≥ 1 be a natural number and let

fn(x) = xx
··
·x

,

where the number of x’s in the definition of fn is n. For example

f1(x) = x, f2(x) = xx, f3(x) = xx
x
, . . . .

Calculate the limit

lim
x→1

fn(x)− fn−1(x)

(1− x)n
.

Solution 1 by Kee-Wai Lau, Hong Kong, China

We show the limit equals (−1)n. Define f0(x) = 1. For n ≥ 2 and x > 0, we have
fn(x) = efn−1(x) lnx. Hence by the mean value theorem, we have

fn(x)− fn−1(x) = lnx (fn−1(x)− fn−2(x)) eξ,

where ξ lies between fn−1(x) lnx and fn−2(x) lnx.

Since lim
x→1

fn−1(x) lnx = lim
x→1

fn−2(x) lnx = 0 and lim
x→1

lnx

1− x
= −1, so

lim
x→1

fn(x)− fn−1(x)

(1− x)n
= − lim

x→1

fn−1(x)− fn−2(x)

(1− x)n−1
.

12



Clearly lim
x→1

f1(x)− f0(x)

1− x
= −1. Hence by induction we have

lim
x→1

fn(x)− fn−1(x)

(1− x)n
= (−1)n,

as claimed.

Solution 2 by Albert Stadler, Herrliberg, Switzerland

We will use induction to prove that an = lim
x→1

fn(x)− fn−1(x)

(1− x)n
= (−1)n.

We have by applying L’Hôpital’s rule twice,

a2 = lim
x→1

f2(x)− f1(x)

(1− x)2
= lim

x→1

xx − x
(1− x)2

= lim
x→1

xx(1 + log x)− 1

−2(1− x)
= lim

x→1

xx
[
(1 + log x)2 +

1

x

]
2

= 1.

So the assertion holds for n = 2.

We have
d

dx
fn(x) =

d

dx
efn−1(x) log x = fn(x)

(
f
′
n−1(x) log x+

fn−1(x)

x

)
. In particular,

f
′
n(1) = fn(1)

(
f
′
n−1(1) log(1) +

fn−1(1)

1

)
= 1.

So, by L’Hôpital’s rule,

an = lim
x→1

fn(x)− fn−1(x)

(1− x)n
= lim

x→1

f
′
n(x)− f ′n−1(x)

−n(1− x)n−1

= lim
x→1

fn(x)
(
f
′
n−1(x) log x+ fn−1(x)

x

)
− fn−1(x)

(
f
′
n−2(x) log x+ fn−2(x)

x

)
−n(1− x)n−1

= lim
x→1

(
fn(x)− (fn−1(x))

(
f
′
n−1(x) log x+ fn−1(x)

x

)
−n(1− x)n−1

+ lim
x→1

(
fn−1(x)

(
f
′
n−1(x) log x+ fn−1(x)

x − f ′n−2(x) log x− fn−2(x)
x

)
−n(1− x)n−1

.

So

an = lim
x→1

fn(x)− fn−1(x)

(1− x)n

1 +

(
f
′
n−1(x) log x+ fn−1(x)

x

)
(1− x)

n



= lim
x→1

fn−1(x)
(
f
′
n−1(x) log x+ fn−1(x)

x − f ′n−2(x) log x− fn−2(x)
x

)
−n(1− x)n−1

13



= lim
x→1

f
′
n−1(x)− f ′n−2(x)

−n(1− x)n−2
· log x

1− x
+ lim
x→1

fn−1(x)− fn−2(x)

−n(1− x)n−1x

=
n− 1

n
lim
x→1

fn−1(x)− fn−2(x)

(1− x)n−1
· (−1) +

1

(−n)
lim
x→1

fn−1(x)− fn−2(x)

(1− x)n−1

= −an−1 = −(−1)n−1 = (−1)n.

Solution 3 by Adrian Naco, Polytechnic University, Tirana, Albania

At first we observe that the function is of the form

fn(x) = xfn−1(x) = efn−1(x) lnx

and that

fn(x)− fn−1(x)

(1− x)n
=

efn−1(x) lnx − efn−2(x) lnx

(1− x)n
= efn−2(x) lnx

(
e[fn−1(x)−fn−2(x)] lnx − 1

(1− x)n

)

= efn−2(x) lnx· [fn−1(x)− fn−2(x)] lnx

(1− x)n
· e

[fn−1(x)−fn−2(x)] lnx − 1

[fn−1(x)− fn−2(x)] lnx
. (2)

The function f1(x) = x is continuous everywhere for x > 0 and

lim
x→1

f1(x) = lim
x→1

x = 1.

