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*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
December 15, 2014

• 5313: Proposed by Kenneth Korbin, New York, NY

Find the sides of two different isosceles triangles if they both have perimeter 256 and
area 1008.

• 5314: Proposed by Roger Izard, Dallas TX

A biker and a hiker like to workout together by going back and forth on a road which is
ten miles long. One day, at 8 AM, at the starting end of the road, they went out
together. The biker soon got far past the hiker, reached the end of the road, reversed his
direction, and soon passed by the hiker at 9:06 AM. Then, the biker got down to the
beginning part of the road, reversed his direction, and got back to the hiker at 9:24 AM.
The biker and the hiker were, then, going in the same direction. Calculate in miles per
hour the speeds of the hiker and the biker.

• 5315: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

The hexagonal numbers have the form Hn = 2n2 − n, n = 1, 2, 3, . . .. Prove that
infinitely many hexagonal numbers are the sum of two hexagonal numbers.

• 5316: Proposed by Angel Plaza, Universidad de Las Palmas de Gran Canaria, Spain

Let {un}n≥0 be a sequence defined recursively by

un+1 =

√
u2n + u2n−1

2
.

Determine lim
n→∞

un in terms of u0, u1.

• 5317: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let ak, bk > 0, 1 ≤ k ≤ n, be real numbers such that a1 + a2 + . . .+ an = 1. Prove that

1

n3

(
n∑
k=1

bk

)5

≤
n∑
k=1

b5k
ak
.
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• 5318: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Prove that (1 + x)x ≤ 1 + x2 for 0 ≤ x ≤ 1.

Solutions

• 5295: Proposed by Kenneth Korbin, New York, NY

A convex cyclic hexagon has sides(
5, 7
√

17, 23
√

13, 25
√

13, 25
√

17, 45
)
.

Find the diameter of the circumcircle and the area of the hexagon.

Solution by Kee-Wai Lau, Hong Kong, China

We show that diameter of the circumcircle is 125 and the area of the hexagon is
8(86
√

34 + 81
√

39).

Let O be the center and d be the diameter of the circumcircle, which we denote by C. It
is easy to see that the anlgle subtended at O by a side of the hexagon with length s

equals 2 sin−1
(s
d

)
. We first suppose that O lies inside the hexagon, so that

f(d) = π, (1)

where

f(d) = sin−1
(

5

d

)
+sin−1

(
7
√

17

d

)
+sin−1

(
23
√

13

d

)
+2 sin−1

(
25
√

13

d

)
+sin−1

(
25
√

17

d

)
+sin−1

(
4.

d

)
.

a = sin−1

(
23
√

13

125

)
+ sin−1

(√
13

5

)
+ sin−1

(√
1

25

)
and

b = sin−1

(
7
√

17

125

)
+ sin−1

(√
17

5

)
+ sin−1

(√
9

25

)

Then f(125) = a+ b. Since a = sin−1

(
4
√

39

25

)
+ sin−1

(
1

25

)
= sin−1 1 =

π

2
and

b = sin−1

(
4
√

34

25

)
+ sin−1

(
9

25

)
= sin−1 1 =

π

2
so (1) holds if and only if d = 125.

Now the distances from O to the sides
(

5, 7
√

17, 23
√

13, 25
√

13, 25
√

17, 45
)

are(
10
√

39, 43
√

2, 27
√

3, 25
√

3, 25
√

2, 10
√

34
)

. So the area of the hexagon equals

1

2

(
50
√

39 + 301
√

34 + 621
√

39 + 625
√

39 + 10
√

39 + 625
√

34 + 450
√

34
)
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= 8
(

86
√

34 + 81
√

39
)
.

