
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
January 15, 2014

• 5271: Proposed by Kenneth Korbin, New York, NY

Given convex cyclic quadrilateral ABCD with AB = x,BC = y, and
BD = 2AD = 2CD.

Express the radius of the circum-circle in terms of x and y.

• 5272: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

The Jacobsthal numbers begin 0, 1, 1, 3, 5, 11, 21, · · · with general term

Jn =
2n − (−1)n

3
, ∀n ≥ 0. Prove that there are infinitely many Pythagorean triples like

(3, 4, 5) and (13, 84, 85) that have “hypotenuse” a Jacobsthal number.

• 5273: Proposed by Titu Zvonaru, Comănesti, Romania and Neculai Stanciu, “George
Emil Palade” General School, Buzău, Romania

Solve in the positive integers the equation abcd+ abc = (a+ 1)(b+ 1)(c+ 1).

• 5274: Proposed by Enkel Hysnelaj, University of Technology, Sydney, Australia

Let x, y, z, α be real positive numbers. Show that if

∑
cyclic

(n+ 1)x3 + nx

x2 + 1
= α

then ∑
cyclic

1

x
>

9n

α
− α

n
+

9nα

9n2 + α2

where n is a natural number.

• 5275: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain
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n

= xn
√

2,

√
2 +

√
2 + . . .+

√
2 + xn︸ ︷︷ ︸

n

+

√
2−

√
2 + . . .+

√
2 + xn︸ ︷︷ ︸
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where n ≥ 2.

• 5276: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

(a) Let a ∈ (0, 1] be a real number. Calculate∫ 1

0
ab

1
xcdx,

where bxc denotes the integer part of x.

(b) Calculate ∫ 1

0
2−b

1
xcdx.

Solutions

• 5254: Proposed by Kenneth Korbin, New York, NY

Five different triangles, with integer length sides and with integer area, each have a side
with length 169. The size of the angle opposite 169 is the same in all five triangles. Find
the sides of the triangles.

Solution 1 by Jahangeer Kholdi and Farideh Firoozbakht, University of
Isfahan, Iran

Let a, b and c be the lengths of three sides of the triangles, A is the measure of the angle
opposite the side of length 169, and S is the area of triangle. Note that, given the
conditions in the hypothesis, cosA must be a rational number based on the Law of
Cosines. We found eleven such triangles (S, cosA, a, b, c), where

S =
√

(p(p− a)(p− b)(p− c) and p =
a+ b+ c

2
. They are as follows:
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1. (2184, 84/85, 105, 169, 272)

2. (8580, 84/85, 169, 264, 425)

3. (18720, 84/85, 169, 425, 576)

4. (26364, 84/85, 169, 520, 663)

5. (30030, 84/85, 169, 561, 700)

6. (62244, 84/85, 169, 855, 952)

7. (65910, 84/85, 169, 884, 975)

8. (73554, 84/85, 169, 943, 1020)

9. (83694, 84/85, 169, 1020, 1073)

10. (90090, 84/85, 169, 1071, 1100)

11. (92274, 84/85, 169, 1092, 1105)

Solution 2 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX

We will assume that a = 169 and b and c are the other two sides, with b ≤ c. Since b
and c are to be integers, the Law of Cosines dictates that cosA is to be rational. Also,
the requirement that each triangle is to have integral area insures that sinA must be

rational (using the formula Area =
1

2
bc sinA). One way to achieve both and still satisfy

sin2A+ cos2A = 1 is to make

cosA =
x

z
and sinA =

y

z

for some Pythagorean triple (x, y, z). After experimenting with several triples, we had
the best results by choosing

cosA =
84

85
and sinA =

13

85
.

Then, the Law of Cosines yields

1692 = b2 + c2 − 2bc

(
84

85

)

= c2 − 168

85
bc+

(
84

85
b

)2

+ b2 −
(

84

85
b

)2
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=

(
c− 84

85
b

)2

+

(
13

85
b

)2

,

which reduces to
(85c− 84b)2 + (13b)2 = [(169) (85)]2 .

(Note that the assumption b ≤ c makes 85c− 84b > 0.)

We now know that (13b, 85c− 84b, (169) (85)) must be a Pythagorean triple and hence,
there are positive integers k,m, n such that

m > n, gcd (m,n) = 1, m 6≡ n (mod 2) , and (169) (85) = k
(

m2 + n2
)
.

