
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
January 15, 2019

5511: Proposed by Kenneth Korbin, New York, NY

A trapezoid with perimeter 58 + 14
√

11 is inscribed in a circle with diameter 17 + 7
√

11.
Find its dimensions if each of its sides is of the form a+ b

√
11 where a and b are positive

integers.

5512: Proposed by Ángel Plaza, Universidad de Las Palmas de Gran Canaria. Spain

If ak > 0, (k = 1, 2, . . . , n) then
n

n∑
k=1

1
1
k + ak

− n
n∑
k=1

1

ak

≥ 2

n+ 1
.

5513: Proposed by Michael Brozinsky, Central Islip, NY

In an n× n× n cube partitioned into n3 congruent cubes by n− 1 equally spaced planes
parallel to each pair of parallel faces, there are 20 times as many non-cubic rectangular
parallelepipeds that could be formed as were cubic parallelepipeds. What is n?

5514: Proposed by D. M. Batinetu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” School, Buzău,
Romania

If a ∈
(

0,
π

2

)
and b = arcsin a, then calculate lim

n→∞
n
√
n!

(
sin

(
b · n+1

√
(2n+ 1)!!

n
√

(2n− 1)!!

)
− a

)
.
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5515: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let n be a positive integer. Prove that

1

2n

 n∑
k=1

√
1

n2
+

(
n− 1

k − 1

)2
2

≥ 1.

5516: Proposed by Ovidiu Furdui and Alina Ŝıntămărian both at the Technical
University of Cluj-Napoca, Cluj-Napoca, Romania

Calculate
∞∑
n=1

n

(
ζ(3)− 1− 1

23
− · · · − 1

n3
− 1

2n2

)
.

Solutions

5493: Proposed by Kenneth Korbin, New York, NY

Convex quadrilateral ABCD is inscribed in a circle with diameter AC = 729. Sides AB
and CD each have positive integer length. Find the perimeter if BD=715.

Solution by Bruno Salgueiro Fanego, Viveiro, Spain

Let a = AB, b = BC, c = CD and d = DA. Since AC is a diameter of the circumcircle

of ABCD, 6 CBA =
π

2
= 6 ADC and hence the Pythagorean theorem can be applied on

4ABC and 4ACD: a2 + b2 = 7292 = c2 + d2 .

Since ABCD is cyclic, by Ptolemy’s theorem ac+ bd = 729× 715. Thus,

(7292 − a2)(7292 − c2) = b2d2 = (729 · 715− ac)2, that is, the point with positive integer

coordinates (a, c) lies on the ellipse whose equation is

729x2 − 1430xy + 729y2 − 14737464 = 0.

From this it follows that

(a, c) ∈ {(279, 405), (405, 279), (715, 729), (729, 715)} and since a < 729 and c < 729,

(a, c) ∈ {(279, 405), (405, 279)}, so the lengths of the sides of ABCD are

(a, b, c, d) ∈ {(279, 180
√

14, 405, 162
√

14), (279, 162
√

14, 405, 180
√

14)}

and hence, the perimeter of ABCD is a+ b+ c+ d = 342(2 +
√

14).

Editor′s comment : Ioannis D. Sfikas’ solution to this problem started off with
comments about its related history. “In Euclidean geometry, Ptolemy’s inequality relates
the six distances determined by four points in the plane or in a higher-dimensional
space. It states for any four points A,B,C,D the following inequality holds:

AB · CD +BC ·DA ≥ AC ·BD.
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As a special case, Ptolemy’s theorem states that the inequality becomes an equality
exactly when the four points lie in cyclic order on a circle. The inequality does not
generalize from Euclidean spaces to arbitrary metric spaces. The spaces where it
remains valid are called the Ptolemaic spaces; they include the inner product spaces,
Hadamard spaces, and shortest path distances on Ptolemaic graphs.

In other words, Ptolemy’s theorem is a relation between the four sides and two diagonals
of a cyclic quadrilateral (a quadrilateral whose vertices lie on a common circle). The
theorem is named after the Greek astronomer and mathematician Ptolemy. Ptolemy
used the theorem as an aid to creating his table of chords, a trigonometric table that he
applied to astronomy.” Ioannis then went on to solve the problem in the above manner.