We next suppose that O lies on or is outside the hexagon. Since the longest side of the
hexagon is 25

√
17, so d ≥ 25

√
17. Moreover,

sin−1
(

5

d

)
+ sin−1

(
7
√

17

d

)
+ sin−1

(
23
√

13

d

)
+ sin−1

(
25
√

13

d

)
+ sin−1

(
25
√

17

d

)
+ sin−1

(
45

d

)

= sin−1

(
25
√

17

d

)
,

and hence,

sin−1

(
23
√

13

d

)
+ sin−1

(
25
√

13

d

)
< sin−1

(
25
√

17

d

)
. (2)

If d <
√

15002 =
√

(2)(13)(577), then by (2)

sin−1

(
25
√

17

d

)
> sin−1

(
23√
1154

)
+ sin−1

(
25√
1154

)
= sin−1 1 =

π

2
which is false.

If d ≥
√

15002, then the left hand side of (2) equals

sin−1

(
25
√

13

d

√
1− 6877

d2
+

23
√

13

d

√
1− 8125

d2

)
≥ sin−1

(
25
√

13

d

√
1− 6877

15002
+

23
√

13

d

√
1− 8125

15002

)

= sin−1

(√
15002

d

)

> sin−1

(
25
√

17

d

)
,

which is also false. Thus we conclude that O must lie inside the hexagon, and this
completes the solution.

Also solved by Ed Gray, Highland Beach, FL, and the proposer.

• 5296: Proposed by Roger Izard, Dallas, TX

Consider the “Star of David,” a six pointed star made by overlapping the triangles ABC
and FDE. Let
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AB ∩DF = G, and AB ∩DE = H,

AC ∩DF = L, and AC ∩ FE = K,

BC ∩DE = I, and BC ∩ FE = J,

in such a way that:

CK

AC
=

EI

DE
=
BI

BC
=
GD

DF
=
AG

AB
=
FK

EF
and

AL

AC
=
DH

DE
=
BH

AB
=
EJ

EF
=
FL

DF
=
CJ

CB
.

Let r =
CK

AC
and let p =

AL

AC
. Prove that r + p =

3pr + 1

2
.

Solution by David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA

We construct a drawing of the figure and determine lengths of some of the sides in terms
of r, p and the sides of the given triangles.
The following shows that the side lengths of the smaller triangle based on

r =
CK

AC
=

EI

DE
=
BI

BC
=
GD

DF
=
AG

AB
=
FK

EF
and

p =
AL

AC
=
DH

DE
=
BH

AB
=
EJ

EF
=
FL

DF
=
CJ

CB
.

We see that AC +AL+ LK +KC = pAC + LK + rAC, so LK = (1− r − p)AC.
Similarly,

HI = (1− r − p)DE
KJ = (1− r − p)EF
GH = (1− r − p)AB
IJ = (1− r − p)BC
GL = (1− r − p)DF.

We apply the Law of Cosines to the two triangles having A as principal vertex.

In 4ABC, AC2 +AB2 − 2AC ·AB cosA = BC2, and in

4AGL, (pAC)2 + (rAB)2 − 2prAC ·AB cosA = GL2 = (1− r − p)2DF 2.

Solving each equation for 2AC ·AB cosA and equating the results, we have

2AC ·AB cosA = AC2 +AB2 −BC2 =
p2AC2 + r2AB2 − (1− r − p)2DF 2

pr
.

Clearing fractions yields

prAC2 + prAB2 − prBC2 = p2AC2 + r2AB2 − (1− r − p)2DF 2

so
(pr − pr)AC2 + (pr − r2)AB2 − prBC2 + (1− r − p)2DF 2 = 0.
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By considering the other vertices B,C,D,E, F in turn, we obtain analogous equations:

(pr − p2)AB2 + (pr − r2)BC2 − prAC2 + (1− r − p)2DE2 = 0

(pr − p2)BC2 + (pr − r2)AC2 − prAB2 + (1− r − p)2FE2 = 0

(pr − p2)DE2 + (pr − r2)DF 2 − prFE2 + (1− r − p)2AB2 = 0

(pr − p2)EF 2 + (pr − r2)DE2 − prDF 2 + (1− r − p)2BC2 = 0

(pr − p2)DF 2 + (pr − r2)EF 2 − prDE2 + (1− r − p)2AC2 = 0.