Then, either 13b = 2kmn and 85c− 84b = k
(
m2 − n2

)
or 13b = k

(
m2 − n2

)
and

85c− 84b = 2kmn. E. g., when k = (13) (85) = 1, 105, we get m = 3 and
n = 2. When we set 13b = 2 (1, 105) (3) (2) and 85c− 84b = 1, 105

(
32 − 22

)
, we obtain

b = 1, 020 and c = 1, 073 while the assignment 13b = 1, 105
(
32 − 22

)
and

85c− 84b = 2 (1, 105) (3) (2) yields b = 425 and c = 576. Proceeding in this way, we
found 11 feasible values for the sides b and c. Each presented an integral area for the

triangle and each resulted in cosA =
84

85
(by the Law of Cosines). Since cosx is injective

on [0, π], each of our solutions produced the same value for 6 A. Our results are
summarized in the following table.

k m n a b c Area

13 33 4 169 264 425 8, 580

13 32 9 169 943 1, 020 73, 554

5 · 13 14 5 169 855 952 62, 244

5 · 13 11 10 169 105 272 2, 184

132 7 6 169 1, 092 1, 105 92, 274

13 · 17 8 1 169 1, 071 1, 100 90, 090

13 · 17 7 4 169 561 700 30, 030

5 · 132 4 1 169 520 663 26, 364

5 · 13 · 17 3 2 169 1, 020 1, 073 83, 694

5 · 13 · 17 3 2 169 425 576 18, 720

132 · 17 2 1 169 884 975 65, 910

Comment by editor: David Stone and John Hawkins of Georgian Southern
University in Statesboro GA exhibited two families of triangles satisfying the
conditions of the problem. The first family contained 11 triangles with the angle

opposite the side of length 169 having a common value of cos−1
(

84

85

)
= 8.7974◦. The

triangles that they obtained for this family are exhibited in the above solutions. But in
their second family they listed 5 additional triangles for which the angle opposite the

side of length 169 have a common value of cos−1
(

1517

1525

)
= 5.8713◦

They obtained their triangles by denoting the sides of the triangles as (a, b, 169) with
a ≥ b and the angle θ opposite 169, and then they used the following tools:

1) Law of cosines, cos θ =
a2 + b2 − 1692

2ab
.
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2) Triangle Inequality: −169 ≤ b− a ≤ 169; thus, for any given value of a it must be
that a− 169 ≤ a.

3) Heron’s formula: with s =
a+ b+ 169

2
, and where s(s− a)(s− b)(s− 169) is a perfect

square. That is, where
[
(a+ b)2 − 1692

] [
1692 − (a+ b)2

]
is a perfect square.

4) MATLAB and Excel. They coded nested loops to find values of a and b which satisfy
(2) and (3) and then computed cos θ by (1). Then they put the results into an Excel file
and sorted by cos θ. From there they said: it was easy to see the families sharing a
common angle.
They wrote: For a, b ≤ 40, 000 we found 262 triangles with integer sides and integer area
and having 169 as a side. In our table, we have only listed the two families containing
five or more elements with a common angle opposite 169. For each triangle we also show
its area. They then listed the above table and made observations on it. They wrote: the
last triangle in the family (a = 1105, b = 1092, c = 169) is a (13,84,85) right triangle
magnified by 13. They also noted that two triangles have sides 169 and 425, while two
others have two sides of 169 and 1020 (an appearance of the SSA or Ambiguous case
from Trigonometry!).
They then listed their second table and made the following comments on it.

a b c Area

350 183 169 3276

1037 900 169 47736

1525 1452 169 113256

1582 1525 169 123396

1625 1586 169 131820

Empirically, the common angle (opposite 169) equals

cos−1
[

3502 + 1832 − 1692

2 (350) (183)

]
= cos−1

(
1517

1525

)
≈ 5.8713◦.

Comment 1: We did not have complete confidence in trusting floating point arithmetic
to give us triangles with an identical angle. For instance, to see that (272, 105, 169) and
(425, 264, 169) have the same angle opposite the side of length 169, we must have

2722 + 1052 − 1692

2(272)(105)
=

4252 + 2642 − 1692

2(425)(264)
.

Cross-multiplying, we can check this with integer arithmetic:

(425) (264)
[
2722 + 1052 − 1692

]
= 6333465600− (272) (105)

[
4252 + 2622 − 1692

]
.

In each of our families, we checked the first entry again each other triangle to verify true
equality of angles.

Comment 2: Our MATLAB file ran a and b up to 40,000, but found no solutions near
this peak value. We do not believe that there are any more such triangles (other than
the 262 we found.)

Comment 3: There is a nice geometric way to visualize each family of triangles. We
explain by focusing on the first group of 11 triangles. Let two rays OA and OB emanate
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from a vertex O, separated by our angle ≈ 8.7974◦. Starting at O, mark off the “a
values” along OA and the “b values” along OB. For instance, designate A1 as the point
272 units along OA and B1 the points 105 units along OB. We have drawn our first
triangle –the distance A1 to B1 across the “wedge” is 169. Similarly we have A2= 425
and B2=264, and the distance A2 to B2 across the “wedge” is 169.

Eventually, we will draw all eleven of our triangles in the wedge in nested fashion.
Because the distance across the wedge will eventually surpass 169, no more triangles are
possible. So we have a nice geometric argument that any such family of triangles must
be finite. (In fact, by trigonometry, the maximum value for a (and b) to form an
isosceles triangle with this angle and bridge 169 is approximately 1101.75. Note that the
largest triangle in this family is near this limiting size.)