Also solved by the Brian D. Beasley, Presbyterian College, Clinton, SC;
Cartesian Gains Student Problem Solving Group, Mountain Lakes High
School, Mountain Lakes, NJ; Ed Gray, Highland Beach, FL; Paul M. Harms,
North Newton, KS; Kee-Wai Lau, Hong Kong, China; Ioannis D. Sfikas,
National and Kapodistrian University of Athens, Greece; Albert Stadler,
Herrliberg, Switzerland; David Stone and John Hawkins, Georgia Southern
University, Statesboro, GA, and the proposer.

5494: Proposed by Moshe Stupel, “Shaanan” Academic College of Education and
Gordon Academic College of Education, and Avi Sigler, “Shaanan” Academic College of
Education, Haifa, Israel

If a ≥ b ≥ c ≥ d are the lengths of four segments from which an infinite number of
convex quadrilaterals can be constructed, calculate the maximal product of the lengths
of the diagonals in such quadrilaterals.

Solution 1 by Ioannis D. Sfikas, National and Kapodistrian University of
Athens, Greece

A classical result of Claudius Ptolemy of Alexandria (circa 85AD−165AD), known as
Ptolemy’s theorem, states that for a cyclic quadrilateral with side lengths a, b, c, d (in
that order) and diagonals of lengths p and q, the product of the lengths of the diagonals
equals the sum of the products of the lengths of the opposite sides, pq = ac+ bd. For a
general convex quadrilateral, we have Ptolemy’s inequality:

Theorem 1. For a convex quadrilateral with sides of length a, b, c, d (in that order) and
diagonals of length p and q, we have pq ≤ ac+ bd.

For the above problem, we have to order α, β, and γ, where α = ab+ cd, β = ac+ bd
and γ = ad+ bc. Then, we have:

(i) If we have α ≥ β, that means ab+ cd ≥ ac+ bd, or a(b− c) +d(c− b) ≥ 0, which holds.

(ii) If we have α ≥ γ, that means ab+ cd ≥ ad+ bc, or b(a− c) + d(c− a) ≥ 0, or
(b− d)(a− c) ≥ 0, which holds.

So, if a ≥ b ≥ c ≥ d are the lengths of four segments, from which an infinite number of
convex quadrilaterals can be constructed, then the maximal product of the lengths of
the diagonals in such quadrilaterals is ab+ cd.

[1] Alsina, Claudi and Nelsen, Roger B. (2009). When less is more: visualizing basic
inequalities, p. 82. Mathematical Association of America.
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Solution 2 by Kee-Wai Lau, Hong Kong, China

We show that the maximal product of the length of the diagonals in such quadrilaterals
equals ab+ cd.

Let WXY Z be a convex quadrilateral such that WX = w, XY = x, Y Z = y, ZW = z.

By a result of C.A. Bretschneider, the product of the lengths of the diagonals equals√
w2y2 + x2z2 − 2wxyz cos( 6 XWZ + 6 XY Z), which does not exceed√
w2y2 + x2z2 + 2wxyz = wy + xz. Note that

ab+ cd = ac+ bd+ (b− c)(a− d) ≥ ac+ bd

and
ab+ cd = ad+ bc+ (a− c)(b− d) ≥ ad+ bc.

Hence in order to obtain the maximum product of the diagonals, we put
w = a, x = c, y = b, and z = d. It is easy to check that when WXY Z is a cyclic
quadrilateral, we have

WY =

√
(ab+ cd)(bc+ ad)

(ac+ bd)
and XZ =

√
(ab+ ca)(ac+ bd)

(bc+ ad)
,

so that the maximum product ab+ cd is attained. Hence our claimed maximum.

Solution 3 by Albert Stadler, Herrliberg, Switzerland

The German mathematician Carl Anton Bretschneider derived in 1842 the following
generalization of Ptolemy’s theorem, regarding the product pq of the diagonals in a
convex quadrilateral

p2q2 = a2c2 + b2d2 − 2abcd cos(A+ C) (1)

This relation can be considered to be a law of cosines for a quadrilateral. Since
4cos(A+ C) ≥ −1, it also gives a proof of Ptolemy’s inequality.

We note that the product p2q2 in (1) is maximal if cos(A+ C) = −1, i.e., if
A+ C = 180◦ which implies that the product pq is maximal if the quadrilateral is a
cyclic quadrilateral. In that case we get pq = ac+ bd.

It remains to determine for which permutation of the sides the term ac+ bd is maximal.
There are three possibilities, namely

ab+ cd, ac+ bd, ad+ bc. Of these three expressions ab+ cd is maximal, since

ab+ cd− (ac+ bd) = (a− d)(b− c) ≥ 0, and ab+ cd− (ad+ bc) = (a− c)(b− d) ≥ 0.