Summing these six equations and letting S = AB2 +AC2 +BC2 +DE2 +DF 2 + EF 2

yields a very nice result:

(pr − p2)S + (pr − r2)S − prS + (1− r − p)2S = 0, or{
(pr − p2) + (pr − r2)− pr + (1− r − p)2

}
S = 0.

Because S is not zero, this gives

(pr − p2) + (pr − r2)− pr + (1− r − p)2 = 0.

Expanding the trinomial and collecting like terms gives us

3pr − 2r − 2p+ 1 = 0. So,

2(r + p) = 1 + 3pr. Thus,

r + p =
3pr + 1

2
.

Also solved by Ed Gray, Highland Beach, FL; Kee-Wai Lau, Hong Kong,
China, and the proposer.

• 5297: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

Let sn = n2, tn =
n(n+ 1)

2
, pn =

n(3n− 1)

2
, for positive integers n, be the square,

triangular and pentagonal numbers respectively. Prove, independently of each other,
that
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i) ta + pb = tc

ii) ta + sb = pc

iii) pa + sb = sc,

for infinitely many positive integers, a, b, and c.

Solution by Carl Libis, Lane College, Jackson, TN

i) tn + pn+1 =
n(n+ 1)

2
+

(n+ 1)(3n+ 2)

2
=
n2 + n+ 3n2 + 5n+ 2

2

=
4n2 + 6n+ 2

2
=

(2n+ 1)(2n+ 2)

2
= t2n+1

ii) sn + tn−1 = n2 +
(n− 1)n

2
=

2n2

2
+
n2 − n

2
=

3n2 − n
2

=
n(3n− 1)

2
= pn

iii) p4n+1 + sn =
(4n+ 1)(12n+ 2)

2
+ n2 =

48n2 + 20n+ 2

2
+

2n2

2

=
50n2 + 20n+ 2

2
= 25n2 + 10n+ 1 = (5n+ 1)2 = s5n+1

Also solved by Brian D. Beasley, Presbyterian College, Clinton, SC; Michael
Brozinsky, Central Islip, NY; Elsie M. Campbell, Dionne T. Bailey, and
Charles Diminnie (jointly), Angelo State University, San Angelo, TX; Ed
Gray, Highland Beach, FL; Paul M. Harms, North Newton, KS; Kenneth
Korbin, New York, NY; Kee-Wai Lau, Hong Kong, China; David E. Manes,
SUNY College at Oneonta, Oneonta, NY; Becca Rousseau, Ellie Erehart,
and Davis Weerheim (jointly), students at Taylor University, Upland, IN;
David Stone and John Hawkins (jointly), Georgia Southern University,
Statesboro, GA, and the proposer.

• 5298: Proposed by D. M. Bătinetu-Giurgiu,“Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” School, Buzău,
Romania

Let (an)n≥1 be an arithmetic progression and m a positive integer. Calculate:

lim
n→∞

((
m∑
k=1

(
1 +

1

n

)n+ak
−me

)
n

)
.
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Solution by Anastasios Kotronis, Athens, Greece

Let an = a1 + (n− 1)d where a1 is the initial term and d is the common difference of
successive terms. Then

m∑
k=1

(
1 +

1

n

)n+ak
=

m∑
k=1

(
1 +

1

n

)n+a1+(k−1)d
=

(
1 +

1

n

)n+a1−d m∑
k=1

(
1 +

1

n

)kd

= exp

(
(n+ a1 − d) ln

(
1 +

1

n

)) m∑
k=1

exp

(
kd ln

(
1 +

1

n

))

= exp

(
(n+ a1 − d)

(
1

n
− 1

2n2
+O(n−3)

