
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
December 15, 2015

• 5361: Proposed by Kenneth Korbin, New York, NY

Convex quadrilateral ABCD has perimeter P = 75 + 61
√

15 and has 6 B = 6 D = 90◦.
The lengths of the diagonals are 112 and 128. Find the lengths of the sides.

• 5362: Proposed by Michael Brozinsky, Central Islip, NY

Two thousand forty seven death row prisoners were arranged from left to right with the
numbers 1 through 2047 on their backs in this left to right order. Prisoner 1 was given a
gun and shoots prisoner number 2 dead, and then gives the gun to prisoner number 3
who shoots prisoner number 4 and then gives the gun to number 5 and so on, so that
every second originally numbered prisoner is shot dead.

This process is then repeated from right to left, starting with the person (in this case
number 2047) who last received the gun and then continues to proceed from right to
left, and then the direction switches again, and then again until only one prisoner
remains standing. What is the number of the prisoner who survives the left to right,
right to left shootout? Note that if there had been 2048 prisoners, number 2047 would
have no one to whom to hand the gun in the left to right direction after shooting
number 2048, and so he would then start the gun in its opposite direction shooting the
living prisoner to his immediate left i.e., number 2045. In this case, number 2047 gets to
shoot two prisoners before he hands the gun off to another prisoner.

• 5363: Proposed by D.M. Bătinetu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” General School,
Buzaău, Romania

Let x ∈ < and A(x) =


x+ 1 1 1 1

1 x+ 1 1 1
1 1 x+ 1 1
1 1 1 x+ 1

 .

Compute A(0) ·A(x) ·A(y) ·A(z),∀x, y, z ∈ <.
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• 5364: Proposed by Angel Plaza, Universidad de Las Palmas de Gran Canaria, Spain

Prove that
n∑

k=0

(
2n− 2k

n− k

)(
2k

k

)
4−n = 1.

• 5365: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let n ≥ 3 be a positive integer. Find all real solutions of the system

a32(a
2
2 + a23 + . . .+ a2j+1) = a21

a33(a
2
3 + a24 + . . .+ a2j+2) = a22

. . . . . . . . .
a3n(a2n + a21 + . . .+ a2j−1) = a2n−1


for 1 < j < n.

• 5366: Proposed by Ovidiu Furdui and Alina Sintămărian, Technical University of
Cluj-Napoca, Cluj-Napoca, Romania

Find all non-constant, differentiable functions f : R→ R which verify the functional
equation f(x+ y)− f(x− y) = 2f ′(x)f(y), for all x, y ∈ R.

Solutions

• 5343: Proposed by Kenneth Korbin, New York, NY

Four different Pythagorean Triangles each have hypotenuse equal to 4p4 + 1 where p is
prime.

Express the sides of these triangles in terms of p.

Solution 1 by Brian D. Beasley, Presbyterian College, Clinton, SC

We designate the lengths of the legs of these triangles by a and b, so that
a2 + b2 = (4p4 + 1)2. We then make use of the well-known identity

(w2 + x2)(y2 + z2) = (wy + xz)2 + (wz − xy)2.

Since 4p4 + 1 = (2p2)2 + (1)2 = (2p2 − 1)2 + (2p)2, we make the appropriate
substitutions into the above identity to obtain the following four expressions of
(4p4 + 1)2 as the sum of two squares:

(4p4 + 1)2 = (4p4 − 1)2 + (4p2)2

= (4p4 − 8p2 + 1)2 + (8p3 − 4p)2

= (4p4 − 2p2 + 2p)2 + (4p3 − 2p2 + 1)2

= (4p4 − 2p2 − 2p)2 + (4p3 + 2p2 − 1)2.

Hence the four triangles have the following lengths for their legs:

a = 4p4 − 1, b = 4p2;

a = 4p4 − 8p2 + 1, b = 8p3 − 4p;

a = 4p4 − 2p2 + 2p, b = 4p3 − 2p2 + 1;
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a = 4p4 − 2p2 − 2p, b = 4p3 + 2p2 − 1.

Addendum. We note that for p ≥ 2, these eight values of a and b are positive and
distinct. We also observe that the condition that p be prime does not seem to be
necessary.

Solution 2 by Trey Smith, Angelo State University, San Angelo, TX

It is well known that if m > n are both positive integers then

(m2 − n2, 2mn, m2 + n2)

is a Pythagorean triple.

1. Letting m1 = 2p2 and n1 = 1 yields the Pythagorean triple

( 4p4 − 1, 4p2, 4p4 + 1 ).

2. Letting m2 = 2p2 − 1 and n2 = 2p yields the Pythagorean triple

( 4p4 − 8p2 + 1, 8p3 − 4p, 4p4 + 1 ).

3. 4p4 + 1 = (2p2 + 2p+ 1)(2p2 − 2p+ 1), and
2p2 + 2p+ 1 = p2 + 2p+ 1 + p2 = (p+ 1)2 + p2. Letting m3 = p+ 1 and n3 = p
yields the Pythagorean triple ( 2p+ 1, 2p(p+ 1), 2p2 + 2p+ 1 ). Multiplying each
side of the associated Pythagorean triangle by 2p2 − 2p+ 1 yields the triple

( (2p+ 1)(2p2 − 2p+ 1), 2p(p+ 1)(2p2 − 2p+ 1), 4p4 + 1 ).

