
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
January 15, 2017

• 5415: Proposed by Kenneth Korbin, New York, NY

Given equilateral triangle ABC with inradius r and with cevian CD. Triangle ACD has
inradius x and triangle BCD has inradius y, where x, y and r are positive integers with
(x, y, r) = 1.
Part 1: Find x, y, and r if x+ y − r = 100

Part 2: Find x, y, and r if x+ y − r = 101.

• 5416: Proposed by Arsalan Wares, Valdosta State University, Valdosta, GA

Two congruent intersecting holes, each with a square cross-section were drilled through
a cube. Each of the holes goes through the opposite faces of the cube. Moreover, the
edges of each hole are parallel to the appropriate edges of the original cube, and the
center of each hole is at the center of the original cube. Letting the length of the original
cube be a, find the length of the square cross-section of each hole that will yield the
largest surface area of the solid with two intersecting holes. What is the largest surface
area of the solid with two intersecting holes?
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• 5417: Proposed by Arkady Alt, San Jose, CA

Prove that for any positive real number x, and for any natural number n ≥ 2,

n

√
1 + x+ · · ·+ xn

n+ 1
≥ n−1

√
1 + x+ · · ·+ xn−1

n
.
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• 5418: Proposed by D.M. Bătinetu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” General School,
Buzău, Romania

Let ABC be an acute triangle with circumradius R and inradius r. If m ≥ 0, then prove
that ∑

cyclic

cosA cosm+1B

cosm+1C
≥ 3m+1Rm

2m+1(R+ r)m
.

• 5419: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let a1, a2, · · · , an be positive real numbers. Prove that

n∏
k=1

(
n∑
k=1

atkk

)
≥

(
n∑
k=1

a
tn+1

4
k

)n

where for all k ≥ 1, tk is the kth tetrahedral number defined by tk =
k(k + 1)(k + 2)

6
.

• 5420: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let A =

(
3 1
−4 −1

)
. Calculate

lim
n→∞

1

n

(
I2 +

An

n

)n
.

Solutions

• 5397: Proposed by Kenneth Korbin, New York, NY

Solve the equation 3
√
x+ 9 =

√
3 + 3
√
x− 9 with x > 9.

Solution 1 by Jeremiah Bartz, University of North Dakota, Grand Forks, ND

Cube both sides of the given equation and rearrange to obtain

(x− 9)2/3 +
√

3 (x− 9)1/3 +
(

1− 2
√

3
)

= 0.

This is a quadratic equation with respect to u = 3
√
x− 9 with solutions

u =
−
√

3±
√

8
√

3− 1

2
.

When x > 9, we have u > 0 and

x = 9 +

(
−
√

3 +
√

8
√

3− 1

2

)3

3



=
(

1 +
√

3
)(

8
√

3− 1
)1/2

=

√
44 + 30

√
3.

Solution 2 by Brain D. Beasely, Presbyterian College, Clinton, SC

Rewriting the given equation and cubing both sides yields

(x+ 9)− 3 3
√

(x+ 9)2(x− 9) + 3 3
√

(x+ 9)(x− 9)2 − (x− 9) = 3
√

3,

or 3 3
√
x2 − 81( 3

√
x− 9− 3

√
x+ 9) = 3

√
3− 18. Then −3

√
3 3
√
x2 − 81 = 3

√
3− 18, so

cubing once more produces

−81
√

3(x2 − 81) = 2997
√

3− 7290.

Hence x2 = 30
√

3 + 44, so requiring x > 9 yields x =
√

30
√

3 + 44 ≈ 9.795995.

Solution 3 by Hatef I. Arshagi, Guilford Technical Community College,
Jamestown, NC

It is well known that if a+ b+ c = 0, then a3 + b3 + c3 = 3abc. (1)

From the equation we have 3
√
x+ 9−

√
3− 3
√
x− 9 = 0, and with the help of (1) we get

x+ 9− 3
√

3− (x− 9) = 3
√

3 · 3
√
x2 − 81

18− 3
√

3 = 3
√

3 · 3
√
x−81, and dividing both sides by 3

√
3, gives

2
√

3− 1 =
3
√
x2 − 81. (2)

From (2) we have (2
√

3− 1)3 = x2 − 81, which yields x = ±
√

81 + (2
√

3− 1)3 and since

x > 9, the only solution is x =
√

81 + (2
√

3− 1)3 =
√

30
√

3 + 44.

Solution 4 by Kee-Wai Lau, Hong Kong, China

By the substitution x = y3 + 9, we obtain 3
√
y3 + 18 =

√
3 + y. Cubing both sides and

simplifying, we have y2 +
√

3y + 1− 2
√

3 = 0, so that the only positive solution is

y =

√
8
√

3− 1−
√

3

2
. Hence the solution to the equation of the problem is

x = (1 +
√

3)
(√

8
√

3− 1
)

= 9.79 · · · .