)) m∑
k=1

exp

(
kd

(
1

n
+O(n−2)

))

=

(
e+

e(a1 − d− 1/2)

n
+O(n−2)

) m∑
k=1

(
1 +

kd

n
+O(n−2)

)

=

(
e+

e(a1 − d− 1/2)

n
+O(n−2)

)(
m+

dm(m+ 1)

2n
+O(n−2)

)

= em+
em (d(m− 1) + 2a1 − 1)

2n
+O(n−2) = em+

em (am + a1 − 1)

2n
+O(n−2)

so the desired limit is
em (am + a1 − 1)

2
.

Also solved by Ed Gray, Highland Beach, FL; Paolo Perfetti, Department of
Mathematics, Tor Vergata University, Rome, Italy; Kee-Wai Lau, Hong
Kong, China, and the proposers.

• 5299: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Without the aid of a computer, show that

ln2 2

∫ 1

0

x3/22x sinx

(1 + x ln 2)2
dx ≥ 1− ln 2

1 + ln 2

∫ 1

0

√
x sinx dx.

Solution 1 by Paolo Perfetti, Department of Mathematics, Tor Vergata
University Rome, Italy

The two functions
√
x sinx and

x2x

(1 + x ln 2)2
are both increasing in [0, 1]. Indeed,

1

2
√
x

sinx+
√
x cosx and

2x(1 + x ln 2 + x2 ln2 2)

(1 + x ln 2)2
are the derivatives respectively

of the first and the second function.

Chebyshev’s inequality yields
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ln2 2

∫ 1

0

x3/22x sinx

(1 + x ln 2)2
dx ≥ ln2 2

∫ 1

0

x2x

(1 + x ln 2)2
dx

∫ 1

0

√
x sinxdx.

Moreover,

ln2 2

∫ 1

0

x2x

(1 + x ln 2)2
dx =

2x

1 + x ln 2

∣∣∣1
0
=

1− ln 2

1 + ln 2
,

hence, the result.

Solution 2 by Ed Gray, Highland Beach, FL

The method will be to increase the integral on the right to get a function that is
integrable, and decrease the integral on the left to get a function which is integral in

such a way that the inequality is maintained. We will also evaluate
1

(ln(2))2
· 1− ln 2

1 + ln 2
,

and use its value as a coefficient on the right hand side of the inequality.

For 0 ≤ x ≤ 1,
sin(x) ≤ x,

√
x sin(x) ≤ x3/2.

So, ∫ 1

0

√
(x) sin(x)dx <

∫ 1

0
x3/2dx =

2

5
x5/2

∣∣∣∣1
0

= 0.4.

Also,

1

(ln(2))2
= 2.08136898,

1− ln(2)

1 + ln(2)
= 0.181232218, and

1

(ln(2))2
·
(

1− ln(2)

1 + ln(2)

)
= 0.3772111.

• (1)

∫ 1

0

(
x3/2(2x) sin(x)

(1 + x ln(2))2

)
dx ≥ (0.4)(0.3772111) = 0.150884. We need to reduce the

value of the integral to get an approximation that still satisfies the inequality.

• (2) Consider 1 + x > 1 + x ln(2). Squaring,

• (3) 1 + 2x+ x2 >
(
1 + x ln(2))2 , and

• (4) 1 + 2x >
(
1 + x ln(2))2 . This inequality holds since both functions are monotonically

increasing, and the relationship holds for x = 1.

Then:

• (5)
1

1 + 2x
<

1

(1 + x ln(2))2
. So,

• (6)
x3/2 (2x) sin(x)

1 + 2x
<

(
x3/2 (2x) sin(x)

(1 + x ln 2)2

)
. For 0 ≤ x ≤ 1 ,

• (7) sin(x) > x− x3

6
, so,

• (8)

x5/2 (2x)

(
1− x3

6

)
1 + 2x

<
x3/22x sin(x)

(1 + x ln(2))2
, or
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• (9)

x5/2 (2x)

(
1− x3

6

)
1 + 2x

<
x3/2 (2x sin(x)

(1 + 2x)
<
x3/2 (2x sin(x))

(1 + x ln(2))2

We now express
2x

1 + 2x
in a Taylor series expansion about 0.5.