4. Using a similar argument to 3 above, and letting m4 = p and n4 = p− 1 then
multiplying each side of the associated Pythagorean triangle by 2p2 + 2p+ 1 yields
the triple

( (2p− 1)(2p2 + 2p+ 1), 2p(p− 1)(2p2 + 2p+ 1), 4p4 + 1 ).

It is worth noting that the above computations produce the demonstrated four
Pythagorean triangles for any given prime p. There are, however, cases where a
particular choice of p yields more than four Pythagorean triangles. For example, when
p = 3 we have the triples
(36, 323, 325),
(80, 315, 325),
(91, 312, 325),
(125, 300, 325),
(165, 280, 325),
(195, 260, 325),
(204, 253, 325).

Solution 3 by David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA

We remove the restriction that p be prime, requiring only that p be an integer ≥ 2. It is
very well known that very Pythagorean triangle (a, b, c) has the from

a = k(2mn)
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b = k
(
m2 − n2

)
c = k

(
m2 + n2

)
,

where k ≥ 1, and m and n are relatively prime integers of opposite parity with m > n.
Thus we need to write 4p4 + 1 in the form of k

(
m2 + n2

)
in four different ways.

We have the obvious choices

4p4 + 1 = 1 ·
[(

2p2
)2

+ 12
]
and 4p4 + 1 = 4p4 − 4p2 + 1 + 4p2 = 1 ·

[(
2p2 − 1

)2
+ (2p)2

]
.

A different factorization produces two more triangles:

4p4 + 1 =
(
2p2 − 2p+ 1

)
·
(
2p2 + 2p+ 1

)
=

[
p2 + (p− 1)2

] [
(p+ 1)2 + p2

]
=

(
2p2 − 2p+ 1

) [
(p+ 1)2 + p2

]
and

=
(
2p2 + 2p+ 1

) [
p2 + (p− 1)2

]
.

We summarize the results in Table 1:

k m n a = k(2mn) b = k(m2 − n2) c = k(m2 + n2)

1 2p2 1 4p2 4p4 − 1 4p4 + 1
1 2p2 − 1 2p 8p3 − 4p 4p4 − 8p2 + 1 4p4 + 1

2p2 − 2p+ 1 p+ 1 p 4p4 − 2p2 + 2p 4p3 − 2p2 + 1 4p4 + 1
2p2 + 2p+ 1 p p− 1 4p4 − 2p2 − 2p 4p3 − 2p2 + 1 4p4 + 1

It appears that we have four triangles with the required hypotenuse, but we need to
check they are really distinct. Since all of the “a legs” are even and the “b legs” odd, we
only need to compare the values for a and show they are all distinct. This requires 6
comparisons.

For instance, if it were the case that the first two triangles were the same for some value
of p, we would have 4p2 = 8p3 − 4p .

then 0 = 8p3 − 4p2 − 4p = 4p(p− 1)(2p+ 1), which is impossible.

The other comparisons also prove to be impossible.

Therefore, we do have four distinct Pythagorean triangles with hypotenuse 4p2 + 1.

An example with p = 2.

k m n a = k(2mn) b = k(m2 − n2) c = k(m2 + n2)

1 8 1 16 63 65
1 7 4 56 33 65
5 3 2 60 250 65
13 2 1 52 39 65

Note that these four triples are all possible with triples with hypotenuse 65, so the result
proved is, in general, the best possible.
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The four triples produced for p = 3, so that 4 · 34 + 1 = 325:

k m n a b c
1 18 1 36 323 325
1 17 6 204 253 325
13 4 3 312 91 325
25 3 2 300 125 325

A Deeper Look: There are many more such triangles having hypotenuse 4p4 + 1.
Consider the following construction suggested the last row of our table.

The generating pair m = 2, n = 1 produces a Pythagorean triangle with hypotenuse 5. If

we can find a value of p such that 5 divides 4p4 + 1, then we can let k =
4p4 + 1

5
, m = 2

and n = 1 and produce the triangle.

a = k(2mn) = 4k; b = k
(
m2 − n2

)
= 3k; c =

(
m2 + n2

)
=

4p4 + 1

5
· 5 = 4p4 + 1.

Are there any such p? Well,

5
∣∣(4p4 + 1) ⇐⇒ 4p4 + 1 ≡ 0(mod 5) ⇐⇒ −p4 ≡ −1(mod 5) ⇐⇒ p4 ≡ (1mod 5).

By Fermat’s Little Theorem, this last condition is true for all p relatively prime to 5.
That is, for any p not divisible by 5, we have a Pythagorean triangle with hypotenuse
4p4 + 1.

For instance, with p = 2, k =
4 · 24 + 1

5
=

65

3
= 13, and this construction re-creates the

last row of our table.

