
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
January 15, 2011

• 5128: Proposed by Kenneth Korbin, New York, NY

Find all positive integers less than 1000 such that the sum of the divisors of each integer
is a power of two.

For example, the sum of the divisors of 3 is 22, and the sum of the divisors of 7 is 23.

• 5129: Proposed by Kenneth Korbin, New York, NY

Given prime number c and positive integers a and b such that a2 + b2 = c2, express in
terms of a and b the lengths of the legs of the primitive Pythagorean Triangles with
hypotenuses c3 and c5, respectively.

• 5130: Proposed by Michael Brozinsky, Central Islip, NY

In Cartesianland, where immortal ants live, calculus has not been discovered. A bride
and groom start out from A(−a, 0) and B(b, 0) respectively where a 6= b and a > 0 and
b > 0 and walk at the rate of one unit per second to an altar located at the point P on
line L : y = mx such that the time that the first to arrive at P has to wait for the other
to arrive is a maximum. Find, without calculus, the locus of P as m varies through all
nonzero real numbers.

• 5131: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let a, b, c be positive real numbers. Prove that

a + b + 3c

3a + 3b + 2c
+

a + 3b + c

3a + 2b + 3c
+

3a + b + c

2a + 3b + 3c
≥ 15

8
.

• 5132: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Find all all functions f : C → C such that f(f(z)) = z2 for all z ∈ C.

• 5133: Proposed by Ovidiu Furdui, Cluj, Romania

Let n ≥ 1 be a natural number. Calculate

In =
∫ 1

0

∫ 1

0
(x− y)ndxdy.
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Solutions

• 5110: Proposed by Kenneth Korbin, New York, NY.

Given triangle ABC with an interior point P and with coordinates A(0, 0), B(6, 8), and
C(21, 0). The distance from point P to side AB is a, to side BC is b, and to side CA is
c where a : b : c = AB : BC : CA.

Find the coordinates of point P

Solution 1 by Boris Rays, Brooklyn, NY

From the given triangle we have AB = 10, BC = 17 and CA = 21. Also
a : b : c = 10 : 17 : 21.

Let a = 10t, b = 17t, and c = 21t, where t is real number, t > 0. (1)

Area 4ABC = Area 4APB + Area 4BPC + Area 4CPA. (2)

Express all of the terms in (2) by using formulas in (1).

1
2
· 21 · 8 =

1
2
· 10 · 10t +

1
2
· 17 · 17t +

1
2
· 21 · 21t

=
1
2
t
(
102 + 172 + 212

)
=

1
2
830t

From the above we find that t =
84
415

=
22 · 3 · 7
5 · 83

.

The y-coordinate of point P is c, the distance to side CA.

yP = c = 21t = 21 · 84
415

=
1764
415

.

Let points E and F lie on side CA, where PE ⊥ CA and BF ⊥ CA.

Hence we have PE = C =
422

415
, BF = 8, and AF = 6.

Area 4APB + Area 4APE + Area BPEF = Area 4ABF.

Letting AE = x we have EF = 6− x. Therefore,

1
2
· 10 · a +

1
2
· x · c +

1
2

(
PE + BF

)
· EF =

1
2
AF ·BF

1
2
· 100 · 84

415
+

1
2
· x · 422

415
+

1
2

(
422

415
+ 8

)
(6− x) =

1
2
6 · 8.

From the above equation we find x.

x =
1
8

(
8400 + 6(42)2

415

)
=

2373
415

.

Hence, the coordinates of point P are
(

2373
415

,
1764
415

)
.
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Solution 2 by Charles McCracken, Dayton, OH

AB = 10 BC = 17 CA = 21

The equations of AB,BC and CA are respectively,

4x− 3y = 0 8x + 15y − 168 = 0 y = c

Then,

a =
4x− 3y

5
b =

8x + 15y − 168
17

c = y

(
4x− 3y

5

)
y

=
10
21

(
8x + 15y − 168

−17

)
y

=
17
21

21 (4x− 3y) = 50y 21 (8x + 15y − 168) = −289y

84x− 113y = 0 168x + 604y = 3528

These last two equations give:

(x, y) =
(

2373
415

,
1764
415

)
Note that P is the Lemoine point of 4ABC, that is, the intersection of the symmedians.
(Editor: A symmedian is the reflection of a median about its corresponding angle
bisector.)