Finally, note that each of the quadrilaterals AiAjBjBi, 1 ≤ i < j ≤ 11 has integer sides
and integer area and a pair of opposing sides equal to 169. For instance, the
quadrilateral A1A2B2B1 has sides(
A1A2, A2B2, B1B2, B1A1

)
= (A2 −A1, 169, B2 −B1, 169) = (153, 169, 159, 169) and

area Area(4A2OB2)− (4A1OB1) = 8580− 2184 = 6396. An almost unimaginable
family of 55 such quadrilaterals.

Also solved by Brian E. Beasley, Presbyterian College, Clinton, SC; Bruno
Salgueiro Fanego, Viveiro, Spain, and the proposer.

• 5255: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

Let n be a natural number. Let φ(n), σ(n) and τ(n) be the Euler phi-function, the sum
of the different divisors of n and the number of different divisors of n, respectively.
Prove:
(a) ∀n ≥ 2, ∃ natural numbers a and b such that φ(a) + τ(b) = n.
(b) ∀k ≥ 1, ∃ natural numbers a and b such that φ(a) + σ(b) = 2k.
(c) ∀n ≥ 2, ∃ natural numbers a and b such that τ(a) + τ(b) = n.
(d) ∀k ≥ 1, ∃ natural numbers a and b such that σ(a) + σ(b) = 2k.
(e) ∀n ≥ 3, ∃ natural numbers a, b and c such that φ(a) + σ(b) + τ(c) = n
(f ) ∃ infinitely many natural numbers n such that φ(τ(n)) = τ(φ(n)).

Solution 1 by Brian D. Beasley, Presbyterian Colleg, Clinton, SC

(a) Given n ≥ 2, let a = 1 and b = 2n−2. Then φ(a) = 1 and τ(b) = n− 1. (Note that we
may take b = pn−2 for any prime p.)

(b) Given k ≥ 1, let a = 1 and b = 2k−1. Then φ(a) = 1 and

σ(b) = 1 + 2 + 22 + · · ·+ 2k−1 = 2k − 1.

(c) We may use the same a and b as in part (a), since τ(1) = φ(1) = 1.

(d) We may use the same a and b as in part (b), since σ(1) = φ(1) = 1.

(e) Given n ≥ 3, let a = b = 1 and c = 2n−3. Then φ(a) = σ(b) = 1 and τ(c) = n− 2.
(Note that we may take c = pn−3 for any prime p.)

(f) Let p be a prime and take n = 2p−1. Then

φ(τ(n)) = φ(p) = p− 1 and τ(φ(n)) = τ(2p−2) = p− 1.
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Since there are infinitely many primes, the result follows.

Solution 2 by Kee-Wai Lau, Hong Kong, China

(a) φ(n) + τ
(
2n−φ(n)−1

)
= n.

(b) φ(2) + σ
(
2k−1

)
= 2k.

(c) τ(1) + τ(1) = 2 and τ(2) + τ
(
2n−3

)
= n for n ≥ 3.

(d) σ(1) + σ
(
2k−1

)
= 2k.

(e) φ(n− 1) + σ(1) + τ(2n−2−φ(n−1)) = n.

(f) φ(τ(2p−1)) = τ(φ(2p−1) = p− 1 for any odd prime p.

Solution 3 by David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA

We will make use of some well-known rules, where p denotes a prime.

φ(pm) = pm−1(p− 1), σ(2m) = 2m+1 − 1, and τ(pm) = m + 1.

(a) For any prime p, φ(n) + τ
(
pn−φ(n)−1

)
= φ(n) + [n− φ(n)] = n.

(b) φ(1) + σ(2k−1) = 1 +
[
2k − 1

]
= 2k.

(c) For any pirme p, and any m with 2 ≤ m ≤ n, we have

τ(pn−m) + τ(pm−2) = (n−m+ 1) + (m− 2 + 1) = n.

(d) σ(2k−1) + σ(1) =
(
2k − 1

)
+ 1 = 2k.

(e) For any prime p, φ(1) + σ(1) + τ(pn−3) = 1 + 1 + (n− 2) = n.

(f) For any prime p, φ(τ(2p−1)) = φ(p) = p− 1 and
τ(φ(2p−1)) = τ(2p−2) = (p− 2) + 1 = p− 1. So φ(τ(2p−1)) = τ(φ(2p−1)).

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
Sate University, San Angelo, TX; Ed Gray, Highland Beach, FL; Jahangeer
Kholdi and Farideh Firoozbakht, University of Isfahan, Iran; David E.
Manes, SUNY College at Oneonta, Oneonta, NY, and the proposer.

• 5256: Proposed by D. M. Bătinetu-Giurgiu,“Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” Secondary School,
Buzău, Romania

Let a be a positive integer. Compute:

lim
n→∞

n

a− e 1

n+ 1
+

1

n+ 2
+ . . .+

1

na

 .