Let’s designate the triple found via this construction at PT (2; 13, 2, 1).

In general, we designate by PT (p; k,m, n) the triangle having hypotenuse 4 · p4 + 1,

generated by k =
4 · p4 + 1

m2 + n2
, m and n, where m and n are relatively prime integers of

opposite parity with m > n.

With p = 3, k =
4 · 34 + 1

5
=

325

5
= 65, and this construction yields a new triangle with

hypotenuse 325; (260, 195, 325) that is PT (3; 65, 2, 1). Note that the four solutions given
in Table 1 are PT (p; 1, 2p2, 1) , PT (p; 1, 2p2 − 1, 2p), PT (p; 2p2 − 2p+ 1, p+ 1, p) and
PT (p; 2p2 + 2p+ 1, p, p− 1).

Continuing in this vein, the generating pair m = 3, n = 2 produces a Pythagorean
triangle with hypotenuse 13. If we can find a value of p such that 13 divides 4p4 + 1,
then we can let

k =
4p4 + 1

13
,m = 3 and n = 2 and produce the triangle

a = k(2mn) = 12k, b = k
(
m2 − n2

)
= 5k, c = k

(
m2 + n2

)
=

4p4 + 1

13
· 13 = 4p4 + 1.
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Are there any such p? Well,

13
∣∣4p4 + 1 ⇐⇒ 4p4 + 1 ≡ 0(mod 13) ⇐⇒ 4p4 ≡ −1(mod 13) ⇐⇒ 4p4 ≡ 12(mod 13)

⇐⇒ p4 ≡ 3(mod 13).

It is easy to check that this last congruence is satisfied if and only if p = 2, 3, 10 or
11(mod 13). Using any such p will produce a triangle generated by

k =
4p4 + 1

13
,m = 3 and n = 2 and of the form

a = 12k, b = 5k, c =
4p4 + 1

13
· 13 = 4p4 + 1.

This process can be used for any fundamental generating pair m and n.

Theorem: This construction produces all Pythagorean triples having the desired
hypotenuse, 4p4 + 1.

First, some evidence. For instance, we re-examined the table for p = 2.

k m n a b c PT
1 8 1 16 63 65 PT(2;1,8,1)
1 7 4 56 33 65 PT(2;1,7,4)
5 3 2 60 25 65 PT(2;5,3,2)
13 2 1 52 39 65 PT(2;13,2,1)

For p = 3, we also look at all Pythagorean triples with hypotenuse 4 · 34 + 1 = 325,
where the first four triples are those shown above, produced by our procedure shown in
Table 1.

k m n a b c PT
1 18 1 36 323 325 PT(3;1,18,1)
1 17 6 204 253 325 PT(3;1,17,6)
13 4 3 312 91 325 PT(3;13,4,3)
25 3 2 300 125 325 PT(3;25,3,2)

80 315 325 PT(3;5,8,1)
280 165 325 PT(3;5,7,4)
260 195 325 PT(3;13,2,1)

Proof of the theorem. Suppose we are given a Pythagorean triple (a, b, c) which has
hypotenuse of the form 4p2 + 1. We can immediately computer p from

c = 4p4 + 1; p = 4

√
c− 1

4
.

We can also computer k = gcd(a, b).

This gives us a primitive Pythagorean triple

(
a

k
,
b

k
,
c

k

)
, in which we may choose

a

k
to

be the even leg.

That is, we must find appropriate m and n so that

a

k
= 2mn,

b

k
= m2 − n2, c

k
=

4p2 + 1

k
= m2 + n2.
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By solving the last two equations, we find that m =

√
b+ c

2k
and n =

√
c− b
2k

.

These must be coprime integers of opposite parity, because

(
a

k
,
b

k
,
c

k

)
is a primitive

Pythagorean triple.

Therefore, (a, b, c) is PT (p; k,m, n).

Caveat: Producing triples by using this construction is rather random. Given an
appropriate generating pair (m,n) we must find p (and thus k) by solving the
congruence 4p4 + 1 ≡ 0 mod

(
m2 + n2

)
.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University San Angelo, TX; Jerry Chu (Student, Saint George’s
School), Spokane, WA; Bruno Salgueiro Fanego (two solutions), Viveiro,
Spain; Ed Gray, Highland Beach, FL; Kee-Wai Lau, Hong Kong, China;
David E. Manes, SUNY College at Oneonta, Oneonta, NY, and the proposer.

• 5344: Proposed by Y. N. Aliyev, Qafqaz University, Khyrdalan, Azerbaijan

Let 4ABC be isosceles with AB = AC. Let D be a point on side BC. A line through
point D intersects rays AB and AC at points E and F respectively. Prove that
ED ·DF ≥ BD ·DC.