Also solved by Brian D. Beasley, Clinton, SC; Michael Brozinsky, Central
Islip, NY; Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie
(jointly), San Angelo, TX; Paul M. Harms, North Newton, KS; Kee-Wai
Lau, Hong Kong, China; John Nord, Spokane, WA; Raúl A. Simón,
Santiago, Chile; Danielle Urbanowicz, Jennie Clinton, and Bill Solyst
(jointly; students at Taylor University), Upland, IN; David Stone and John
Hawkins (jointly), Satetesboro, GA, and the proposer.

• 5111: Proposed by Michael Brozinsky, Central Islip, NY.

In Cartesianland where immortal ants live, it is mandated that any anthill must be
surrounded by a triangular fence circumscribed in a circle of unit radius. Furthermore, if
the vertices of any such triangle are denoted by A,B, and C, in counterclockwise order,
the anthill’s center must be located at the interior point P such that
6 PAB = 6 PBC = 6 PCA.

Show PA · PB · PC ≤ 1.

Solution by Kee-Wai Lau, Hong Kong, China

It is easy to check that 6 APB = 180◦ −B, 6 BPC = 180◦ − C, and 6 CPA = 180◦ −A.

It is well known that the area of 4ABC = 2R2 sin A sinB sinC, where R is the
circumradius of the triangle. Here we have R = 1. Since the area of 4ABC equals the
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sum of the areas of triangles APB,BPC and CPA, we have

Area 4ABC = Area 4APB + Area 4BPC + Area 4CPA

2 sinA sinB sin C =
1
2

(
PA · PB sinB + PB · PC sinC + PC · PA sinA

)
.

By the arithmetic mean-geometric mean inequality, we have

PA·PB sinB+PB·PC sinC+PC·PA sinA ≥ 3
(
PA · PB · PC

)2/3
(sinA sinB sinC)1/3 .

It follows that (
PA · PB · PC

)2/3
≤ 4

3
(sinA sinB sinC)2/3 . (1)

By the concavity of the function ln (sinx) for 0 < x < π, we obtain

ln(sin A) + ln(sinB) + ln(sinC) ≤ 3
(

sin
(

A + B + C

3

))
= 3 ln

(√
3

2

)
.

Therefore,

sinA sinB sinC ≤ 3
√

3
8

. (2)

The result PA · PB · PC ≤ 1 now follows easily from (1) and (2) immediately above.

Comments: The proposer, Michael Brozinsky, mentioned in his solution that point P
is precisely the Brocard point of the triangle, and David Stone and John Hawkins
noted in their solution that given an inscribed triangle and letting
θ = 6 PAB = 6 PBC = 6 PCA, then the identity

sin θ =
abc

2
√

a2b2 + a2c2 + b2c2

allows one to find the unique angle θ and thus sides PA,PB, and PC.

Also solved by David Stone and John Hawkins (jointly), Satetesboro, GA,
and the proposer.

• 5112: Proposed by Juan-Bosco Romero Márquez, Madrid, Spain

Let 0 < a < b be real numbers with a fixed and b variable. Prove that

lim
b→a

∫ b

a

dx

ln
b + x

a + x

= lim
b→a

∫ b

a

dx

ln
b(a + x)
a(b + x)

.

Solution by Shai Covo, Kiryat-Ono, Israel

We begin with the left-hand side limit. Writing ln
b + x

a + x
as ln(b + x)− ln(a + x), we have

by the mean value theorem that this expression is equal to
1
ξ

(b− a) where ξ = ξ(a, b, x)

is some point between (a + x) and (b + x). Since x varies from a to b, it thus follows that

b− a

2b
≤ ln

b + x

a + x
≤ b− a

2a
.
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Hence,

2a =
∫ b

a

2a

b− a
dx ≤

∫ b

a

dx

ln
b + x

a + x

≤
∫ b

a

2b

b− a
dx = 2b,

and so

lim
b→a

∫ b

a

dx

ln
b + x

a + x

= 2a.