References
[1] Titu Andreescu & Dorian Andrica, Complex Numbers from A to . . . Z, Birkhäuser,
2006, pp. 207-209.

Solution 4 by David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA

The maximal product of the lengths of the diagonals is ab+ cd. This maximum is
achieved when (AB,BC,CD,DA) = (a, c, b, d) is a cyclic quadrilateral.
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By considering the vertices as hinges, Thomas proves [1] that any convex quadrilateral
can be deformed into a cyclic quadrilateral (having the same side lengths).

In any convex quadrilateral, Ptolemy’s Inequality tells us that the product of the
diagonals is less than or equal to the sum of the products of the lengths of opposite
sides. In a cyclic quadrilateral, Ptolemy’s Theorem, tells us that the product of the
diagonals equals the sum of the products of the lengths of opposite sides. Given our four
appropriate segments, a, b, c, d, there are six ways to arrange them in a convex
quadrilateral. By symmetry, only three of these are distinct.

We show these three possibilities with corresponding bound on the product of the
diagonals, AC ·BD:

(AB,BC,CD,DA) = (a, b, c, d);AC ·BD ≤ ac+ bd

(AB,BC,CD,DA) = (a, b, d, c);AC ·BD ≤ ad+ bc

(AB,BC,CD,DA) = (a, c, b, d);AC ·BD ≤ ab+ cd.

The third case gives the largest possible value (because we’ve placed the two largest
sides opposite one another).

Algebraically,

ac+ bd ≤ ab+ cd ⇐⇒ 0 ≤ (a− d)(b− c)
which is true by the given ordering, and

ad+ bc ≤ ab+ cd ⇐⇒ 0 ≤ (a− c)(b− d)

which is also true by the given ordering.

Summarizing: when the four segments are arranged in a quadrilateral ABCD, the
product of the diagonals is ≤ AB · CD +BC ·AD; the largest possible value for
AB ·CD +BC ·AD is ab+ cd, which is achieved when a, b and c, d are opposite sides of
a cyclic quadrilateral.

Reference:

1. Peter, Thomas, Maximizing the Area of a Quadrilateral, The College Mathematics
Journal, Vol. 34, No. 4 (September 2003), pp. 315-316.

Also solved by Kenneth Korbin, New York, NY; David E. Manes, Oneonta,
NY, and the proposers.

5495: Proposed by D.M. Bătinetu-Giurgiu, “Matei Basarab” National College,
Bucharest and Neculai Stanciu, “George Emil Palade” School Buzău, Romania

Let {xn}n≥1, x1 = 1, xn = 1 ·
√

3!! · 3
√

5!! · . . . n
√

(2n− 1)!!.

Find:

lim
n→∞

(
(n+ 1)2

n+1
√
xn+1

− n2

n
√
xn

)
.

Solution 1 by Moti Levy, Rehovot, Israel

(2n− 1)!! =
(2n)!

2nn!
. (1)
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Using Stirling’s asymptotic formula, we have

n! ∼ nn

en
. (2)

Applying (2) to (1) yields

n
√

(2n− 1)!! ∼

(
(2n)2n

e2n2nn!

) 1

n
=

2n

e
(3)

Now we use (3) to approximate xn,

xn ∼
n∏
k=1

2ke =
2nn!

en
∼

2n
nn

en

en
=

2nnn

e2n
,

or
n
√
xn ∼

2n

e2
.

Hence,
(n+ 1)2

n+1
√
xn+1

− n2

n
√
xn
∼ e2

2
(n+ 1)− e2

2
n =

e2

2
,

and we conclude that lim
n→∞

(
(n+ 1)2

n+1
√
xn+1

− n2

n
√
xn

)
=
e2

2
∼= 3.694 5.

Solution 2 by Kee-Wai Lau, Hong Kong, China

We show that the limit of the problem equals
e2

2
.

We need the following knows results for positive integers n.

ln(n!) =

(
n+

1

2

)
lnn− n+A+O

(
1

n

)
, (1)

n∑
k=1

1

k
= lnn+B +O

(
1

n

)
, (2)

ln

(
1 +

1

n

)
=

1

n
+O

(
1

n2

)
. (3)

where A and B are constants.