Solution 1 by Bruno Salgueiro Fanego, Viveiro, Spain

Let Γ be the circle which passes through B,C and E and let J be the other point of
intersection of the line DE with Γ. Since E and F are on the rays with origin A and
with orientations AB and AC respectively, we have that DF = DJ = JF ≥ DJ with
equality if, and only if J = C = F , that is, if, and only if the line EF=BC, so

ED ·DF ≥ ED ·DJ (1)

with equality if, and only if the line through point D given in the statement of the
problem is the line BC, and, by the intersecting chords theorem, the absolute value of
the power of D with respect to Γ is ED·DJ and also BD ·DC that is

ED ·DJ = BD ·DC. (2)

From (1) and (2) we deduce the inequality to be shown and that equality occurs if, and
only if, the line through point D is the line BC.

Solution 2 by Titu Zvonaru, Comănesti, Romania

We denote by M the midpoint of BC, a = MB,= MC,h = AM and tan( 6 FDC) = m.
Suppose that F lies between A and C. A parallel line to EF through M intersects AB
and AC at points E′ and F ′ respectively. By Similitude, we obtain:

DF

MF ′
=

DC

MC
⇐⇒ DF =

MF ′ ·DC
MC

,

DE

ME′
=

DB

MB
⇐⇒ DF =

ME′ ·DB
MB

.
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(1)

Since

ED·DF ≥ BD·DC ⇐⇒ ME′ ·DB
MB

·MF ′ ·DC
BC

≥ BD·DC ⇐⇒ ME·MF ≥MB·MC,

we deduce that it suffices to prove the statement of the problem if D is the midpoint of
BC. In the following we will assume that D is the midpoint of BC.

Lt T be the projection of F to BC. It results that

TC

DC
=
FT

AD
⇐⇒ MC −DT

DC
=
DT ·m
AD

⇒ DT =
ah

h+ am
.

By the Pythagorean Theorem, we obtain

DF =
√
DT 2 + FT 2 =

√
a2h2

(h+ am)2
+

a2h2

(h+ am)2
m2 =

ah

h+ am

√
1 +m2,

and similarly, DE =
ah

h− am
√

1 +m2.

It results that:

ED·DF ≥ BD·DC ⇐⇒ a2h2

h2 − a2m2

(
1 +m2

)
⇐⇒ h2+h2m2 ≥ h2−a2m2 ⇐⇒

(
a2 + h2

)
m2 ≥ 0,

which is true. The equality holds if and only if m = 0, that is, the line through D is BC.

Solution 3 by Ed Gray, Highland Beach, FL

To be specific in the case you wish to draw a diagram, let the point D be on the left of
middle of side BD so that point E is on side AB in the triangle closer to B than to A.
The point F on the extension of AC and is external to the triangle ABC. We shall be
interested in triangles EBE and DCF .

In 4BED, let α = 6 EBD and let β = 6 EDB. So 6 DEB = 180− α− β. Also
6 BCA = α because 4ABC is isosceles.

In 4CDF, 6 FDC = β;FCD = 180− α, and although 4EBD and 4FCD are not
similar to one another, the law of sines holds in each triangle.

In 4BED;
ED

sinα
=

BD

sin(180− α− β)
=

BD

sin(α+ β)
. So, ED =

BD sin a

sin(α+ β)
.

In 4DCF ;
DC

sin(α− β)
=

DF

sin(180− α)
=

DF

sinα
. So, DF =

DC sinα

sin(α− β)
.

To show ED ·DF ≥ BD ·DC we must show that

(BD sin a) · (DC sinα)

sin(α+ β) · sin(α− β)
≥ BD ·DC, or

sin2 α

sin(α+ β) sin(α− β)
≥ 1, or

sin2 α ≥ sin(α+ β)sin(α− β)
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sin(α+ β) = sinα cosβ + cosα sinβ

sin(α− β) = sinα cosβ − cosα sinβ, or

sin2 α ≥ (sinα cosβ + cosα sinβ)(sinα cosβ − cosα sinβ)

= sin2 α cos2 β − cos2 α sin2 β.

Adding cos2 α to both sides of the above inequality we obtain

1 ≥ cos2 α− cos2 α sin2 β + sin2 α cos2 β = cos2 α(1− sin2 β) + sin2 α cos2 β

1 ≥ cos2 α cos2 β + sin2 α cos2 β = (cos2 β)(cos2 α+ sin2 α)

1 ≥ cos2 β, and this proves the conjecture.

Also solved by Michael Brozinsky, Central Islip, NY; Jerry Chu (student,
Saint George’s School), Spokane, WA; Kee-Wai Lau, Hong Kong, China;
David Stone and John Hawkins, Georgia Southern University, Statesboro
GA, and the proposer.

• 5345: Proposed by Arkady Alt, San Jose, CA

Let a, b > 0. Prove that for any x, y the following inequality holds

|a cosx+ b cos y| ≤
√
a2 + b2 + 2ab cos(x+ y),

and find when equality occurs.

Solution 1 by Michael Brozinsky, Central Islip, NY

Since
√
u2 = |u|, the left hand side of the given inequality can be written as

a2 cos2 x+ 2ab cosx cos y + b2 cos2 y,

and so using the identities sin2 u = 1− cos2 u and cos(x+ y) = cosx cos y − sinx sin y, it
must be shown that

a2 sin2 x+ b2 sin2 y ≥ 2ab sinx sin y.