Applying this technique to the computation of the right-hand side limit gives

a(b− a)
ab + b2

≤ ln
b(a + x)
a(b + x)

≤ b(b− a)
ab + a2

,

from which it follows immediately that also

lim
b→a

∫ b

a

dx

ln
b(a + x)
a(b + x)

= 2a.

Also solved by Michael Brozinsky, Central Islip, NY; Kee-Wai Lau, Hong
Kong, China; Paolo Perfetti, Department of Mathematics, University of
Rome, Italy; David Stone and John Hawkins (jointly), Statesboro, GA, and
the proposer.

• 5113: Proposed by Paolo Perfetti, Mathematics Department, Tor Vergata University,
Rome, Italy

Let x, y be positive real numbers. Prove that

2xy

x + y
+

√
x2 + y2

2
≤ √xy +

x + y

2
+

(
x + y

6
−
√

xy

3

)2

2xy

x + y

.

Solution 1 by Kee-Wai Lau, Hong Kong, China

By homogeneity, we may assume without loss of generality that xy = 1. Let
t = x + y ≥ 2

√
xy = 2. Then the inequality of the problem is equivalent to

2
t

+

√
t2 − 2

2
≤ 1 +

t

2
+

t(t− 2)2

72

⇔ 36t
√

2 (t2 − 2) ≤ t4 − 4t3 + 40t2 + 72t− 144

⇔
(
t4 − 4t3 + 40t2 + 72t− 144

)
− 2592t2

(
t2 − 2

)
≥ 0

⇔ t8 − 8t7 + 96t6 − 176t5 − 1856t4 + 6912t3 − 1152t2 − 20376t + 20376 ≥ 0

⇔ (t− 2)2
(
t6 − 4t5 + 76t4 + 144t3 − 1584t2 + 5184

)
≥ 0.
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Since

t6 − 4t5 + 76t4 + 144t3 − 1584t2 + 5184

= t4(t− 2)2 + 72(t− 2)4 +
16(3t− 8)2(15t + 11) + 832

3
> 0,

the inequality of the problem holds.

Solution 2 by Paul M. Harms, North Newton, KS

Le w =
x + y

2
√

xy
and z =

√
xy. For x and y positive

(√
x−√y

)2 = x + y − 2
√

xy ≥ 0 =⇒ w =
x + y

2
√

xy
≥ 1. Also z > 0 .

From the substitutions we have the following expressions :

2xy = 2z2

x + y = 2zw
x2 + y2 = (x + y)2 − 2xy = 4z2w2 − 2z2 = 2z2(2w2 − 1)

The inequality becomes

2z2

2zw
+

√
2z2 (2w2 − 1)

2
≤ z +

2zw

2
+

(
2zw − 2z

6

)2

2z2

2zw

Simplifying and dividing both sides of the inequality by z yields the inequality

1
w

+
√

2w2 − 1 ≤ 1 + w +
1
9

(w − 1)2 w.

After multiplying both sides by 9w and isolating the square root term we get

9w
√

2w2 − 1 ≤ −9 + 9w + 9w2 + (w − 1)2w2 = w4 − 2w3 + 10w2 + 9w − 9.

Now let w = L + 1. Since w ≥ 1, we check the resulting inequality for L ≥ 0. Replacing
w by L + 1 and squaring both sides of the inequality we obtain

81 (L + 1)2
[
2L2 + 4L + 1

]
= 81

(
2L4 + 8L3 + 11L2 + 6L + 1

)
≤

(
L4 + 2L3 + 10L2 + 27L + 9

)2

= L8 + 4L7 + 24L6 + 94L5 + 226L4 + 576L3 + 909L2 + 486L + 81

Moving all terms to the right side, we need to show for L ≥ 0, that

0 ≤ L2
[
L6 + 4L5 + 24L4 + 94L3 + 64L2 − 72L + 18

]
.