By (1) we have

ln ((2k)!)− ln(k!) = ln(k!) + (2 ln 2− 1)k +
ln 2

2
+O

(
1

k

)
. (4)

Next we show that

n = n lnn+ (ln 2− 2)n+
(1 + ln 2) lnn

2
+O(1) (5)
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In fact by (4) we have

lnxn =
n∑
k=1

ln((2k − 1)!!)

k
. =

n∑
k=1

ln((2k)!)− ln(k!)− (ln 2)k

k

=
n∑
k=1

(
ln k + ln 2− 1 +

ln 2

2k
+O

(
1

k2

))

= ln(n!) + (ln 2− 1)n+
ln 2

2

n∑
k=1

1

n
+O(1),

and (5) follows from (1) and (2).

Let f(n) = 2 lnn− lnxn
n

. By (5), we obtain

f(n) = lnn+ 2− 2 +O

(
lnn

n

)
. (6)

We next show that

f(n+ 1)− f(n) =
1

n
+O

(
lnn

n2

)
. (7)

In fact

f(n+ 1)− f(n) = 2(ln(n+ 1)− lnn)−
(

lnxn+1

n+ 1
− lnxn

n

)

= 2 ln

(
1 +

1

n

)
+

lnxn
n(n+ 1)

− ln(2n+ 2)!− ln(n+ 1)!− (ln 2)(n+ 1)

(n+ 1)2
,

and (7) follows readily from (3),(5) and (4). By the mean value theorem, we have

ef(n+1) − ef(n) = (f(n+ 1)− f(n)) et, (8)

where t is a number lying between f(n) and f(n+ 1). By (6), both ef(n+1) and ef(n)

equal
e2n

2

(
1 +O

(
lnn

n

))
. Hence, by (7) and (8),

(n+ 1)2

n+1
√
xn+1

− n2

n
√
xn

= ef(n+1) − ef(n) =
e2

2

(
1 +O

(
lnn

n

))
,

and our claim for the limit follows.

Solution 3 by Bruno Salgueiro Fanego, Viveiro, Spain

We will use the lemma from Solution 3 to Problem 5398 that appeared in this Column
(see Nov. 2016 issue) that stated: “If the positive sequence (pn) is such that

lim
n→∞

pn+1

npn
= p > 0, then lim

n→∞
( n+1
√
pn+1 − n

√
pn) =

p

e
.”
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We let {pn}n≥1, pn =
n2n

xn
. Then

lim
n→∞

pn+1

npn
= lim

n→∞

(n+ 1)2n+2

xn
n+1
√

(2n+ 1)!!

n
n2n

xn

= lim
n→∞

(n+ 1)2n+2

n2n+1 n+1
√

(2n+ 1)!!
= lim

n→∞

(n+ 1)2n(n+ 1)2

n2nn n+1
√

(2n+ 1)!!

= lim
n→∞

((
n+ 1

n

)n)2

lim
n→∞

n+1
√

(n+ 1)2(n+1)

n+1
√
nn+1(2n+ 1)!!

= e2 lim
n→∞

n

√
n2n

(n− 1)n(2n− 1)!!

=
root crition e2 lim

n→∞

(n+ 1)2(n+1)

nn+1(2n+ 1)!!

n2n

(n− 1)n(2n− 1)!!

= e2 lim
n→∞

(n+ 1)2n(n+ 1)2(n− 1)n

nnn2n(2n+ 1)

= e2 lim
n→∞

(n+ 1)2n(n+ 1)2(n− 1)n

n2nn(2n+ 1)nn

= e2 lim
n→∞

(n+ 1)2n

n2n
lim
n→∞

(n+ 1)2

n2n+1
lim
n→∞

(n− 1)n

nn

= e2 lim
n→∞

((
n+ 1

n

)n)2
1

2
lim
n→∞

(
1− 1

n

)n
= e2e2

1

2
e−1

=
e3

2
=: p > 0, which implies by the lemma mentioned above,

that the required limit is lim
n→∞

( n+1
√
pn+1 − n

√
pn) =

p

e
=

e2

2
.

Editor′s comment : In addition to the above solution Bruno Salgueiro Fanego stated
that a more general form of the problem was published by the authors′ of 5495 in the
journal La Gaceta de la Real Sociedad Matemática Espanãola vol. 17 (3), 2014, pp.
523-524. (available at http://gaceta.rsme.es/abrir.phd?id=1218.) Therein they showed:

If {an}n≥1 is a sequence of real positive numbers such that lim
n→∞

(an+1 − an) = a 6= 0,

then

lim
n→∞

 (n+ 1)2

n+1

√∏n+1
k=1 f(ak)

− (n)2

n
√∏n

k=1 f(ak)

 =
e

ca
.