Also solved by Adnan Ali (student), A.E.C.S-4, Mumbai, India; Arkady Alt, San
Jose, CA; Dionne Bailey, Elsie Campbell, and Karl Havlak, Angelo State
University, San Angelo, TX; Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray,
Highland Beach, FL; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong
Kong, China; David E. Manes, State University of New York at Oneonta,
Oneonta, NY; Boris Rays, Brooklyn, NY; Toshihiro Shimizu, Kawaskaki, Japan;
Albert, Stadler, Herrliberg, Switzerland; David Stone and John Hawkins, Georgia
Southern University, Statesboro, GA; Nicusor Zlota “Traian Vuia Technical
College, Focsani, Romania and the proposer.
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Students from Taylor University in Upland, IN.
Group 1: Ben Byrd, Maddi Guillaume, and Makayla Schultz (jointly)
Group 2: Rebekah Couch, Hannah Keyser, and Nolan Willoughby (jointly)
Group 3: Michelle Franch, Caleb Knuth, and Savannah Porter (jointly)
Group 4: Lauren Moreland, Anna Souzis, and Boni Hernandez (jointly).

• 5398: Proposed by D. M. Bătinetu-Giurgiu, Bucharest, Romania and Neculai Stanciu,“George
Emil Palade” School, Buzău, Romania

If (2n− 1)!! = 1 · 3 · 5 . . . (2n− 1), then evaluate

lim
n→∞

(
n+1
√

(n+ 1)!(2n+ 1)!!

n+ 1
−

n
√
n!(2n− 1)!!

n

)
.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

By Stirling’s asymptotic formula,

n! =
(√

2πn
)
nne−n+O( 1

n), as n →∞.

So

n
√
n! (2n− 1)!!

n
=

1

n

n

√
(2n)!

2nn!
=

1

2n
n
√

(2n)! =
1

2n
2n
√

4πn (2n)2 e
−2+O

(
1
n2

)

=
2n

e2
e

ln(4πn)
2n

+O
(

1
n2

)

=
2n

e2

(
1 +

(ln 4πn)

2n
+O

(
ln2 n

n2

))

=
2n

e2
+

ln(4πn)

e2
+O

(
ln2 n

n

)
.

We conclude that

lim
n→∞

(
n+1
√

(n+ 1)!(2n+ 1)!!

n+ 1
−

n
√

(n!)!(2n− 1)!!

n

)

= lim
n→∞

(
2(n+ 1)

e2
+

ln(4π(n+ 1))

e2
− 2n

e2
− ln(4πn)

e2
+O

(
ln2 n

n

))

=
2

e2
+ lim
n→∞

(
ln
(
n+1
n

)
e2

+O

(
ln2 n

n

))
=

2

e2
.
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Solution 2 by Brian D. Beasley, Presbyterian College, Clinton, SC

For each positive integer n, we let

an =
n
√
n!(2n− 1)!!

n
=

1

n

n

√
n!(2n)!

2n · n!
=

1

2n
n
√

(2n)!.

Next, we apply a version of Stirling’s formula due to Robbins [1], namely
n! =

√
2πn(n/e)nern , where 1/(12n+ 1) < rn < 1/(12n). This yields

an =
(4πn)1/(2n)(2n/e)2er2n/n

2n
=

2n

e2

(
er2n
√

4πn
)1/n

.

Hence

an+1 − an =
2n+ 2

e2
(
er2n+2

√
4πn+ 4π

)1/(n+1) − 2n

e2

(
er2n
√

4πn
)1/n

=
2n

e2

[(
er2n+2

√
4πn+ 4π

)1/(n+1) −
(
er2n
√

4πn
)1/n]

+
2

e2
(
er2n+2

√
4πn+ 4π

)1/(n+1)
,

so lim
n→∞

(an+1 − an) = 0 +
2

e2
=

2

e2
.

[1] H. Robbins, A remark on Stirling’s formula, The American Mathematical Monthly 62(1),
Jan. 1955, 26-29.

Solution 3 by Adnan Ali (student), A.E.C.S-4, Mumbai, India

Lemma. [1] If the positive sequence (pn) is such that

lim
n→∞

pn+1

npn
= p > 0,

then

lim
n→∞

( n+1
√
pn+1 − n

√
pn) =

p

e
.

Taking pn =
n!(2n− 1)!!

nn
, we have

lim
n→∞

pn+1

npn
= lim

n→∞

nn−1(2n+ 1)

(n+ 1)n
= lim

n→∞

2n+ 1

n+ 1

(
1−

1

n+ 1

)n−1
= 2e−1,

and so from our Lemma, the required limit evaluates to 2/e2.

REFERENCES

[1] Gh. Toader, Lalescu sequences, Publikacije-Elektrotehnickog Fakulteta Univerzitet U
Beogradu Serija Matematika, 9 (1998), 1928.