Solution 1 by Ángel Plaza and Kisin Sadarangani, University de Las Palmas,
de Gran Canaria, Spain
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Let Hn be the nth harmonic number, that is Hn = 1 + 1
2 + 1

3 + . . .+ 1
n . Note first that

e
1

n+1
+ 1

n+2
+...+ 1

na → a when n tends to infinity, because

lim
n→∞

1

n+ 1
+

1

n+ 2
+ . . .+

1

na
= lim

n→∞

1
n

1 + 1
n

+
1
n

1 + 2
n

+ . . .+
1
n

1 + (a−1)n
n

=

∫ a−1

0

1

1 + x
dx = ln a.

The proposed limit may be obtained as follows:

lim
n→∞

n
(
a− e

1
n+1

+ 1
n+2

+...+ 1
na

)
= lim

n→∞
−an

(
eHan−Hn−ln a − 1

)
= lim

n→∞
−an (Han −Hn − ln a)

= lim
n→∞

−an · 1− a
2an

=
a− 1

2
.

Where we have used that Hn = lnn+ γ +
1

2n
− 1

12n2
+ · · ·, being γ is the

Euler-Mascheroni constant. Hence Han −Hn ∼ ln a+ 1
2an −

1
2n + o

(
1
n2

)
.

Solution 2 by Ovidiu Furdui, Technical University of Cluj-Napoca,
Cluj-Napoca, Romania

The limit equals −2 if a = 1 and a−1
2 if a > 1. First we consider the case when a = 1.

We have,

lim
n→∞

n
(
1− e

1
n+1

+ 1
n

)
= lim

n→∞

1− exp
(

2n+1
n(n+1)

)
2n+1
n(n+1)

· 2n+ 1

n+ 1

 = −2.

Now we consider the case when a > 1. We will be using, in our analysis, the following
asymptotic expansion for the nth harmonic number (see 1, [Entry 23 p. 59])

1 +
1

n
+ · · ·+ 1

n
= γ + lnn+

1

2n
− 1

8n2
+

15

2n4
− · · · (n→∞).

Equivalently,

1 +
1

n
+ · · ·+ 1

n
= γ + lnn+

1

2n
+O

(
1

n2

)
(n→∞).

It follows that

1

n+ 1
+

1

n+ 2
+ · · ·+ 1

na
= Hna −Hn = ln a+

1− a
2na

+O

(
1

n2

)
(n→∞).

Thus

n
(
a− e

1
n+1

+ 1
n+2

+···+ 1
na

)
= n

(
a− a · e

1−a
2na

+O
(

1
n2

))

= a ·
1− exp

(
1−a
2na +O

(
1
n2

))
1−a
2na +O

(
1
n2

) ·
(

1− a
2a

+O

(
1

n

))
,
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which in turn implies that

lim
n→∞

n
(
a− e

1
n+1

+ 1
n+2

+···+ 1
na

)
=
a− 1

2
.

The problem is solved.

1 H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions,
Kluwer Academic Publishers, Dordrecht, 2001.

Solution 3 by Ed Gray, Highland Beach, FL

1) Let S = e

1

n+ 1
+

1

n+ 2
+ · · ·+ 1

na

2) ln(S) =
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

an

3) ln(S) =
na∑
k=1

1

k
−

n∑
k=1

1

k
.

We use the Euler’s approximation for the partial sum of the harmonic series. That is

4) Tm =
m∑
k=1

1

k
= ln(m) + γ +

1

2m
− 1

12m2
+

1

120m4
− · · ·, where γ is the Euler-Mascheroni

constant 0.577 · · ·

In our approximation, we will only keep the term
1

2m
to avoid unnecessary computations.

Then from (3) and (4),

5) ln(S) = ln(na) + γ +
1

2na
−
(

ln(n) + γ +
1

2n

)
or

6) ln(S) = ln(na)− ln(n) +
1

2na
− 1

2n

7) ln(S) = ln

(
na

n

)
+

1

2na
− 1

2n

8) ln(S) = ln a+
1

2na
− 1

2n

9) S = eln a · e
1

2na · e−
1
2n , or

10) S = a · e
1

2na · e−
1
2n

For large n the exponents are small, and we keep only the first two terms in the expansion for
ey

11) e
1

2na = 1 +
1

2na
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12) e−
1

2na = 1− 1

2n

13) The product is: 1− 1

2n
+

1

2na
− 1

4an2
, and step 10 becomes

14) S = a− a

2n
+

1

2n
− 1

4n2
. Then

15) a− S =
a

2n
− 1

2n
+

1

4n2

16) n(a− S) =
a

2
− 1

2
+

1

4n

So the limit as n approaches infinity is
a− 1

2
.