This is true from the AM-GM inequality, with equality if, and only if, a sinx = b sin y.

Solution 2 by Paul M. Harms, North Newton, KS

Since each side of the inequality is a nonnegative number, the inequality holds if the
square of the left side is less than or equal to the square of the right side. We need to
show that

(a cosx+ b sin y)2 = a2 cos2 x+ 2ab cosx cos y + b2 cos2 y ≤ a2 + b2 + 2ab cos(x+ y).
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The last inequality is equivalent to

0 ≤ a2
(
1− cos2 x

)
+ b2

(
1− cos2 y

)
+ 2ab (cos(x+ y)− cosx cos y)

= a2 sin2 x+ b2 sin2 y + 2ab((cosx cos y − sinx sin y)− cosx cos y)

= (a sinx− b sin y)2.

Clearly, 0 ≤ (a sinx− b sin y)2 so the problem inequality holds. Equality will hold when

a sinx = b sin y or
a

b
=

sinx

sin y
.

Also solved by Arkady Alt, San Jose, CA; Hatef I. Arshagi, Guilford
Technical Community College, Jamestown, NC; Dionne Bailey, Elsie
Campbell, Charles Diminnie, and Karl Havlak, Angelo State University, San
Angelo, TX; Brian D. Beasley, Presbyterian College, Clinton, SC; Jerry Chu
(student, Saint George’s School), Spokane, WA; Bruno Salgueiro Fanego,
Viveiro, Spain; Ethan Gegner (student, Taylor University), Upland, IN; Ed
Gray, Highland Beach, FL; Kee-Wai Lau, Hong Kong, China; Paolo Perfetti,
Department of Mathematics, Tor Vergata, Rome, Italy; Albert Stadler,
Herrliberg, Switzerland; Neculai Stanciu, “George Emil Palade” School,
Buzău, Romania and Titu Zvonaru, Comănesti, Romania; David Stone and
John Hawkins, Georgia Southern University, Statesboro GA; Vu Tran
(student, Purdue University), West Lafayette, IN; Nicusor Zlota, “Traian
Vula” Technical College, Focsani, Romania, and the proposer.

• 5346: Proposed by D.M. Bătinetu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” School, Buzău,
Romania

Show that in any triangle ABC, with the usual notations, the following hold,

hb + hc
ha

r2a +
hc + ha
hb

r2b +
ha + hb
hc

r2c ≥ 2s2,

where ra is the excircle tangent to side a of the triangle and s is the triangle’s
semiperimeter.

Solution 1 by Moti Levy, Rehovot, Israel

From geometry of the triangle:

ha =
2

1

rb
+

1

rc

, hb =
2

1

ra
+

1

rc

, hc =
2

1

rb
+

1

ra

. (1)

Solving (1) for ra, rb and rc, we get

ra =
hahbhc

hahb + hahc − hbhc
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rb =
hchahb

hahb − hahc + hbhc

rc =
hahbhc

−hahb + hahc + hbhc
(2)

Suppose ha ≥ hb ≥ hc. It follows from (2) that ra ≤ rb ≤ rc. It is also easy to see that

ha ≥ hb ≥ hc implies
hb + hc
ha

≤ hc + ha
hb

≤ ha + hb
hc

.

So now we can apply Chebyshev’s sum inequality,

hb + hc
ha

r2a +
hc + ha
hb

r2b +
ha + hb
hc

r2c ≥
1

3

(
hb + hc
ha

+
hc + ha
hb

+
ha + hb
hc

)(
r2a + r2b + r2c

)
.

Since x+ 1
x ≥ 2, for x ≥ 0,

hb + hc
ha

+
hc + ha
hb

+
ha + hb
hc

=
hb
ha

+
hc
ha

+
hc
hb

+
ha
hb

+
ha
hc

+
hb
hc
≥ 6.

hb + hc
ha

r2a +
hc + ha
hb

r2b +
ha + hb
hc

r2c ≥ 2
(
r2a + r2b + r2c

)
.

To complete the solution, we use the well known inequality

r2a + r2b + r2c ≥ s2,

(which can be shown by proving that tan2 α

2
+ tan2 β

2
+ tan2 γ

2
≥ 1, and that

ra = s tan
α

2
, rb = s tan

β

2
, rc = s tan

γ

2
).

Reference: Bottemi O., et al. Geometric inequalities (Noordhoff, 1969), 2.35 p. 27,
5.34 p. 57.