Letting an = n and f(n) = n
√

(2n− 1)!! gives the desired result.
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Solution 4 by Michel Bataille, Rouen, France

Let un = n2

n
√
xn

=
(
n2n

xn

)1/n
. We show that lim

n→∞
(un+1 − un) = e2

2 .

To this end, we first recall that (2n− 1)!! =
(2n)!

2n(n!)
and the following asymptotic

expansion as n→∞:

ln(n!) = n ln(n)− n+
ln(n)

2
+ ln(

√
2π) +

1

12n
+ o(1/n),

from which we readily deduce

ln

(
(2n)!

n!

)
= ln((2n)!)− ln(n!) = n ln(n) + n(2 ln(2)− 1) +

ln(2)

2
− 1

24n
+ o(1/n).

Now, we have

ln(un) = 2 ln(n)− ln(xn)

n
= 2 ln(n)− 1

n
ln

(
n∏
k=1

1

2
·
(

(2k)!

k!

)1/k
)

= 2 ln(n)+ln(2)−sn
n

(1)

where sn =
n∑
k=1

1
k · ln

(
(2k)!
k!

)
.

Consider the sequence {yn}n≥2 defined by

yn = sn − n ln(n)− (2 ln(2)− 2)n− 1 + ln(2)

2
· ln(n).

For n→∞, we calculate

yn − yn−1 = sn − sn−1 − n ln(n) + (n− 1) ln(n− 1)− (2 ln(2)− 2) +
1 + ln(2)

2
· ln
(

1− 1

n

)
=

1

n

(
ln

(
(2n)!

n!

))
+ n ln

(
1− 1

n

)
− ln(n)− 1− ln(2)

2
ln

(
1− 1

n

)
+ (2− ln(2))

= 2 ln(2)− 1 +
ln(2)

2n
− 1

24n2
+ o(1/n2) + n

(
− 1

n
− 1

2n2
− 1

3n3
+ o(1/n3)

)
−1− ln(2)

2

(
− 1

n
− 1

2n2
+ o(1/n2)

)
+ 2− 2 ln(2)

=
a

n2
+ o(1/n2)

where we set a = −1+2 ln(2)
8 . Thus, the series

∑∞
n=2(yn − yn−1) is convergent. Let S

denotes its sum. Then, we may write
∑n

k=2(yk − yk−1) = S + o(1) and so yn = b+ o(1)
as n→∞ (where b = S + y1).
It follows that

sn = n ln(n) + (2 ln(2)− 2)n+
1 + ln(2)

2
· ln(n) + b+ o(1)

as n→∞.
From (1), we now obtain

ln(un) = ln(n) + 2− ln(2)− 1 + ln(2)

2
· ln(n)

n
− b

n
+ o(1/n).
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First, we deduce that ln(un) = ln(n) + 2− ln(2) + o(1), hence un = eln(n)+2−ln(2) · eo(1)

and so un ∼ n · e22 . Second, the calculation of ln(un+1)− ln(un) easily leads to

ln(un+1)− ln(un) = ln

(
1 +

1

n

)
+ o(1/n) =

1

n
+ o(1/n).

(Note that
ln(n)
n − ln(n+1)

n+1 = 1
n

(
(lnn)

(
1− (1 + 1/n)−1

)
+ o(1)

)
= 1

n

(
− ln(n)

n + o(1)
)

= o(1/n) as

n→∞.)
Since

un+1 − un = un

(
un+1

un
− 1

)
= un

(
eln(un+1)−ln(un) − 1

)
we finally arrive at

un+1 − un ∼ un(ln(un+1)− ln(un)) ∼ n · e
2

2
·
(

1

n

)
∼ e2

2

and the result follows.

Also solved by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy; Ioannis D. Sfikas, National and Kapodistrian
University of Athens, Greece; Albert Stadler, Herrliberg, Switzerland;
Marian Ursarescu - Romania, and the proposers.

5496: Daniel Sitaru, “Theodor Costescu” National Economic College, Drobeta
Turnu-Severin, Mehedinti, Romania

Let a, b, c be real numbers such that 0 < a < b < c. Prove that:

∑
cyclic

(
ea−b + eb−a

)
≥ 2a− 2c+ 3 +

∑
cyclic

(
b

a

)√ab
.