Let
g(L) = 94L3 + 64L2 − 72L + 18.
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If g(L) ≥ 0 for L ≥ 0, then the inequality holds since all other terms and factors of the
inequality not involved with g(L) are non-negative.

The derivative g′(L) = 2
[
141L2 + 64L− 36

]
. The zeroes of g′(L) are L = −0.7810 and

L = 0.3297 with a negative derivative between these two L values. It is easy to check
that g(0.3297) > 0 is the only relative minimum and that g(L) > 0 for all L ≥ 0. Thus
the inequality holds.

A comment by the editor: David Stone and John Hawkins of Statesboro, GA
sent in a solution path that was dependent on a computer, and this bothered them.
They let y = ax in the statement of the problem and then showed that the original
inequality was equivalent to showing that

2a

1 + a
+

√
1 + a2

2
≤ (

√
a + 1)2

2
+

(a + 1) (
√

a− 1)4

72a
.

They then had Maple graph the left and right hand sides of the inequality respectively;
they analyzed the graphs and concluded that the inequality held (with equality holding
for a = 1.) But this approach bothered them and so they let a = z2 in the above
inequality and they eventually obtained the following:

(z − 1)4
(

z12 − 4z11 + 82z10 + 124z9 − 1265z8

+392z7 + 2492z6 + 392z5 − 1265z4 + 124z3 + 82z2 − 4z + 1
)
≤ 0.

Again they called on Maple to factor the above polynomial, and it did into linear and
irreducible quadratic factors. They then showed that there were no positive real zeros
and so the inequality must be true. They also noted that equality holds if and only if
z = 1; that is, equality holds for the original statement if and only if x = y. They ended
their submission with the statement:

“The bottom line: with the use of a machine’s assistance, we believe the original
inequality to be true.”

In their letter submitting the above to me David wrote:

“Last week I mentioned that our solution to Problem 5113 was dependent upon machine
help. We are still in that position, so I send this to you as a comment, not as a solution.
There is a nice reduction to an inequality in a single variable, but we never found an
analytic verification for the inequality.”

All of this reminded me of the comments in 1976 surrounding Appel and Haken’s proof
of the four color problem which was done with the aid of a computer. The concerns
raised then, still exist today.

Also solved by Shai Covo, Kiryat-Ono, Israel; Boris Rays, Brooklyn, NY,
and the proposer.

• 5114: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let M be a point in the plane of triangle ABC. Prove that

MA
2 + MB

2 + MC
2

AB
2 + BC

2 + CA
2 ≥ 1

3
.
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When does equality hold?

Solution by Michael Brozinsky, Central Islip, NY

Without loss of generality let the vertices of the triangle be A(0, 0), B(a, 0), and C(b, c)
and let M be (x, y). Now completing the square shows

AM
2 + BM

2 + CM
2 − 1

3

(
AB

2 + BC
2 + AC

2
)

=
(

x2 + y2 + (x− a)2 + y2 + (x− b)2 + (y − c)2 − 1
3

(
a2 +

(
b− a)2 + c2 + b2 + c2

))

= 3 ·
((

x− a + b

3

)
+
(

y − c

3

)2
)

and thus the given inequality follows at once and equality holds iff M is
2
3

of the way

from vertex C to side AB. Relabeling thus implies that M is the centroid of the triangle.

Comments in the solutions of others: 1) From Kee-Wai Lau, Hong Kong,
China. The inequality of the problem can be found at the top of p. 283, Chapter XI in
Recent Advances in Geometric Inequalities by Mitrinovic, Pecaric, and Volenec, (Kluwer
Academic Press), 1989.

The inequality was obtained using the Leibniz identity

MA
2 + MB

2 + MC
2 = 3MG

2 +
1
3

(
AB

2 + BC
2 + CA

2
)

where G is the centroid of triangle ABC. Equality holds if and only if M = G.