Solution 4 by Paul M. Harms, North Newton, KS

When m is a positive integer 1 +
1

2
+

1

3
+ · · ·+ 1

m
= lnm+ γ +R(m) where γ is the

Euler-Mascheroni constant and R(m) is an error term that approaches
1

2
m as m gets large.

Let a be a positive integer greater than one. We have

1

n+ 1
+

1

n+ 1
+ · · · 1

na
= 1 +

1

2
+ · · · 1

na
−
(

1 +
1

2
+ · · · 1

n

)

= lnna+ γ +R(na)− (lnn+ γ + (n))

= ln a+R(na)−R(n).

Then the limit in the problem involves

n
(
a− eln aeR(na)−R(n)

)
= na

(
1− eR(na)−R(n)

)
.

For large n this can be approximated by

a
(
1− 2

1
2
na− 1

2
n
)

1
n

.

Thinking of n as a continuous variable and using L’Hôpital’s Rule, the limit of the last

expression is the limit of
(
ae

1
2
na− 1

2
n
(
1
2a−

1
2

))
as n→∞. The result is

a− 1

2
.

Solution 5 by G. C. Greubel, Newport News, VA

We are asked to evaluate the limit
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lim
n→∞

n
(
a− e

1
n+1

+ 1
n+2

+···+ 1
na

)
.

The primary difficulty is reducing the exponential to some aspect easier to work with. With
this in mind consider the series of the exponential. This is given by

φn =
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

na
.

This can be quickly be seen as

φn =
an∑
k=1

1

k
−

n∑
k=1

1

k

= Han −Hn

where Hn is the Harmonic number. With this there is a basis to expand upon. In order to
proceed further the expansion of a Harmonic number in terms of factors of 1/n is required.
The required expansion is obtained from Wolfram Mathworld Harmonic numbers site1 and is
given by

Hn ∼ lnn+ γ +
1

2n
− 1

12n2
+

1

120n4
− 1

252n6
+O

(
1

n8

)
.

where γ is Euler’s constant. When use of this is made the result becomes

φn = ln(an)− ln(n) +
1

2n

(
1

a
− 1

)
− 1

12n2

(
1

a2
− 1

)

+
1

120n4

(
1

a4
− 1

)
−O

(
1

n6

)

= ln a+
(1− a)

2an
− (1− a2)

12a2n2
+

(1− a4)
120a4n4

−O
(

1

n6

)
.

Now that a valid approximation for large values of n has been obtained it can be used to
reduce the exponential portion of the limit. With this in mind the result becomes

eφn = 1 + φn +
1

2
φ2n + · · ·

≈ 1 +

[
ln a+

1− a
2an

− 1− a2

12a2n2
+O

(
1

n4

)]
+

1

2

[
ln2 a+

2(1− a) ln a

4a2n

O
(

1

n2

)]
+

1

3!

[
ln3 a+

3(1− a)

2an
ln2 a+O

(
1

n2

)]
+ · · ·

≈ eln a +
1− a
2an

(
1 +

ln a

1!
+

ln2 a

2!
+ · · ·

)
+O

(
1

n2

)
1TheWolframMathworld site for Harmonic numbers is found at http://mathworld.wolfram.com/HarmonicNumber.html
and is stated as equation (13).
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≈ eln a +
1− a
2an

eln a +O
(

1

n2

)

eφn ≈ a+
1− a

2n
+O

(
1

n2

)
.

With this result it can now be seen that

a− eφn ≈ a− 1

2n
−O

(
1

n2

)
and

n
(
a− eφn

)
≈ a− 1

2
−O

(
1

n

)
.

Now the limit is easy to compute and is given by

lim
n→∞

n
(
a− e

1
n+1

+ 1
n+2

+···+ 1
an

)
=
a− 1

2
.

Also solved by Arkady Alt, San Jose, CA; Bruno Sagueiro Fanego, Viveiro, Spain;
Kee-Wai Lau, Hong Kong, China; Paolo Perfetti, Department of Mathematics,
Tor Vergata University, Vergata, Rome, Italy; David Stone and John Hawkins,
Southern Georgia University, Statesboro, GA, and the proposer.

5257: Proposed by Pedro H.O. Pantoja, UFRN, Brazil

Prove that:

1 +
1

2
·
√

1 +
1

2
+

1

3
· 3

√
1 +

1

2
+

1

3
+ · · ·+ 1

n
· n

√
1 +

1

2
+ · · ·+ 1

n
∼ ln(n),

where f(x) ∼ g(x) means lim
x→∞

f(x)

g(x)
= 1.

Solution 1 by Arkady Alt, San Jose, CA

Let Sn = 1 +
1

2
·
√
h2 +

1

3
· 3
√
h3 + ...+

1

n
· n
√
hn,where hn = 1 +

1

2
+

1

3
+ ...+

1

n
.