Editor′s comment : The authors of this problem, D. M. Bătinetu-Giurgiu, and Neculai
Stanciu proved in their solution the following generalization:

If t ∈ R∗+ and (an)n≥1, (bn)n≥1 are positive real sequences such that lim
n→∞

an+1

nan
= a ∈ R∗+ and

lim
n→∞

bn+1

ntbn
= b ∈ R∗+ then
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lim
n→∞

(
n+1
√
an+1bn+1

(n+ 1)t
−

n
√
anbn
nt

)
=

ab

et+1
.

Letting t = 1, an = n! and bn = (2n− 1)!!, then

lim
n→∞

an+1

nan
= lim

n→∞

(n+ 1)!

n · n!
= lim

n→∞

n+ 1

n
= 1 and lim

n→∞

(2n+ 1)!!

n · (2n− 1)!!
= lim

n→∞

2n+ 1

n
= 2,

I.e., a = 1 and b = 2. So

lim
n→∞

(
n+1
√

(n+ 1)!(2n+ 1)!!

n+ 1
−

n
√
n!(2n− 1)!!

n

)
=

ab

et+1
=

1 · 2
e1+1

=
2

e2
.

Also solved by Arkady Alt, San Jose, CA; Ángel Plaza, University of Las Palmas
de Gran Canaria, Spain; Bruno Salgueiro Fanego, Viveiro, Spain; Kee-Wai Lau,
Hong Kong, China; Toshihiro Shimizu, Kawaskaki, Japan; David Stone and John
Hawkins, Georgia Southern University, Statesboro, GA, and the proposers.

• 5399: Proposed by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain

Let a, b, c be positive real numbers. Prove that∑
cyclic

2a+ 2b√
6a2 + 4ab+ 6b2

≤ 3.

Solution by Ed Gray, Highland Beach, FL

By symmetry it is sufficient to show that when x and y are positive, real numbers then

f(x, y) =
2x+ 2y√

6x2 + 4xy + 6y2
≤ 1.

Squaring both sides, is

(2x+ 2y)2 ≤ 6x2 + 4xy + 6y2? Or equivalently, is

0 ≤ 2x2 − 4xy + 2y2 = (2)(x− y)2? But this is obviously true.

Therefore the statement of the problem is true.

Editor′s comment : D.M. Bătinetu-Giurgiu of “Matei Basarab” National College,
Bucharest, Romania with Neculai Stanciu of “George Emil Palade” School,
Buzău, Romania generalized the problem as follows:

If a, b, c,m, n, p ∈ R∗+, then
∑
cyclic

m(a+ b)√
(n+ 2p)a2 + 2nab+ (n+ 2p)b2

≤ 3m√
n+ p

.

After proving the generalization, they let m = n = p = 2, obtaining the statement of the
problem.
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Also solved by Adnan Ali (student), A.E.C.S-4, Mumbai, India; Arkady Alt, San
Jose, CA; Hatef I. Arshagi, Guilford Technical Community College, Jamestown,
NC; Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State
University, San Angelo, TX; Bruno Salgueiro Fanego, Viveiro, Spain; Paul M.
Harms, North Newton, KS; Nikos Kalapodis, Patras, Greece; Kee-Wai Lau, Hong
Kong, China; Paolo Perfetti, Mathematics Department, Tor Vergata University,
Rome, Italy; Henry Ricardo, New York Math Circle, NY; Albert Stadler,
Herrliberg, Switzerland; Toshihiro Shimizu, Kawaskaki, Japan; Neculai Stanciu,
“George Emil Palade” School, Buzău, Romania and Titu Zvonaru, Comănesti,
Romania; Nicusor Zlota “Traian Vuia” Technical College, Focansi,Romania, and
the proposer

5400: Proposed by Arkady Alt, San Jose, CA

Prove the inequality
a2

ma
+

b2

mb
+

c2

mc
≤ 12 (2R− 3r),

where a, b, c and ma,mb,mc are respectively sides and medians of 4ABC, with circumradius
R and inradius r.

Solution 1 by Nikos Kalapodis, Patras, Greece

Let the median AM = ma intersects the circumcircle of triangle ABC at D.

Then by the intersecting chords theorem we have
AM ·MD = MB ·MC or AM · (AD −AM) = MB ·MC.

It follows that ma ·AD −m2
a =

a2

4
i.e.

a2

ma
= 4AD − 4ma.

By the obvious inequality AD ≤ 2R we obtain that
a2

ma
≤ 8R− 4ma (1).

Taking into account the other two similar inequalities we have

a2

ma
+

b2

mb
+

c2

mc
≤ 24R− 4(ma +mb +mc) (2).