Solution 1 by Henry Ricardo, Westchester Area Math Circle, NY

For x > 0 we apply the known inequality ex > x+ 1 to x = a− b, b− c, and a− c to get

ea−b > a− b+ 1, eb−c > b− c+ 1, ea−c > a− c+ 1,

respectively. Adding these inequalities yields

ea−b + eb−c + ea−c > 2a − 2c + 3. (1)

For x > y, we see that

ex−y > (x/y)
√
xy ⇐⇒ x− y > √xy ln(x/y) ⇐⇒ √

xy < (x− y)/(lnx− ln y), which is

the left-hand member of the logarithmic mean inequality. Thus we have, since
0 < a < b < c,

eb−a >

(
b

a

)√ab
, ec−b >

(c
b

)√bc
, ec−a >

( c
a

)√ac
>
(a
c

)√ac
. (2)
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Adding (1) and (2) , we find that

∑
cyclic

(
ea−b + eb−a

)
> 2a− 2c+ 3 +

∑
cyclic

(
b

a

)√ab
.

Solution 2 by Albert Stadler, Herrliberg, Switzerland

We will prove the slightly stronger inequality

∑
cyclic

(
ea−b + eb−a

)
≥ a− c+ 3 +

∑
cyclic

(
b

a

)√ab
.

We will use the inequalities

ex ≥ 1 + x, x real, (1)

1 ≥
(y
x

)√xy
, 0 ≤ y ≤ x, (2)

ey−x ≥
(y
x

)√xy
, y ≥ x, (3)

(1) and (2) are clear, while (3) is equivalent to each of the following lines:

y − x ≥ √xy log
(y
x

)
,√

y

x
−
√
x

y
≥ log

(y
x

)
,

x− 1

x
− log x =

∫ x

1

(
1 +

1

t2
− 1

t

)
dt ≥ 0, x ≥ 1 which holds true.

Thus

∑
cyclic

(
ea−b + eb−a

)
≥ 1 + a− b+

(
b

a

)√ab
+ 1 + b− c+

(
b

c

)√bc
+ 1 + c− a+ aa−c

= 3 +

(
b

a

)√ab
+
(c
b

)√bc
+ ea−c

≥ 3 +

(
b

a

)√ab
+
(c
b

)√bc
+ 1 + a− c

≥ 3 +

(
b

a

)√ab
+
(c
b

)√bc
+
(a
c

)√bc
+ a− c.

Also solved by Ed Gray, Highland Beach, FL; Kee-Wai Lau, Hong Kong,
China, and the proposer.

5497: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain
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For all integers n ≥ 2, show that
n−1∏
k=1

2 sin

(
kπ

n

)
is an integer and determine it.

Solution 1 by Kee-Wai Lau, Hong Kong, China

It is proved as formula 12 on p. 227 Chapter XII of [1] that

sinnθ = sin θ

n−1∏
k=1

2 sin

(
θ +

kπ

n

)
.

Since lim
θ→∞

sinnθ

sin θ
= n, so

n−1∏
k=1

2 sin

(
θ +

kπ

n

)
= n.

Reference:
1. D.V. Durell and A. Robinson: Advanced Trigonometry, Dover Publication, Inc., New
York 2003.

Solution 2 by David E. Manes, Oneonta, NY

Subtracting the complex equation e−ix = cos(−x) + i sin(−x) = cosx− i sinx from the
equation eix = cosx+ i sinx, one obtains the formula

2 sinx =
1

i

(
eix − e−ix

)
.

Therefore,

n−1∏
k=1

2 sin

(
kπ

n

)
=

n−1∏
k=1

1

i

(
eiπk/n − e−iπk/n

)
=

(
1

i

)n−1(n−1∏
k=1

eiπk/n

)(
n−1∏
k=1

(
1− e−2iπk/n

))
.

Note that

n−1∏
k=1

eiπk/n = e

n−1∑
k=1

iπk/n


= e

(iπ/n)

n−1∑
k=1

k

= e(iπ/n)((n−1)(n)/2)

= e(iπ/2)(n−1) =
(
eiπ/2

)n−1
= (cos(π/2) + i sin(π/2))n−1 = in−1.

Hence,
n−1∏
k=1

2 sin

(
kπ

n

)
=

n−1∏
k=1

(
1− e−2iπk/n

)
= f(1),

where f(x) =
n−1∏
k=1

(
x− e−2iπk/n

)
. The zeros of the polynomial f(x) are the non-trivial

nth roots of unity so that

f(x) =
xn − 1

x− 1
= 1 + x+ x2 + · · ·+ xn−1.