Solution 2 by Nikos Kalapodis, Patras, Greece

Applying the Cauchy-Schwartz inequality,(
a21 + a22 + a23

) (
b21 + b22 + b23

)
≥ (a1b1 + a2b2 + a3b3)

2

for a1 =
ra√
ha
, a2 =

rb√
hb
, a3 =

rc√
hc

and b1 =
√
ha, b2 =

√
hb, b3 =

√
hc we have

(
r2a
ha

+
r2b
hb

+
r2c
hc

)
(ha + hb + hc) ≥ (ra + rb + rc)

2,

i.e.,
hb + hc
ha

r2a +
hc + ha
hb

r2b +
ha + hb
hv

r2c ≥ 2 (rarb + rbrc + rcra) . (1)

Taking into account the well-known formulas S2 = s(s− a)(s− b)(s− c) and
S = ra(s− a) = rb(s− b)− rc(s− c) for the area S of triangle ABC, we have

rarb + rbrc + rcra =
S2

(s− a)(s− b)
+

S2

(s− b)(s− c)
+

S2

(s− c)(s− a)

11



= s(s− c) + s(s− a) + s(s− b)

= s (3s− (a+ b+ c))

= s(3s− 2s) = s2 (2)

Unsing (1)and (2) we obtain the required inequality.

Solution 3 by Titu Zvonaru, Comănesti, Romania

We suppose that a ≥ b ≥ c. Denoting by F the area of triangle ABC w have

a ≥ b ≥ c ⇐⇒ 1

a
≤ 1

b
≤ 1

c
⇐⇒ F

a
≤ F

b
≤ F

c
⇐⇒ ha ≤ hb ≤ hc

⇐⇒ ha + hb + hc
ha

≥ ha + hb + hc
hba

≥ ha + hb + hc
hc

⇐⇒ hb + hc
ha

≥ hc + ha
hb

≥ ha + hb
hc

.

and

a ≥ b ≥ c ⇐⇒ s− a ≤ s− b ≤ s− c ⇐⇒ F

s− a
≥ F

s− b
≥ F

s− c
⇐⇒ ra ≥ rb ≥ rc.

Applying the Chebyshev inequality and the well known inequality

x2 + y2 + z2 ≥ xy + yz + zx,

we obtain

hb + hc
ha

r2a +
hc + ha
hb

r2b +
ha + hb
hc

r2c

≥ 1

3

(
hb + hc
ha

+
hc + ha
hb

+
ha + hb
hc

)(
r2a + r2b + r2c

)

≥ 1

3

(
ha
hb

+
hb
ha

+
hb
hc

+
hc
hb

+
hc
ha

+
ha
hc

)
(rarb + rbrc + rcra)

≥ 1

3
(2 + 2 + 2)

(
F 2

(s− a)(s− b)
+

F 2

(s− b)(s− c)
+

F 2

(s− c)(s− a)

)

= 2 · F
2(s− c+ s− a+ s− b)
(s− c)(s− b)(s− c)

12



= 2 · s(s− a)(s− b)(s− c)s
(s− a)(s− b)(s− c)

= 2s2.

The equality holds if and only if a = b = c, that is, when triangle ABC is equilateral.

Solution 4 by Kee-Wai Lau, Hong Kong, China

Since ha = b sinC, hb = c sinA, hc = a sinB, so by the sine formula we have

hb + hc
ha

=
c sinA+ a sinB

b sinC

=
sinA(sinB + sinC)

sinB sinC

=
sinA

sinB + sinC

(
4 +

(sinB − sinC)2

sinB sinC

)

≥ 4 sinA

sinB + sinC

=

4 sin

(
A

2

)
cos

(
B − C

2

)

≥ 4 sin

(
A

2

)
.

Similarly,
hc + ha
hb

≥ 4 sin

(
B

2

)
and

ha + hb
hc

≥ 4 sin

(
C

2

)
. Hence using the well-known

relations ra = s tan

(
A

2

)
, rb = s tan

(
B

2

)
, rc = s tan

(
C

2

)
, we see that

1

s2

(
hb + hc
ha

r2a +
hc + ha
hb

r2b +
ha + hb
hc

r2c

)
≥ 4 (f(A/2) + f(B/2) + f(C/2)) ,

where f(x) = sinx tan2 x, for 0 < x <
π

2
. Since

d2f(x)

dx2
= sinx+ tanx secx+ 4 tanx sec3 x+ 2 tan3 x secx > 0,

so, f(A/2) + f(B/2) + f(C/2) ≥ 3f

(
A+B + C

6

)
=

1

2
, and therefore the inequality of

the problem holds.

Also solved by Jerry Chu (student, Saint George’s School), Spokane, WA;
Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland Beach, FL;
Albert Stadler, Herrliberg, Switzerland; Nicusor Zlota, “Traian Vula”
Technical College, Focsani, Romania, and the proposers.
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• 5347: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let 0 < a < b be real numbers and let f, g : [a, b]→ R∗+ be continuous functions. Prove
that there exists c ∈ (a, b) such that 1

f(c)
+

1∫ b

c
g(t) dt

 (
g(c) +

∫ c

a
f(t) dt

)
≥ 4

(R∗+ represents the set of non-negative real numbers.)

Solution 1 by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain

In order to avoid non-sense expressions, as zero denominators, we may assume that f, g
are not identically null. The proposed inequality may be written as

g(c) +

∫ c

a
f(t)dt

2
≥ 2

1

f(c)
+

1∫ b

c
g(t)dt

.