Inequality (1) can be rewritten as ma ≥
a2 + 4m2

a

8R
. Adding the other two similar

inequalities and using the following well-known identities

m2
a +m2

b +m2
c =

3

4
(a2 + b2 + c2), bc = 2Rha,

1

ha
+

1

hb
+

1

hc
=

1

r
we get that
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ma +mb +mc ≥
a2 + b2 + c2 + 4(m2

a +m2
b +m2

c)

8R
=

a2 + b2 + c2

2R
≥bc+ ca+ ab

2R

= ha + hb + hc ≥
9

1

ha
+

1

hb
+

1

hc

=
9
1

r

= 9r, i.e. ma +mb +mc ≥ 9r (3).

Combining (2) and (3) we have

a2

ma
+

b2

mb
+

c2

mc
≤ 24R− 4(ma +mb +mc) ≤ 24R− 4 · 9r = 12(2R− 3r).

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

Let A′, B′, C ′ and A”, B”, C” be respectively the midpoints of the sides BC,CA,AB and the
intersections of the medians AA′, BB′, CC ′ with the circumcircle of 4ABC and let us denote
ha, hb, hc the heights and na = A′A′′, nb = B′B′′, nc = C ′C ′′

Taking into account that the absolute value of the power of A′ with respect to the circumcircle

of 4ABC is A′B ·A′C and also A′A ·A′A′′, that is
a

2
· a

2
= ma · na or equivalently

a2

ma
= 4na.

Since ma + na ≤ 2R (AA
′

is a chord of the circumcircle whose diameter is 2R) and ha ≤ ma

(the height is the minimum distance from the vertex to its opposite side), we conclude that
naa ≤ 2R−ma ≤ 2R− ha.

Thus
a2

ma
≤ 4(2R− ha) and analogously

b2

mb
≤ 4(2R− hb) and

c2

mc
≤ 4(2R− hc) so

a2

ma
+

b2

mb
+

c2

mc
≤ 12

(
2R− 1

3
(ha + hb + hc)

)
.

The result follows from ha + hb + hc ≥ 9r, with equality iff 4ABC is equilateral which is
equality 6.8 from page 61 in the book Geometric inequalities by O. Bottema, R. Z̆.
Djordjević, R.R. Janić, D.S. Mitrinović and P.M Vasić, Wolters Noordhoff, Groningen, 1969.

Equality is attained iff ma + na = 2R, ha = ma and ha + hb + hc = 9r and cyclically, that is,
iff 4ABC is an equilateral triangle.

Solution 3 by Nicusor Zlota, “Traian Vuia” Technical College, Focsani, Romania

Using the inequality ma ≥
b2 + c2

4R
, we obtain

a2

ma
+

b2

mb
+

c2

mc
≤

∑ 4Ra2

b2 + c2

2(2R− 3r)

R
−
∑ a2

b2 + c2
≥ 0 ⇐⇒ 3(2R− 3r)

R
− 3

2
≥ 0 =⇒ R ≥ 2r, which is true.
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(3)

* Where, using Nesbitt’s inequality, we have
∑ a2

b2 + c2
≥ 3

2
.

Also solved by Adnan Ali (student), A.E.C.S-4, Mumbai, India; Ed Gray,
Highland Beach, FL; Kee-Wai Lau, Hong Kong, China; Toshihiro Shimizu,
Kawaskaki, Japan, and the proposer.

5401: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let a, b, c be three positive real numbers such that a2 + b2 + c2 = 3. Prove that

b−1

(4
√
a+ 3

√
b)2

+
c−1

(4
√
b+ 3

√
c)2

+
a−1

(4
√
c+ 3

√
a)2
≥ 3

49
.

Solution 1 by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain

The proposed inequality may be written as

1(
4
√
ab+ 3b

)2 +
1(

4
√
bc+ 3c

)2 +
1

(4
√
ca+ 3a)

2 ≥
3

49
.

Now, by the Cauchy-Shwartz inequality in Engel form, the left-hand side is

LHS ≥ 32(
4
√
ab+ 3b

)2
+
(

4
√
bc+ 3c

)2
+ (4
√
ca+ 3a)

2

=
32

16 (ab+ bc+ ca) + 9 (a2 + b2 + c2) + 24
(
b
√
ab+ c

√
bc+ a

√
ca
) .

By the rearrangement inequality, ab+ bc+ ca ≤ a2 + b2 + c2 and
b
√
ab+ c

√
bc+ a

√
ca ≤ a2 + b2 + c2, so

LHS ≥ 32

(16 + 9 + 24) (a2 + b2 + c2)
=

32

(16 + 9 + 24) 3
=

3

49

with equality if and only if a = b = c = 1.

Solution 2 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State
University, San Angelo, TX

If x, y > 0, then two forms of the Arithmetic - Geometric Mean Inequality state that

2
√
xy ≤ x+ y and 2xy ≤ x2 + y2.
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In both cases, equality is attained if and only if x = y. As a result, we have

y
(
4
√
x+ 3

√
y
)2

= y (16x+ 24
√
xy + 9y)

≤ y [16x+ 12 (x+ y) + 9y]

= 7y (4x+ 3y)

= 7
(
4xy + 3y2

)
≤ 7

[
2
(
x2 + y2

)
+ 3y2

]
= 7

(
2x2 + 5y2

)
, (1)

with equality if and only if x = y.