12



Therefore, f(1) = n. Hence, if n ≥ 0, then

n−1∏
k=1

2 sin

(
kπ

n

)
= n.

Solution 3 by Anthony J. Bevelacqua, University of North Dakota, Grand
Forks, ND

Let ζ = eπi/n. Then ζ2 = e2πi/n is a primitive n-th root of unity. So ζ2, . . . , ζ2(n−1) are
the roots of

xn − 1

x− 1
= xn−1 + · · ·+ 1

and therefore

xn−1 + · · ·+ 1 =
n−1∏
k=1

(x− ζ2k).

Let x = 1 to find

n =
n−1∏
k=1

(1− ζ2k)

=

n−1∏
k=1

−ζk(ζk − ζ−k).

Since ζk = ekπi/n = cos(kπ/n) + i sin(kπ/n) we have ζk − ζ−k = 2i sin(kπ/n). Thus

n =
n−1∏
k=1

−2iζk sin

(
kπ

n

)
.

Finally, since each sin(kπ/n) > 0 and each | − 2iζk| = 2 for k = 1, . . . , n− 1 we have

n =

n−1∏
k=1

2 sin

(
kπ

n

)
by taking the absolute value of the last expression.

Editor′s comment : Paul M. Harms of North Newton KS mentioned in his
solution to 5497 that Wikipedia’s “List of Trigonometric Identities” includes
n−1∏
k=1

sin

(
kπ

n

)
=

n

2n−1
, and from this the value of n immediately follows.

Also solved by Michel Bataille, Rouen, France; Bruno Salgueiro Fanego
(three solutions), Viveiro, Spain; Ed Gray, Highland Beach, FL; Paul M.
Harms, North Newton KS; Moti Levy, Rehovot, Israel; Paolo Perfetti,
Department of Mathematics, Tor Vergata University, Rome, Italy; Ángle
Plaza, University of Las Palmas de Gran Canaria, Spain; Henry Ricardo,
Westchester Area Math Circle, NY; Ioannis D. Sfikas, National and
Kapodistrian University of Athens, Greece; Albert Stadler, Herrliberg,
Switzerland; Marian Ursărescu, Romania, and the proposer.
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5498: Proposed by Ovidiu Furdui and Alina Sîntămărian, both at the Technical
University of Cluj-Napoca, Cluj-Napoca, Romania

Prove that
∞∑
n=1

{n!e}
n

=

∫ 1

0

ex − 1

x
dx

where {a} denotes the fractional part of a.

Solution 1 by Pedro H. O. Pantoja, Natal/RN, Brazil

By Taylor’s formula,

e = 1 +
1

1!
+

1

2!
+ · · ·+ 1

n!
+

eα

(n+ 1)!
, α ∈ (0, 1),

and this implies that

n!e = n!

(
1

1!
+

1

2!
+ · · ·+ 1

n!

)
+

eα

n+ 1
, α ∈ (0, 1).

Therefore,

{n!e} = n!e− bn!ec = n!

(
e− 1− 1

1!
− 1

2!
− · · · − 1

n!

)
⇒

{n!e} = n!

(
1

(n+ 1)!
+

1

(n+ 2)!
+ · · ·

)
=
∞∑
k=1

1

(n+ 1)(n+ 2) · · · (n+ k)
.

We have,

∞∑
n=1

{n!e}
n

=
∞∑
n=1

∞∑
k=1

1

n(n+ 1)(n+ 2) · · · (n+ k)

=

∞∑
n=1

∞∑
k=1

1

k!

∫ 1

0
(1− x)kxn−1dx

=

∫ 1

0

∞∑
k=1

(1− x)k

k!

∞∑
n=1

xn−1dx

=

∫ 1

0
(e1−x − 1) · 1

1− x
dx

=

∫ 1

0

e1−x − 1

1− x
dx

=

∫ 1

0

ey − 1

y
dy,

where in the last integral, we used the substitution y = 1− x.
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Solution 2 by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy

Both the sides of the equality are equal to

∞∑
k=1

1

k · k!

{n!e} = n!

{
2 +

1

2
+

1

3!
+ . . .+

1

m!
+

1

(m+ 1)!
. . .

}
=

{
1

n+ 1
+

1

(n+ 1)(n+ 2)
+ . . .

}
Since

∞∑
k=1

1

(n+ 1)(n+ 2) . . . (n+ k)
<
∞∑
k=1

2−k = 1

it follows that{
1

n+ 1
+

1

(n+ 1)(n+ 2)
+ . . .