2) From Bruno Salgueiro Fanego, Viveiro Spain. This problem was solved for
any point M in space using vectors. (See page 303 in Problem Solving Strategies by
Arthur Engel, (Springer-Verlag), 1998.) Equality holds if, and only if, M is the centroid
of ABC.

Another solution and a discussion of where the problem mostly likely originated can be
found on pages 41 and 42 of

http : //www.cpohoata.com/wp− conent/uploads/2008/10/inf081019.pdf.

Also, a local version of the Spanish Mathematical Olympiad of 1999 includes a version
of this problem and it can be seen at
http : //platea.pntic.mec.es/ ∼ csanchez/local99.htm.

3) From David Stone and John Hawkins (jointly), Statesboro, GA. Because
the given problem has the sum of the squares of the triangle’s sides as the denominator,
one might conjecture the natural generalization

n∑
i=1

MAi
2

n∑
i=1

AiAi+1
2
≥ 1

n
,
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but this is not true. Instead, we must also allow all squares of diagonals to appear in the
sum in the denominator. Of course, a triangle has no diagonals.

Also solved by Shai Covo, Kiryat-Ono, Israel; Michael N. Fried, Kibbutz
Revivim, Israel; Paul M. Harms, North Newton, KS; Michael N. Fried,
Kibbutz Revivim, Israel; Raúl A. Simón, Santiago, Chile, and the proposer.

• 5115: Proposed by Mohsen Soltanifar (student, University of Saskatchewan), Saskatoon,
Canada

Let G be a finite cyclic group. Compute the number of distinct composition series of G.

Solution 1 by Kee-Wai Lau,Hong Kong, China

Denote the order of a group S by |S|. Let E = G0, < G1 < G2 < . . . < Gm = G be a
composition series for G, where E is the subgroup of G consisting of the identity
element only. A composition series is possible if and only if the factor groups
G1/G0, G2/G1, . . . , Gm/Gm−1 are simple. For cyclic group G, where all these factor
groups are also cyclic, this is equivalent to saying that

|G1/G0| = p1, |G2/G1| = p2, . . . , |Gm/Gm−1| = pm,

where p1, p2, . . . , pm are primes, not necessarily distinct. By the Jordan-Hölder theorem,
m is uniquely determined and the prime divisors, p1, p2, · · · , pm themselves are unique.
Any other composition series therefore correspond with a permutation of the primes
p1, p2, . . . , pm. Note that

|G| = |Gm| =
|Gm|
|Gm−1|

|Gm−1|
|Gm−2|

. . .
|G2|
|G1|

|G1|
1

= pmpm−1 . . . p2p1.

We rewrite |G| in standard form |G| = qa1
1 qa2

2 . . . qak
k , where a1, a2, . . . , ak are positive

integers and q1 < q2 < . . . qk are primes. The number of distinct composition series of G
then equals

(a1 + a2 + · · ·+ ak)!
a1!a2! . . . ak!
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Solution 2 by David Stone and John Hawkins (jointly), Statesboro, GA

Let G have order n, where n has prime factorization n =
m∏

i=1

pei
i . Then the number of

distinct composition series of G is the multinomial coefficient
(

e1 + e2 + e3 + . . . + em

e1, e2, e3, . . . , em

)
.

Letting e=e1 + e2 + e3 + . . . + em, this can be computed as(
e

e1

)(
e− e1

e2

)(
e− e1 − e2

e3

)
· · ·
(

em−1 + em

em−1

)(
em

em

)
=

e!
(e1!)(e2!)(e3!) · · · (em!)

.

Our rationale follows.

We’ll simply let G be Zn, written additively and denote the cyclic subgroup generated
by a as < a >= {ka| ∈ Z}.
Note that < a > is a subgroup of < b > if and only if a = bc for some c in G. We’ll
denote this by < a > ≤ < b >. That is, to enlarge the subgroup < a > to < b >, we
divide a by some group element c to obtain b. In particular, if we divide a by a prime p
to obtain b, then the factor group < b > / < a > is isomorphic to the simple group Zp.