We will also need the known result that if X,Y, Z > 0, then

(X + Y + Z)

(
1

X
+

1

Y
+

1

Z

)
≥ 9. (2)

(This is a direct result of applying the Cauchy - Schwarz Inequality to the vectors
−→
V =

(√
X,
√
Y ,
√
Z
)

and
−→
W =

(
1√
X
,

1√
Y
,

1√
Z

)
.)

By (1), (2), and the constraint equation a2 + b2 + c2 = 3,

b−1(
4
√
a+ 3

√
b
)2 +

c−1(
4
√
b+ 3

√
c
)2 +

a−1

(4
√
c+ 3

√
a)

2

≥ 1

7

[
1

2a2 + 5b2
+

1

2b2 + 5c2
+

1

2c2 + 5a2

]
=

1

147
· 21 ·

[
1

2a2 + 5b2
+

1

2b2 + 5c2
+

1

2c2 + 5a2

]
=

1

147

[(
2a2 + 5b2

)
+
(
2b2 + 5c2

)
+
(
2c2 + 5a2

)] [ 1

2a2 + 5b2
+

1

2b2 + 5c2
+

1

2c2 + 5a2

]
≥ 9

147

=
3

49
,

with equality if and only if a = b = c = 1.

Solution 3 by Henry Ricardo, New York Math Circle, NY

The arithmetic-geometric mean (AM-GM) inequality gives us

(4
√
a+ 3

√
b)2 = 16a+ 24

√
ab+ 9b ≤ 16a+ 24

(
a+ b

2

)
+ 9b = 28a+ 21b.

Then, using the Cauchy-Schwarz inequality and the AM-GM inequality, we see that∑
cyclic

b−1

(4
√
a+ 3

√
b)2
≥

∑
cyclic

b−1

28a+ 21b
=

∑
cyclic

1

28ab+ 21b2

≥ (1 + 1 + 1)2∑
cyclic (28ab+ 21b2)

=
9

28(ab+ bc+ ca) + 21(a2 + b2 + c2)

≥ 9

28(a2 + b2 + c2) + 21(a2 + b2 + c2)
=

9

49(3)
=

3

49
.

11



Equality holds if and only if a = b = c = 1.

Solution 4 by Toshihiro Shimizu, Kawaskaki, Japan

From Cauchy-Schwartz’s inequality,

(
a2 + b2 + c2

)( b−1

(4
√
a+ 3

√
b)2

+
c−1

(4
√
b+ 3

√
c)2

+
a−1

(4
√
c+ 3

√
a)2

)
≥

∑
cyclic

a√
b(4
√
a+ 3

√
b)

2

=

∑
cyclic

1

4
√

b
a + 3 · ba

2

Let x = log

(√
b

a

)
, y = log

(√
c

b

)
, z = log

(√
a

c

)
.Then, x+ y + z = 0. The (r.h.s) of the

above inequality is equal to ∑
cyclic

1

4ex + 3e2x

2

Let f(x) = 1/
(
4ex + 3e2x

)
. Since f ′′(x) = 4e−x

(
9ex + 9e2x + 4

)
/ (3ex + 4)3 > 0, f is convex.

Thus, from Jensen’s inequality, it follows that

f(x) + f(y) + f(z) ≥ 3f

(
x+ y + z

3

)
= 3f(0)

=
3

7

Solution 5 by David E. Manes, SUNY Oneonta, Oneonta, NY

Let

L =
∑
cyclic

b−1

(4
√

2 + 3
√
b)2

=
∑
cyclic

1

b(4
√
a+ 3

√
b)2

.

Define vectors ~u and ~v such that

~u =

(
1√

b(4
√
a+ 3

√
b)
,

1
√
c(4
√
b+ 3

√
c)
,

1√
a(4
√
c+ 3

√
a)

)
.

~v =
(√

b(4
√
a+ 3

√
b),
√
c(4
√
b+ 3

√
c),
√
a(4
√
c+ 3

√
a)
)
.

Then the dot product of ~u and ~v is less than or equal to the product of the norms of ~u and ~v
by the Cauchy-Schwarz inequality. Therefore,

1 + 1 + 1 ≤
√∑
cyclic

1

b(4
√
a+ 3

√
b)2

√∑
cyclic

b(4
√
a+ 3

√
b)2

12



or

L ≥ 9∑
cyclic

b(4
√
a+ 3

√
b)2

.

Expanding the denominator, one obtains

∑
cyclic

b(4
√
a+ 3

√
v)2 = 16

∑
cyclic

ab

+ 24

∑
cyclic

√
ab3

+ 9(a2 + b2 + c2).