}
=
∞∑
k=1

1

(n+ 1)(n+ 2) . . . (n+ k)

and

∞∑
n=1

{n!e}
n

=
∞∑
n=1

∞∑
k=1

1

n(n+ 1)(n+ 2) . . . (n+ k)
=

=
∞∑
k=1

∞∑
n=1

1

n(n+ 1)(n+ 2) . . . (n+ k)
=
∞∑
k=1

1

k · k!
(1)

and finally ∫ 1

0

ex − 1

x
dx =

∫ 1

0

∞∑
k=1

xk−1

k!
dx =

∞∑
k=1

∫ 1

0

xk−1

k!
dx =

∞∑
k=1

1

k · k!

For proving (1) let’s write an = 1/(n(n+ 1) · · · (n+ k)).

an+1

an
=

n

n+ k + 1
⇐⇒ an+1(n+ 1)− nan = −an+1k

Telescoping

N∑
n=1

an+1(n+ 1)− nan = aN+1(N + 1)︸ ︷︷ ︸
→0

−a1 = −k
N∑
n=1

an+1

and
∞∑
k=1

ak =
1 + k

k(k + 1)!
=

1

k · k!

Solution 3 by Michel Bataille, Rouen, France

From ex−1
x =

∑∞
n=1

xn−1

n! for x ∈ (0, 1] and

∞∑
n=1

∫ 1

0

∣∣∣∣xn−1n!

∣∣∣∣ dx =
∞∑
n=1

1

n · (n!)
<∞,
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we deduce that∫ 1

0

ex − 1

x
dx =

∫ 1

0

( ∞∑
n=1

xn−1

n!

)
dx =

∞∑
n=1

(∫ 1

0

xn−1

n!
dx

)
=
∞∑
n=1

1

n · (n!)
. (1)

On the other hand, for n ≥ 1 we have

(n!)e = (n!)
∞∑
j=0

1

j!
= an +

∞∑
k=1

1

(n+ 1) · · · (n+ k)

where an = n! + (n− 1)!
(
n
1

)
+ (n− 2)!

(
n
2

)
+ · · ·+ 1!

(
n
n−1
)

+ 1 is a positive integer and

0 <
∞∑
k=1

1

(n+ 1) · · · (n+ k)
<
∞∑
k=1

1

(n+ 1)k
=

1

n
≤ 1.

It follows that

{n!e} =
∞∑
k=1

1

(n+ 1) · · · (n+ k)

and so

∞∑
n=1

{n!e}
n

=
∞∑
n=1

∞∑
k=1

1

n(n+ 1) · · · (n+ k)

=
∞∑
k=1

∞∑
n=1

1

n(n+ 1) · · · (n+ k)

=
∞∑
k=1

(
1

k

∞∑
n=1

(
1

n(n+ 1) · · · (n+ k − 1)
− 1

(n+ 1) · · · (n+ k)

))

=
∞∑
k=1

1

k
· 1

1 · 2 · · · k
.

Finally we obtain
∞∑
n=1

{n!e}
n =

∞∑
k=1

1
k·(k!) , and comparing with (1) gives the required result.

Also solved by Ed Gray, Highland Beach, FL; Kee-Wai Lau, Hong Kong,
China; Moti Levy, Rehovot, Israel; Ioannis D. Sfikas, National and
Kapodistrian University of Athens, Greece; Albert Stadler, Herrliberg,
Switzerland, and the proposers.

Mea Culpa

Brian D. Beasley of Presbyterian College in Clinton, SC should have been
credited with having solved 5482, and Albert Stadler of Herrliberg, Switzerland
should have been credited with having solved 5488.

Titu Zvonaru of Comănesti, Romania noted that proof number 2 (of the 6 shown)
for problem 5492 is incomplete. The question asked us to prove that a certain inequality
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held that was subject to a constraint on the variables. The author of the solution found
values of the variables that produced equality, and then by taking other values in small
epsilon neighborhoods around this point that produced equality, showed that the
resulting values of the expression were smaller than the value that gave equality. Up to
here, everything is fine. But it was then concluded that the point giving equality was a
local maximum. The method used was very similar to the one that is often used in
obtaining saddle and extrema points vis-a-vis Lagrange Multipliers. Admittedly there is
some hand-waving in using this approach, and this is what Titu noticed. The approach
used in this problem can tell us when the inequality goes awry, but it cannot be used to
prove with absolute certainty that the inequality holds. For that, derivative tests within
the theory of Lagrange Multipliers, must be used.
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