• (10) f(x) = f(.5) + f ′(.5)(x− .5) +
f ′′(.5)

2!
(x− .5)2 +

f ′′′(.5)

3!
(x− .5)3 + . . . .

As one can imagine, the derivatives get quite messy, so let’s bring in Bing to compute
them for us, (which does not violate the spirit of not using a computer because it is not
evaluating the integral, just saving time. In any case, the series out to (x− .5)5 is

f(x) =
2x

1 + 2x
≈ 0.7071−.2169(x−.5)+.3868(x−.5)2−.3475(x−.5)3+.3543(x−.5)4−.3534(x−.5)5

The following table gives a “feel” for the goodness of fit for the approximation over the
range of 0 ≤ x ≤ 1.

x 2x/(1 + 2x) Approximate value

0 1.0 .988951

0.1 .893144 .890731

0.2 .820499 .820131

0.3 .769465 .769412

0.4 .733060 .733060

0.5 .707107 .7072107

0.6 .688962 .688960

0.7 .675877 .676858

0.8 .669654 .669457

0.9 .666452 .665419

1.0 .666667 .662985

Not only is this a good fit, but if we define the expansion by f(x), we see that

f(x) <
2x

1 + 2x
and the equation in step (9) becomes

• (11) x5/2)
(

1− x2

6

)
f(x) < x5/2

(
1− x2

6

)(
2x

1 + 2x

)
< x3/2

2x sinx

1 + 2x
<

x3/22x sin(x)

(1 + x ln(2))2
.

We now need to write the series expansion of f(x), to obtain a polynomial in x. Then by

multiplying by (x5/2)

(
1− x2

6

)
we will obtain a polynomial in x for which we can easily
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perform the integration from 0 to 1. We save the reader the details. The integrand is:

• (12) .058909x19/2 − .20633866x17/2 − 0301165x15/2 + .924424x13/2 − 1.7479965x11/2 +
1.7168252x9/2 − 1.1521715x7/2 + .988952x5/2 . Integrating with respect to x gives us

• (13) .00561x21/2 − .0217198x19/2 − .003543x17/2 + .123256x15/2 − .268923x13/2 +
.31215x11/2 − .256038x9/2 + .282558x7/2.

So, returning to the equation in (1), we see that .1733502 > .150884, and this proves the
inequality.

Solution 3 by Kee-Wai Lau, Hong Kong, China

For 0 ≤ x ≤ 1, let f(x) =
2x

(1 + x ln 2)2
so that

df(x)

dx
=

(ln 2)2x(x ln 2− 1)

(1 + x ln 2)2
< 0,

and f(x) ≥ f(1) =
2

(1 + ln 2)2
. Hence,

∫ 1

0

x3/22x sinx

(1 + x ln 2)2
dx ≥ 2

(1 + ln 2)2

∫
01x3/2 sinxdx.

By the substitution x = y3/5, we obtain∫ 1

0
x3/2 sinxdx =

3

5

∫ 1

0

√
y sin(y3/5)dy ≥ 3

5

∫ 1

0

√
y sin ydy.

Hence to prove the inequality of the problem, we need only show that

6 ln2 2

5(1 + ln 2)
≥ 1− ln 2, or equivalently ln2 2 ≥ 5

11
. Since

(
17

25

)2

=
289

625
>

5

11
,

so it suffices to show that ln 2 >
17

25
, or e−17/25 >

1

2
. But this follows from the fact that

e−17/25 > 1−
5∑

n=1

(−1)n−1

n!

(
17

25

)n
=

148386317

292986750
>

1

2
.