In the lattice of subgroups of G, any two subgroups have a greatest lower bound, given
by intersection , and a least upper bound, given by summation.The maximal length
(ascending) chains are the distinct composition series. All such chain have the same
length (by the Jordan-Hölder Theorem).

For a specific example, let n = 12 = 22 · 31. In Z12, the distinct subgroups are:

0 = {0},

< 2 > = {0, 2, 4, 6, 8, 10},

< 4 > = {0, 4, 8},

< 3 > = {0, 3, 6, 9},

< 6 > = {0, 6},

< 1 > = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} = Z12,

and the maximal length ascending chains (composition series) are

0 ≤ < 4 > ≤ < 2 > ≤ < 1 >,

0 ≤ < 6 > ≤ < 2 > ≤ < 1 >,

0 ≤ < 6 > ≤ < 3 > ≤ < 1 > .

Note that the composition factors (the simple factor groups) of the first chain are

< 4 > /0 ∼= Z3

< 2 > / < 4 > ∼= Z2, and
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< 1 > / < 2 > ∼= Z2.

Thus, the sequence of composition factors is Z3, Z2, Z2.

Similarly for the second chain, the sequence of composition factors is Z2, Z3, Z2, and for
the third chain the sequence of composition factors is Z2, Z2, Z3. The three elements of
each chain are Z2, Z2, and Z3, forced by the factorization of 12. The number of possible
chains is simply the number of ways to arrange these three simple groups: 3. Note that(

2 + 1
2, 1

)
=

(
3

2, 1

)
=

(
3
2

)
·
(

1
1

)
= 3.

Method: For arbitrary n =
m∏

i=1

pei
i , this example demonstrates a constructive method for

generating (and counting) all such maximal chains:

(i) Start with 0 =< n >.

(ii) Divide (in the usual sense, not mod n) by one of n′s prime divisors, p, to obtain
k =

n

p
, so that 0 =< n > ≤ < k > and the factor group < k > / < n >∼= Zp.

(iii) Next, divide k by any unused prime divisor, say q of n to obtain h =
k

q
,

so that < k > ≤ < h > and the factor group < h > / < k >∼= Zq.

(In this process, each prime factor p will be used ei times, so there will be
e = e1 + e2 + e3 = . . . + em steps.)

We now have the beginning of a composition series: 0 ≤ < k > ≤ < h >. Continue with
the division steps until the supply of prime divisors of n is exhausted, so the final
division will produce the final element of the chain: < 1 > = Zn. We will have thus
constructed a composition series. In the procedure there will be e1 divisions by p1, e2

divisions by p2, etc.

Therefore, the number of ways to carry out this procedure is the number of ways to
carry out these dvisions: choose e1 places from e possible spots to divide by p,
choose e2 places from the remaining e− e1 possible spots to divide by p2 etc.
So we can count the total number of ways to carry out the process:(

e

e1

)(
e− e1

e2

)(
e− e1 − e2

e3

)
· · ·
(

em−1 + em

em−1

)(
em

em

)
.

Moreover, if we let S be the sequence of simple groups consisting of e1 copies of Zp1 , e2

copies of Zp2 , etc., then S will have e = e1 + e2 + e3 + · · ·+ em elements and each of our
composition series will have some rearrangement of S as its sequence of compositions
factors.

Example: Let n = 360 = 23 · 32 · 51.
Then the sequence of divisors 3, 5, 2, 2, 3, 2 will produce he composition series

0 =< 360 > ≤ < 120 > ≤ < 24 > ≤ < 12 > ≤ < 6 > ≤ < 2 > ≤ < 1 > = Z360,

with composition factors Z3, Z5, Z2, Z2, Z3, Z2.

11



There are

(
3 + 2 + 1

3, 2, 1

)
=

(
6
3

)
·
(

3
2

)
·
(

1
1

)
= 60 different ways to construct a divisors

sequence from 2, 2, 2, 3, 3, 5, so Z360 has 60 distinct composition series.

Also solved by the proposer.
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