The right-hand side tends to zero for c→ b, because

∫ b

c
g(t)dt→ 0. On the other hand,

g, and f are not identically null so the limit of the left-hand side is positive for c→ b,

since at least

∫ b

a
f(t)dt > 0 and the conclusion follows.

Solution 2 by Henry Ricardo, New York Math Circle, NY

Define F (x) =

∫ x

a
f(t)dt ·

∫ b

x
g(t)dt. Since F (a) = F (b) = 0, Rolle’s theorem tells us

that there exists c ∈ (a, b) such that 0 = F ′(c) = f(c)

∫ b

c
g(t)dt− g(c)

∫ c

a
f(t)dt , or

f(c)

∫ b

c
g(t)dt = g(c)

∫ c

a
f(t)dt. (1)

Since f and g are non-negative, the AM-GM inequality yields(
1

f(c)
+

1∫ b
c g(t)dt

)(
g(c) +

∫ c

a
f(t)dt

)
≥ 2√

f(c)
∫ b
c g(t)dt

· 2

√
g(c)

∫ c

a
f(t)dt = 4

by statement (1).

Comment by solver: We are tacitly assuming that f(c) 6= 0. It is better to alter the
problem’s hypothesis so that at least f is strictly positive on [a, b].

Solution 3 by Michael Brozinsky, Central Islip, NY
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Assume the contrary that no such c exists so that(
1

f(c)
+

1∫ b
c g(t) dt

) (
g(c) +

∫ c

a
f(t) dt

)
≥ 4(∗) for all x on(a, b).

Now

∫ b

x
g(t)dt and

∫ x

a
f(t)dt are continuous and positive functions of x for a ≤ x ≤ b

since f(t) and g(t) are nonnegative and continuous. Hence from (∗) we have
g(x)

f(x)
< 4

for all x on (a, b) (∗∗) and also

∫ x

a
f(t)dt < 4 ·

∫ b

x
g(t)dt (∗ ∗ ∗). From (∗ ∗ ∗), (∗∗) then

implies that

∫ x

a
f(t)dt < 4 ·

∫ b

x
4f(t)dt and so letting x −→ b we have a contradiction

that

∫ b

a
f(t)dt ≤ 0. Hence there exists a c on (a, b) such that F (c) > 4, in fact, there

exists a c on (a, b) such that F (c) > M where M is an arbitrary positive number as the
above proof shows replacing the 4′s by M throughout.

Solution 4 by Paolo Perfetti, Department of Mathematics, Tor Vergata,
Rome, Italy

We argue by contradiction assuming that(
1

f(c)
+

1∫ b
c g(t)dt

)(
g(c) +

∫ c

a
f(t)dt

)
< 4

for any c ∈ (a, b).

Cauchy Schwarz yields

4 >

(
1

f(c)
+

1∫ b
c g(t)dt

)(
g(c) +

∫ c

a
f(t)dt

)
≥

√∫ c
a f(t)dt

f(c)
+

√
g(c)∫ b

c g(t)dt

2

Now we prove the Lemma

Lemma There exists d ∈ (a, b) such that

∫ d

a
f(t)dt

f(d)
≥

∫ b

d
g(t)dt

g(d)
.

Proof∫ d

a
f(t)dt

f(d)
≥

∫ b

d
g(t)dt

g(d)
if and only if

g(d)

∫ d

a
f(x)dx ≥ f(d)

∫ b

d
g(x)dx (1)

Now let g(b) = g0 > 0. A value d can be chosen so close to b such that
|g(x)− g0| ≤ g0/2 for any x ∈ (d, b]. For the same reasons
|f(x)− f0| ≤ f0/2 for any x ∈ (d, b] where f0 = f(b). Moreover we can suppose∫ d

a
f(x)dx ≥ 1

2

∫ b

a
f(x)dx = I/2 > 0. We can write
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g(d)

∫ d

a
f(x)dx ≥ 1

2
g0

∫ d

a
f(x)dx ≥ 1

2
g0
I

2

and

3

2
f(b)

3

2
g0(b− d) ≥ f(d)

∫ b

d
g(x)dx.

To prove (1) it suffices

1

2
g0
I

2
≥ 3

2
f(b)

3

2
g0(b− d) ⇐⇒ I ≥ 9f(b)(b− d)

and this clearly holds provided that d is very close to b. .

Thanks to the lemma, we can write

4 >

√∫ c
a f(t)dt

f(c)
+

√
g(c)∫ b

c g(t)dt

2

≥

√∫ b
d g(t)dt

g(d)
+

√
g(d)∫ b

d g(t)dt

2

≥ 4

since x+ 1/x ≥ 2 for any x > 0, contradiction.

Also solved by Kee-Wai Lau, Hong Kong, China; Moti Levy, Rehovot, Israel,
and the the proposer.

• 5348: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let k ≥ 1 be an integer. Prove that∫ 1

0
lnk(1− x) lnx dx = (−1)k+1k!(k + 1− ζ(2)− ζ(3)− · · · − ζ(k + 1)),

where ζ denotes the Riemann zeta function.