The Rearrangement inequality implies∑
cyclic

ab+
∑
cyclic

√
ab3 ≤ (a2 + b2 + c2) +

(√
a4 +

√
b4 +

√
c4
)

with equality if and only if a = b = c. Therefore,

1∑
cyclic

b(4
√
a+ 3

√
b)2
≥ 1

16
∑
cyclic

a2 + 24
∑
cyclic

a2 + 9
∑
cyclic

a2
.

Since a2 + b2 + c2 = 3, it follows that

1∑
cyclic

b(4
√
a+ 3

√
b)2
≥ 1

16(3) + 24(3) + 9(3)
=

1

3(49)
.

Hence,

L =
∑
cyclic

b−1

(4
√

2 + 3
√
b)2
≥ 9

3(49)
=

3

49

with equality if and only if a = b = c = 1.

Editor′s comment : D.M. Bătinetu-Giurgiu of “Matei Basarab” National College,
Bucharest, Romania with Neculai Stanciu of “George Emil Palade” School,
Buzău, Romania generalized the problem as follows:

If a, b, c,m, n ∈ R∗+, then
∑
cyclic

b−1

(m
√
a+ n

√
b)2
≥ 3

(n+ p)2
.

They did this by showing that∑
cyclic

b−1

(m
√
a+ n

√
b)2
≥ 27

(m+ n)2(a+ b+ c)2
. (2)

Then they used the hypothesis concluding that

3 = a2 + b2 + c2 ≥ (a+ b+ c)2

3
⇐⇒ 9 ≥ (a+ b+ c)2. (3)

By (2) and (3) they obtained∑
cyclic

b−1

(m
√
a+ n

√
b)2
≥ 27

(m+ n)2(a+ b+ c)2
=

3

(m+ n)2
.
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Letting m = 1and n = 3 they obtained the statement of the problem.

Also solved by Adnan Ali (student), A.E.C.S-4, Mumbai, India; Arkady Alt, San
Jose, CA; Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland Beach, FL;
Nikos Kalapodis, Patras, Greece; Kee-Wai Lau, Hong Kong, China; Paolo
Perfetti, Mathematics Department of Tor Vergata University, Rome, Italy; Albert
Stadler, Herrliberg, Switzerland; Neculai Stanciu of “George Emil Palade”
School, Buzău, Romania and Titu Zvonaru, Comănesti, Romania; Nicusor Zlota,
“Traian Vuia” Technical College, Focsani, Romania, and the proposer.

5402: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

Calculate ∫ ∞
0

(
cos(ax)− cos(bx)

x

)2

dx,

where a and b are real numbers.

Solution 1 by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain

Obviously we may assume a 6= b, since otherwise the integral is null. Let us suppose that
a > b > 0. Using parity, write the integral as

I =
1

2

∫ ∞
−∞

(
cos(ax)− cos(bx)

x

)2

dx,

and then deform the contour to be the line C slightly below the real axis. Next express
cosines in terms of exponentials. Then we obtain I equal to

1

8

(∫
C

−2
(
e−(a+b)xi + e(a−b)xi + e(b−a)xi + e(a+b)xi

)
+ e−2axi + e2axi + e−2bxi + e2bxi + 4

x2
dx

)
.

For a > b > 0, in the integrals containing terms of the form e−kxi, with k > 0, the contour can
be closed in the lower half plane (by Jordan lemma) and therefore these integrals vanish (as
there are no singularities inside).

The integrals containing terms of the form ekxi, with k ≥ 0, can only be closed in the upper
half plane and are therefore given by the residues at x = 0. Therefore

I =
πi

4
Resx=0

(
−2e(a−b)xi − 2e(a+b)xi + e2axi + e2bxi + 4

x2

)
=

πi

4
(−2i(a− b)− 2i(a+ b) + 2ia+ 2ib)

=
πi2(−a+ b)i

4
=
π(a− b)

2
.

Solution 2 by Toshihiro Shimizu, Kawaskaki, Japan
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For real number a 6= 0, we have∫ ∞
0

sin2 ax

x2
dx =

1

2

∫ ∞
−∞

sin2 ax

x2
dx

=
a2

2

∫ ∞
−∞

sin2 y

y2
dy

|a|
(where y = |a|x)

=
|a|
2

∫ ∞
−∞

sin2 y

y2
dy

=
|a|
2

∫ ∞
−∞

sin2 y

(
−1

y

)′
dx

=
|a|
2

[
sin2 y

(
−1

y

)]∞
−∞
− a

2

∫ ∞
−∞

2 sin y cos y

(
−1

y

)
dy

=
|a|
2

∫ ∞
−∞

sin 2y

y
dy

=
|a|
2

∫ ∞
−∞

sin y

y
dy

=
|a|π

2
.