Since
1

k + 1
< ln (k + 1)− ln k <

1

k
(⇐⇒

(
1 +

1

k

)k
< e <

(
1 +

1

k

)k+1

) then

n∑
k=1

(ln (k + 1)− ln k) < hn ⇐⇒ ln (n+ 1) < hn and hk − 1 <
n∑
k=2

(ln k − ln (k − 1)) ⇐⇒

hn < 1 + lnn

and, therefore,
Sn − Sn−1

lnn− ln (n− 1)
=

n
√
hn
n

ln

(
1 +

1

n− 1

) =

12



n
√
hn

ln

(
1 +

1

n− 1

)n ∈
 n

√
ln (n+ 1)

ln

(
1 +

1

n− 1

)n , n
√

lnn+ 1

ln

(
1 +

1

n− 1

)n
 .

Since lim
n→∞

n
√

ln (n+ 1) = 1, lim
n→∞

n
√

1 + lnn = 1, lim
n→∞

ln

(
1 +

1

n− 1

)n
= 1 then

lim
n→∞

Sn − Sn−1
lnn− ln (n− 1)

= 1 and by Stolz Theorem we obtain

lim
n→∞

Sn
lnn

= lim
n→∞

Sn − Sn−1
lnn− ln (n− 1)

= 1.

Solution 2 by Ángel Plaza, Department of Mathematics, Universidad de Las Palmas
de Gran Canaria, Spain

Let L be the lim
n→∞

1 + 1
2 ·
√

1 + 1
2 + 1

3 ·
3

√
1 + 1

2 + 1
3 + · · ·+ 1

n ·
n

√
1 + 1

2 + · · ·+ 1
n

ln(n)
.

Since lim
n→∞

ln(n) =∞, by the Stolz-Cesàro theorem,

L = lim
n→∞

1
n ·

n

√
1 + 1

2 + · · ·+ 1
n

ln(n)− ln(n− 1)

= lim
n→∞

n

√
1 + 1

2 + · · ·+ 1
n

ln
(

n
n−1

)n .

Note that lim
n→∞

n

√
1 +

1

2
+ · · ·+ 1

n
= lim

n→∞

1 + 1
2 + · · ·+ 1

n

1 + 1
2 + · · ·+ 1

n−1
= 1, by the Stolz-Cesàro theorem,

and also that lim
n→∞

ln

(
n

n− 1

)n
= 1.

Solution 3 by Kee-Wai Lau, Hong Kong, China

It is well known that 1 + 1
2 + · · ·+ 1

n = lnn+O(1) as n→∞ and ln(1 + x) = x+O
(
x2
)
, ex =

1 = x+O
(
x2
)

as x→ 0. Hence

ln
(
1 + 1

2 + · · ·+ 1
n )

n
=

ln lnn

n
+O

(
1

n lnn

)
and

1

n
· n

√
1 +

1

2
+ · · ·+ 1

n
=

1

n
eln(1+

1
2
+···+ 1

n)/n =
1

n

(
1 +

ln lnn

n
+O

(
1

n lnn

))
.

13



Since
∞∑
n=3

ln lnn

n2
and

∞∑
n=3

1

n2 lnn
converge, so

1 +
1

2
·
√

1 +
1

2
+

1

3
· 3

√
1 +

1

2
+

1

3
+ · · ·+ 1

n
· n

√
1 +

1

2
+ · · ·+ 1

n
= ln(n) +O(1),

and we are done.

Editor’s comment: D. M. Bătinetu-Giurgiu, of the “Matei Basarab” National College
in Bucharest, Romania and Neculai Stanciu, of George Emil Palade School in
Buzău, Romania, submitted two solutions to the problem. Their first solution was similar in
approach to the second solution presented above, but in their second solution they generalized
the problem as follows:

If {xn}n≥1 and {yn}n≥1 are sequences of positive real numbers such that:

• {yn}n≥1 is increasing and unbounded,

• ∃t ∈ <+ such that lim
n→∞

nt {yn+1 − yn} = a ∈ <+,

• lim
n→∞

ntxn = a exists ∈ <+, and zn =
n∑

k=1

xk , then

{yn}n≥1 ∼ {zn}n≥1 . I.e., lim
n→∞

zn
yn
.

Proof. By the Cesaro-Stolz theorem we have:

lim
n→∞

zn
yn

= lim
n→∞

zn+1 − zn
yn+1 − yn

= lim
n→∞

xn+1

yn+1 − yn
= lim

n→∞
(n+ 1)txn+1(

n+1
n

)t
nt(yn+1 − yn)

=
a

1 · a
= 1.

Remark: If we take yn = lnn, hn =
n∑
k=1

1

k
, xn =

1

n
n
√
hn, and zn =

n∑
k=1

xk, then by the above

we obtain {yn}n≥1 ∼ {zn}n≥1 which is problem 5257.

Also solved by Bruno Sagueiro Fanego, Viveiro, Spain; Paolo Perfetti, Department
of Mathematics, Tor Vergata University, Vergata, Rome, Italy, and the proposer.