One easily comes to the conclusion that the function fn(x) = efn−1(x) lnx is continuous
everywhere for x > 0 as a composition of a product of two continuous functions
u(x) = fn−1(x) lnx and the exponential function fn(x) = eu(x) and as a logical result
implies that

lim
x→1

fn(x) = e
lim
x→1

[fn−1(x) lnx]
= e

[
lim
x→1

fn−1(x)
]
·
[
lim
x→1

lnx
]

= e1·0 = 1. (3)

Using the known limit rule

lim
α→0

eα − 1

α
= 1⇒ lim

x→1

e[fn−1(x)−fn−2(x)] lnx − 1

[fn−1(x)− fn−2 (x)] lnx
= 1 (4)

since

lim
x→1

α(x) = lim
x→1

[fn−1(x)− fn−2(x)] lnx

=

[
lim
x→1

fn−1(x)− lim
x→1

fn−2(x)

](
lim
x→1

lnx

)
= (1− 1) · 0 = 0

14



So from formula (2) and (4) we derive the inductive result for one step.

lim
x→1

fn(x)− fn−1(x)

(1− x)n

= lim
x→1

efn−2(x) lnx · [fn−1(x)− fn−2(x)] lnx

(1− x)n
· e

[fn−1(x)−fn−2(x)] lnx − 1

[fn−1(x)− fn−2(x)] lnx

=

(
lim
x→1

efn−2(x) lnx
)
·
(

lim
x→1

[fn−1(x)− fn−2(x)] lnx

(1− x)n

)
·
(

lim
x→1

e[fn−1(x)−fn−2(x)] lnx − 1

[fn−1(x)− fn−2 (x)] lnx

)

=

(
e

lim
x→1

fn−2(x) lnx
)
·
(

lim
x→1

[fn−1(x)− fn−2(x)] lnx

(1− x)n

)
·
(

lim
x→1

e[fn−1(x)−fn−2(x)] lnx − 1

[fn−1(x)− fn−2 (x)] lnx

)

= 1 ·
(

lim
x→1

[fn−1(x)− fn−2(x)] lnx

(1− x)n

)
· 1 = lim

x→1

[fn−1(x)− fn−2(x)] lnx

(1− x)n
(5)

Inductively we derive the general formula

lim
x→1

fn(x)− fn−1(x)

(1− x)n
= lim

x→1

fn(x)− fn−1(x)

(1− x)n
ln0 x

= lim
x→1

[fn−1(x)− fn−2(x)] ln1 x

(1− x)n

= lim
x→1

[fn−2(x)− fn−3(x)] ln2 x

(1− x)n

. . . . . . . . .

= lim
x→1

[f2(x)− f1(x)] lnn−2 x

(1− x)n
= lim

x→1

[xx − x] lnn−2 x

(1− x)n

= lim
x→1

[
ex lnx − elnx

]
lnn−2 x

(1− x)n
= lim

x→1

elnx
[
e(x−1) lnx − 1

]
lnn−2 x

(1− x)n

= lim
x→1

elnx

[
e(x−1) lnx − 1]

]
(x− 1) lnx

(x− 1)
lnn−1 x

(1− x)n

= (−1)

(
lim
x→1

elnx
) lim

x→1

[
e(x−1) lnx − 1]

]
(x− 1) lnx

[ lim
x→1

lnx

(1− x)

]n−1
= (−1) · e0 · 1 ·

[
lim
x→1

lnx

(1− x)

]n−1
= −

[
lim
x→1

lnx

(1− x)

]n−1
.
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Applying L’Hôpital’s rule we have that

lim
x→1

fn(x)− fn−1(x)

(1− x)n
= −

[
lim
x→1

lnx

(1− x)

]n−1
= −

[
lim
x→1

(lnx)
′

(1− x)′

]n−1

= −
[

lim
x→1

1
x

(−1)

]n−1
= (−1)(−1)n−1 = (−1)n.

Editor’s comment: There was a mistake in the statement of the problem when it first

appeared on the web. That version asked for the lim
x→1

fn(x)− fn−1(x)

(1− x)n+1
. This mistake was

corrected almost immediately but not before a few of the readers started working with the
incorrect statement of the problem; although those readers noted the error and corrected
it in their solutions, once again, mea culpa. Most all who submitted solutions to this
problem approached it with induction.

Also solved by Arkady Alt, San Jose, CA; Anastasios Kontronis, Athens,
Greece; Paolo Perfetti, Department of Mathematics, Tor Vergata University,
Rome, Italy, and the proposer.
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