For a = 0, the value of l.h.s is 0 and r.h.s is also 0. Thus, this result is true for any real
number a. Then, since

(cos ax− cos bx)2 = cos2 ax+ cos2 bx− 2 cos ax cos bx

= 1− sin2 ax+ 1− sin2 bx− cos (ax+ bx)− cos (ax− bx)

= 2− sin2 ax− sin2 bx

−
(

1− 2 sin2

(
ax+ bx

2

))
−
(

1− 2 sin2

(
ax− bx

2

))
= − sin2 ax− sin2 bx+ 2 sin2

(
ax+ bx

2

)
+ 2 sin2

(
ax− bx

2

)
,

it follows that∫ ∞
0

(
cos ax− cos bx

x

)2

dx = −
∫ ∞
0

sin2 ax

x2
dx−

∫ ∞
0

sin2 bx

x2
dx

+ 2

∫ ∞
0

sin2
(
ax+bx

2

)
x2

dx+ 2

∫ ∞
0

sin2
(
ax−bx

2

)
x2

dx

= −|a|π
2
− |b|π

2
+ 2 · |a+ b|

4
π + 2 · |a− b|

4
π

=
1

2
(− |a| − |b|+ |a+ b|+ |a− b|) .

If a, b are the same sign or 0, we have − |a| − |b|+ |a+ b| = 0 and the answer is |a−b|2 , if a, b

are the opposite sign, − |a| − |b|+ |a− b| = 0 and the answer is |a+b|2 .
Also, we can write this answer as

min

{
|a− b|

2
,
|a+ b|

2

}
.
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Solution 3 by Ed Gray, Highland Beach, FL

In order to calculate:

∫ ∞
0

(
cos(ax)− cos(bx)

x

)2

dx, where a and b are real numbers we first

expand the numerator so that the integral becomes∫ ∞
0

cos2(ax)− 2 cos(ax) cos(bx) + cos2(bx)

x2
dx. (1)

But the expression 2 cos(ax) cos(bx) = cos(ax+ bx) + cos(ax− bx), so equation (1) becomes∫ ∞
0

cos2(ax)

x2
−
∫ ∞
0

cos(ax+ bx)

x2
−
∫ ∞
0

cos(ax− bx)

x2
+

∫ ∞
0

cos2(bx)

x2

We evaluate each of these four integrals.

We may use “integration by parts” and other standard procedures to obtain the following:

∫ ∞
0

cos2(ax)

x2
=
−aπ

2

∫ ∞
0

− cos(ax+ bx)

x2
=

(a+ b)π

2

∫ ∞
0

− cos(ax− bx)

x2
=

(a− b)π
2

if a > b; =
(b − a)π

2
if b > a.

∫ ∞
0

cos2(bx)

x2
=
−bπ

2

Summing the four integrals above we see that

∫ ∞
0

(
cos(ax)− cos(bx)

x

)2

dx =



(a− b)π
2

, if b < a

(b− a)π

2
, if a < b.

Solution 4 by Albert Stadler, Herrliberg, Switzerland

We claim that f(a, b) =

∫ ∞
0

(
cos(ax)− cos(bx)

x

)2

dx =
π

2
||b| − |a||.

Obviously, f(a, b) = f(b, a) = −f(−a, b) = f(a,−b). (1)

Let r > 0 and let L be the “indented” line: −∞ < t ≤ −r, reiϕ, π ≥ ϕ ≥ 0, r ≤ t <∞, run

through “from left to right”. Let a be a real number. Then

∫
L

eiaz

z2
dz = π (a |a|).

Indeed, By Cahuchy’s theorem, the integral does not end on r. Assume that a ≥ 0. Then∣∣∣∣∫
L

eiaz

z2
dz

∣∣∣∣ ≤ 2

∫ ∞
r

1

t2
dt+

πr

r2
max
0≤ϕ≤π

∣∣∣eiareiϕ∣∣∣ =
1

r
(2 + π)→ 0, as r →∞.

16



So

∫
L

eiaz

z2
dz = 0, if a ≥ 0, where L is the complex conjugate of L, i.e., the line L reflected at

the abscissa

By the residue theorem,∫
L

eiaz

z2
dz −

∫
L

eiaz

z2
dz =

∫
|z|=r

eiaz

z2
dz = 2πiRes

(
eiaz

z2
, z = 0

)
= −2πa.

So

∫
L

eiaz

z2
dz =

∫
L

eiaz

z2
dz − 2πiRes

(
eiaz

z2
, z = 0

)
= 2πa, if a < 0 .

To sum up: ∫
L

eiaz

z2
dz =

{
0, a ≥ 0

2πa, a < 0.
= π (a− |a|) , as claimed.