5258: Proposed by José Luis Dı́az-Barrero and José Gibergans-Báguena, Polytechnical Univer-
sity of Catalonia, Barcelona, Spain

Let α1, α2, . . . , αn be real numbers such that 1 +
n∑
k=1

cos2 αk = n. Prove that:

∑
1≤i<j≤n

tanαi tanαj ≤
n

2
.

Solution 1 by Arkady Alt, San Jose, CA

14



Let xi = tan2 αi, i = 1, 2, ..., n then xi ≥ 0, i = 1, 2, ..., n, 1 +
n∑
k=1

cos2 αk = n ⇐⇒

n∑
k=1

1

1 + xi
= n− 1 and, since

n∑
1≤i<j≤n

tanαi tanαj ≤
n∑

1≤i<j≤n
|tanαi| |tanαj | =

n∑
1≤i<j≤n

√
xixj ,

then it is sufficient to prove
n∑

1≤i<j≤n

√
xixj ≤

n

2
.

Let ai =
xi

1 + xi
, 1, 2, .., n then

n∑
i=1

ai =
n∑
i=1

(
1− 1

1 + xi

)
= n−

n∑
i=1

1

1 + xi
= 1 and,

since xi =
ai

1− ai
, 1, 2, ..., n our problem is:

Prove inequality
n∑

1≤i<j≤n

√ aiaj
(1− ai) (1− aj)

≤ n

2
, for ai ≥ 0, i = 1, 2, ..., n such

that
n∑
k=1

ai = 1.

We have
n∑

1≤i<j≤n

√ aiaj
(1− ai) (1− aj)

≤
n∑

1≤i<j≤n

1

2

(
aj

1− ai
+

ai
1− aj

)
=

1

2

 n∑
1≤i<j≤n

aj
1− ai

+
n∑

1≤i<j≤n

ai
1− aj

 =
1

2

n−1∑
i=1

n
j=i+1

aj
1− ai

+
n∑
j=2

j
i=1

ai
1− aj

 =

1

2

n−1∑
i=1

1

1− ai

n∑
j=i+1

aj +
n∑
j=2

1

1− aj

j−1∑
i=1

ai

 =
1

2
· 1

1− a1

n∑
j=2

aj +
1

2

n−1∑
i=2

1

1− ai

n∑
j=i+1

aj+

n−1∑
j=2

1
1−aj

j−1∑
i=1

ai +
1

1− an

n−1∑
i=1

ai = 1 +
1

2

n−1∑
i=2

1

1− ai

n∑
j=i+1

aj + n−1
j=2

1

1− aj

j−1∑
i=1

ai

 =

1 +
1

2

n−1∑
i=2

1

1− ai

n∑
j=i+1

aj +
n−1∑
i=2

1

1− ai

i−1∑
j=1

ai

 = 1 +
1

2

n−1∑
i=2

1

1− ai

 n∑
j=i+1

aj +
i−1∑
j=1

ai

 =

1 +
1

2

n−1∑
i=2

1− ai
1− ai

= 1 +
n− 2

2
=
n

2
.

Solution 2 by Paolo Perfetti, Department of Mathematics, Tor Vergata University,
Vergata, Rome, Italy

Proof: We first note that if

α1 = α2 = . . . = αn−1 = 0, αn = π/2, the constraints of the problem are satisfied, but∑
1≤i<j≤n

tanαi tanαj

is undefined; so we add the assumption αi 6= π/2 + 2kπ, k ∈ Z,

i = 1, . . . , n. Both cos2 x and tanx are π–periodic so we can assume

15



αi ∈ (−π/2, π/2) and set αi = arctan ai. This yields

1 +
n∑
k=1

1

1 + a2k
= n =⇒

∑
1≤i<j≤n

aiaj ≤ n.

By defining ak =
√
bk the inequality becomes

2
∑

1≤i<j≤n

√
bibj ≤ n whenever

n∑
i=1

1

bi + 1
= n− 1.

By convexity of 1/(1 + x) for x > 0 we have

n− 1 =
n∑
i=1

1

bi + 1
≤ n

1 +
b1 + . . .+ bn

n

,

that is, b1 + . . .+ bn ≤ n/(n− 1). Now

2
∑

1≤i<j≤n

√
bibj ≤

∑
1≤i<j≤n

(bi + bj) = (n− 1)(b1 + . . .+ bn) ≤ (n− 1)n/(n− 1) = n,

and we are done.

Solution 3 Adrian Naco, Polytechnic University, Tirana, Albania.

Let xi = tanαi,∀i ∈ {1, 2, ....., n}. Applying the trigonometric formula,

cos2 αi =
1

1 + tan2 αi
, the condition and the initial inequality give respectively,

1 +
n∑
1

1

1 + x2i
= n and

∑
1≤i<j≤n

xixj ≤
n

2
.