Remark: If we use the rapidly convergent series ln 2 =
2

3

∞∑
k=0

1

(2k + 1)9k
, as listed in

“Natural logarithm of 2–Wikipedia” in the internet, we obtain easily

ln 2 >
2

3

(
1 +

1

27

)
=

56

81
>

17

25
.

Also solved by the proposer.

• 5300: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let n ≥ 1 be an integer. Prove that∫ π/2

π/4

dx

sin2n x
=

n−1∑
k=0

(
n− 1

k

)
· 1

2n− 2k − 1
.

Solution 1 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX
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If n = 1, ∫ π/2

π/4

dx

sin2 x
=

∫ π/2

π/4
csc2 x dx

= − cotx]
π/2
π/4

= 1

=
0∑

k=0

(
0

k

)
1

2− 2k − 1
.

Hence, the statement is true when n = 1.

If n ≥ 2, then we use the standard calculus approach for evaluating∫
csc2m x dx.

To begin, ∫ π/2

π/4

dx

sin2n x
=

∫ π/2

π/4
csc2n x dx

=

∫ π/2

π/4

(
1 + cot2 x

)n−1 (
csc2 x dx

)
.

If we substitute u = cotx and simplify, we get∫ π/2

π/4

dx

sin2n x
= −

∫ 0

1

(
1 + u2

)n−1
du

=

∫ 1

0

(
1 + u2

)n−1
du.

Finally, by the Binomial Theorem,∫ π/2

π/4

dx

sin2n x
=

∫ 1

0

n−1∑
k=0

(
n− 1

k

)
u2(n−1−k) du

=
n−1∑
k=0

(
n− 1

k

)∫ 1

0
u2n−2k−2 du

=

n−1∑
k=0

(
n− 1

k

)
u2n−2k−1

2n− 2k − 1

]1
0

=
n−1∑
k=0

(
n− 1

k

)
· 1

2n− 2k − 1
.

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain
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∫ π/2

π/4

dx

sin2 x
=

∫ π/2

π/4

(
1

sin2 x

)n
dx

=

∫ π/2

π/4

(
1 +

1

tan2 x

)n
dx

=
(t=1/ tanx)

∫ 0

1

(
1 + t2

)n −dt
1 + t2

=

∫ 1

0

(
1 + t2

)n−1
dt

=

∫ 1

0

(
n−1∑
k=0

(
n− 1

k

)
· 1k ·

(
t2
)n−1−k)

dt

=
n−1∑
k=0

∫ 1

0

(
n− 1

k

)
· t2n−2k−2dt

=

n−1∑
k=0

(
n− 1

k

)
· t2n−2k−1

2n− 2k − 1

∣∣∣∣t=1

t=0

=
n−1∑
k=0

(
n− 1

k

)
· 1

2n− 2k − 1
.

Solution 3 by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy

Letting t = sinx yields

∫ 1

{1/
√
2}

1

t2n
· 1√

1− t2
dt.

Moreover, y =

√
1

t2
− 1 yields∫ 0

1
(y2 + 1)n

√
1 + y2

y

−y
(1 + y2)3/2

dy =

∫ 1

0
(1 + y2)n−1dy.

Therefore,

n−1∑
k=0

(
n− 1

k

)
1

2n− 2k − 1
=

n−1∑
k=0

(
n− 1

k

)∫ 1

0
t2n−2k−2dt
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=

∫ 1

0
t2n−2

n−1∑
k=0

(
n− 1

k

)
t−2kdt

=

∫ 1

0
t2n−2

(
1 +

1

t2

)n−1

=

∫ 1

0
(1 + t2)n−1dt.

and this concludes the proof.

Also solved by Ed Gray, Highland Beach, FL; Paul M. Harms, North Newton,
KS; Anastasios Kotronis, Athens, Greece; Kee-Wai Lau, Hong Kong, China, and
the proposer.
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