We conclude that

f(ab) =

∫ ∞
0

(
cos(ax)− cos(bx)

x

)2

dx =
1

2

∫ ∞
−∞

(
cos(ax)− cos(bx)

x

)2

dx =
1

2

∫
L

(
cos(az)− cos(bz)

z

)2

dz =

=
1

2

∫
L

cos2(az) +−2 cos(az) cos(bz) + cos2(bz)

z2
dz

=
1

2

∫
L

(
eiaz + e−iaz

)2 − 2
(
eiaz + e−iaz

) (
eiaz + e−iaz

)
+
(
eiaz + e−iaz

)2
4z2

dz

=
1

2

∫
L

e2iaz + e2ibz + e−2iaz + e−2ibz + 4− 2ei(a+b)z − 2ei(a−b)z − 2ei(−a+b)z − 2ei(−a−b)z

4z2
dz

=
π

8

(
2a− |2a|+ 2b− |2b| − 2a− |2a| − 2b− |2b| − 2(a+ b)

+2|a+ b| − 2(a− b) + 2|a− b| − 2(−a+ b) + 2| − a+ b| − 2(−a− b) + 2| − a− b|
)

=
π

4

(
− |a| − |b| − |a| − |b|+ |a+ b|+ |a− b|+ | − a+ b|+ | − a− b|

)
=

π

2

(
− |a| − |b|+ |a+ b|+ |a− b|

)
.

By (1) we can assume that 0 ≤ a ≤ b. Then

f(a, b) =
π

2
(−|a| − |b|+ |a+ b|+ |a− b|)

=
π

2
(−a− b+ a+ b+ b− a)
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=
π

2
(b− a)

=
π

2

∣∣|b| − |a|∣∣, as claimed.

Solution 5 by Kee-Wai Lau, Hong Kong, China

Denote the given integral by I. We show that

I =
(|a+ b|+ |a− b| − |a| − |b|)π

2
(1)

4pt It is well known that for any real number r, we have

∫ ∞
0

sin(rx)

x
dx =


π/2 r > 0

0 r = 0. (2)

−π/2 r < 0.

Since lim
x→0

(cos(ax)− cos(bx))2

x
= 0, so intergrating by parts , we obtain

I =

∫ ∞
0

f(a, b, x)

x
dx, where

f(a, b, x)

= 2 (cos(ax)− cos(bx)) (b sin(bx)− a sin(ax))

= 2b sin(bx) cos(ax) + 2a sin(ax) cos(bx)− a sin(2ax)− b sin(2bx)

= (a+ b) sin ((a+ b)x) + (a− b) sin ((a− b)x)− a sin(2ax)− b sin(2bx).

Using (2), we now obtain (1). This completes the proof.

Solution 6 by Adnan Ali, Student in A.E.C.S-4, Mumbai, India

We prove that the value of the proposed integral is (a− b)
π

2
. It is trivial when a = b, so we

assume that a 6= b. We make repeated use of the following integral (proof of which is provided
at the end, for the sake of completion)∫ ∞

0
e−αx cos(βx)dx =

α

α2 + β2

We have the identity (easily verified)
1

x2
=

∫ ∞
0

te−xtdt. Using this, the proposed integral

becomes ∫ ∞
0

∫ ∞
0

te−xt(cos(ax)− cos(bx))2dtdx.
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Since everything is positive, by Tonelli’s Theorem, we can reverse the order of integration so
that the integral now becomes∫ ∞

0

∫ ∞
0

te−xt(cos(ax)− cos(bx))2dxdt.

From the trigonometric identities
cos(2x) + 1

2
= cos2(x) and

2 cos(x) cos(y) = cos(x+ y) + cos(x− y), we easily obtain (using (1))∫ ∞
0

e−xt(cos2(ax) + cos2(bx))dx =
1

t
+

1

2

(
t

t2 + (2a)2
+

t

t2 + (2b)2

)
and ∫ ∞

0
e−xt(2 cos(ax) cos(bx))dx =

t

t2 + (a+ b)2
+

t

t2 + (a− b)2
.

Thus, (2) becomes ∫ ∞
0

∫ ∞
0

te−xt(cos(ax)− cos(bx))2dxdt

=

∫ ∞
0

t

(
1

t
+

1

2

(
t

t2 + (2a)2
+

t

t2 + (2b)2

)
− t

t2 + (a+ b)2
− t

t2 + (a− b)2

)
dt

=

[
(a− b) arctan

t

a− b
+ (a+ b) arctan

t

a+ b
− a arctan

t

2a
− b arctan

t

2b

]t=∞
t=0

= (a− b)π
2

.

Proof of (1):

Let I =

∫ ∞
0

e−αx cos(βx)dx. Then cos(βx) =
eiβx + e−iβx

2
gives

I =
1

2

∫ ∞
0

(
e−x(α−iβ) + e−x(α+iβ)

)
dx =

1

2

(
1

α− iβ
+

1

α+ iβ

)
=

α

α2 + β2
.

Alternatively, one can do integration by parts to get the same result.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain, and the proposer.

Mea Culpa

Paolo Perfetti of the Mathematics Department of Tor Vergata University in
Rome, Italy should have been credited with having solved 5394.
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