Let us assume

ai =
1

(n− 1)(x2i + 1)
⇒ x2i = 1−(n−1)ai

(n−1)ai and
n∑

i=1

ai = 1

yi,j =
1− (n− 1)ai

(n− 1)aj
⇒ yi,jyj,i = x2ix

2
j and yi ,j ≥ 0, ∀i , j

Thus we have that

2
∑

1≤i<j≤n
xixj ≤ 2

∑
1≤i<j≤n

|xi||xj | = 2
∑

1≤i<j≤n

√
x2ix

2
j
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≤ 2
∑

1≤i<j≤n

1

2

(
x2i + x2j

)
=

∑
1≤i<j≤n

(
x2i + x2j

)

=
∑

1≤i<j≤n

[
1− (n− 1)ai

(n− 1)aj
+

1− (n− 1)aj
(n− 1)ai

]

=
1

n− 1

∑
1≤i<j≤n

[
1

aj
+

1

ai

]
−

∑
1≤i<j≤n

[
aj
ai

+
ai
aj

]

=
1

n− 1

n−1∑
i=1

n∑
j=i+1

[
1

aj
+

1

ai

]
−
n−1∑
i=1

n∑
j=i+1

[
aj
ai

+
ai
aj

]

=
1

n− 1

[n−1∑
i=1

n∑
j=i+1

1

aj
+
n−1∑
i=1

n∑
j=i+1

1

ai

]
−
n−1∑
i=1

n∑
j=i+1

aj
ai
−
n−1∑
i=1

n∑
j=i+1

ai
aj

=
1

n− 1

[n−1∑
i=1

(n− i) 1

ai
+

n∑
i=2

(i− 1)
1

ai

]
−
n−1∑
i=1

n∑
j=i+1

aj
ai
−
n−1∑
i=1

n∑
j=i+1

ai
aj

=
1

n− 1

n∑
i=1

(n− 1)
1

ai
−
n−1∑
i=1

n∑
j=i+1

aj
ai
−
n−1∑
i=1

n∑
j=i+1

ai
aj

=
n∑
i=1

1

ai
−
n−1∑
i=1

n∑
j=i+1

aj
ai
−
n−1∑
i=1

n∑
j=i+1

ai
aj

=
n∑
i=1

( n∑
j=1

aj

)
ai

−
n−1∑
i=1

n∑
j=i+1

aj
ai
−
n−1∑
i=1

n∑
j=i+1

ai
aj

=
n∑
i=1

n∑
j=1

aj
ai
−
n−1∑
i=1

n∑
j=i+1

aj
ai
−
n−1∑
i=1

n∑
j=i+1

ai
aj

=
n−1∑
i=1

n∑
j=i+1

aj
ai

+
n∑
i=1

ai
ai

+
n−1∑
i=1

n∑
j=i+1

ai
aj
−
n−1∑
i=1

n∑
j=i+1

aj
ai
−
n−1∑
i=1

n∑
j=i+1

ai
aj

=
n∑
i=1

ai
ai

=
n∑
i=1

1 = n.

Finally we have that ∑
1≤i<j≤n

tanαi tanαj =
∑

1≤i<j≤n
xixj ≤

n

2
.
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The equality holds for xi = tanαi = tanαj = xj , 1 ≤ i < j ≤ n or equivalently for αi =
kπ + αj , 1 ≤ i < j ≤ n, k ∈ Z.

Solution 4 by Bruno Salgueiro Fanego, Viveiro, Spain

Note that n = 1 +
n∑
k=1

cos2 αk = 1 +
n∑
k=1

(1 − sin2 αk) = 1 +
n∑
k=1

1 −
n∑
k=1

sin2 αk = 1 + n −

n∑
k=1

sin2 αk ⇐⇒
n∑
k=1

sin2 αk = 1 ⇐⇒
n∑
k=1

tan2 αk
1 + tan2 αk

= 1, and that the inequality to

prove is equivalent to

(
n∑
k=1

tanαk

)2

−
n∑
k=1

tan2 αk = 2
∑

1≤i<j≤n
tanαi tanαj ≤ n =

n∑
k=1

1 ⇐⇒

(
n∑
k=1

tanαk

)2

≤
n∑
k=1

1 +
n∑
k=1

tan2 αk =
n∑
k=1

(
1 + tan2 αk

)
⇐⇒

(
n∑
k=1

tanαk

)2

n∑
k=1

(
1 + tan2 αk

) ≤ 1 =

n∑
k=1

tan2 αk

+ tan2 αk
which is just Bergström′s inequality

(
n∑
k=1

ak

)2

n∑
k=1

bk

≤
n∑
k=1

a2k
bk

applied to ak = tanαk ∈

< and bk = 1 + tan2 αk ∈ <; 1 ≤ k ≤ n.

Equality occurs if and only if
a1
b1

=
a2
b2

= · · · =
an
bn

, that is if and only if
1

2
sin (2α1) =

1

2
sin (2α2) = · · · = 1

2
sin (2αn), and

n∑
k=1

sin2 αk = 1.

Also solved by the proposers.
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