Solution 1 by Moubinool Omarjee of Lycée Henri IV, Paris, France

We change the variable letting u = − ln(1− x).

∫ 1

0
lnk(1− x) lnxdx = (−1)k

∫ +∞

0
uk ln(1− e−u)e−udu

= (−1)k+1

∫ +∞

0

∞∑
n=1

1

n
uke−u(n+1)du

= (−1)k+1
∞∑
n=2

1

n− 1

∫ +∞

0
uke−undu

= (−1)k+1
∞∑
n=2

1

n− 1

1

nk+1
Γ(k + 1)
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= (−1)k+1
∞∑
n=2

1

n− 1

1

nk+1
k!

= (−1)k+1k!
∞∑
n=2

1

n− 1

1

nk+1

= (−1)k+1k!
∞∑
n=2

(
1

n(n− 1)
− 1

n2
− 1

n3
− . . .− 1

nk+1

)

= (−1)k+1k!
∞∑
n=2

(
1

n(n− 1)
−
∞∑
n=2

1

n2
−
∞∑
n=2

1

n3
− . . .−

∞∑
n=2

1

nk+1

)

= (−1)k+1k! (k + 1− ζ(2)− ζ(3)− . . .− ζ(k + 1))

Solution 2 by Anastasios Kotronis, Athens, Greece

It is straightforward to see that
∑
n≥1

xn

n
lnk x converges uniformly on [0, 1] and,

integrating by parts, that for n, k non negative integers:

∫
xn lnk x dx = xn+1

(
lnk x

n+ 1
− k lnk−1 x

(n+ 1)2
+
k(k − 1) lnk−2 x

(n+ 1)3
− . . .+ (−1)kk!

(n+ 1)k+1

)
+ c.

so we have∫ 1

0
lnk(1− x) lnx dx

1−x=y
====

∫ 1

0
ln(1− y) lnk y dy = −

∫ 1

0

∑
n≥1

yn

n
lnk y dy = −

∑
n≥1

1

n

∫ 1

0
yn lnk y dy

=(−1)k+1k!
∑
n≥1

1

n(n+ 1)k+1
= (−1)k+1k!

∑
n≥2

1

(n− 1)nk+1

= (−1)k+1k!
∑
n≥2

1− 1 + 1
nk+2

1− 1
n

= (−1)k+1k!
∑
n≥2

(
n

n− 1
−

k+1∑
m=0

1

nm

)

= (−1)k+1k!
∑
n≥2

(
n

n− 1
− 1− 1

n
−

k+1∑
m=2

1

nm

)

= (−1)k+1k!

∑
n≥2

(
1

n− 1
− 1

n

)
−
∑
n≥2

k+1∑
m=2

1

nm


= (−1)k+1k!

1−
k+1∑
m=2

∑
n≥2

1

nm

 = (−1)k+1k!

(
1−

k+1∑
m=2

(ζ(m)− 1)

)
= (−1)k+1k! (k + 1− ζ(2)− ζ(3)− · · · − ζ(k + 1)) .

Solution 3 by Moti Levy, Rehovot, Israel
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Clearly, ∫ 1

0
lnk (1− x) lnxdx =

∫ 1

0
ln (1− x) lnk xdx.

The Taylor series of ln (1− x) is ln (1− x) = −
∑∞

m=1
xm

m , |x| < 1.∫ 1

0
ln (1− x) lnk xdx = −

∫ 1

0

( ∞∑
m=1

xm

m

)
lnk xdx.

The order of summation and integration can be interchanged (since∫ 1
0

(∑∞
m=1

xm

m

) ∣∣lnk x
∣∣ dx < ∫ 1

0 |ln (1− x) lnx| dx = 2− 1
6π

2 <∞).
Hence, ∫ 1

0
ln (1− x) lnk xdx = −

∞∑
m=1

1

m

∫ 1

0
xm lnk xdx.

After integration by parts of
∫ 1
0 x

m lnk xdx, we get the recurrence,∫ 1

0
xm lnk xdx = − k

m+ 1

∫ 1

0
xm lnk−1 xdx.

It follows from the recurrence relation that,∫ 1

0
xm lnk xdx = (−1)k

k!

(m+ 1)k+1
.

∫ 1

0
ln (1− x) lnk xdx = −

∞∑
m=1

1

m
(−1)k

k!

(m+ 1)k+1

= (−1)k+1 k!
∞∑

m=1

1

m (m+ 1)k+1

= (−1)k+1 k!

∞∑
m=1

(
1

m
− 1

m+ 1
− 1

(m+ 1)2
− 1

(m+ 1)3
− · · · − 1

(m+ 1)k+1

)
.

∞∑
m=1

(
1

m
− 1

m+ 1

)
= 1,

∞∑
m=1

1

(m+ 1)l
= −1 +

∞∑
m=1

1

ml
= −1 + ζ (l) .

∫ 1

0
ln (1− x) lnk xdx = (−1)k+1 k!

(
k + 1−

k+1∑
l=2

ζ (l)

)
.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland
Beach, FL; G. C. Greubel, Newport News, VA; Kee-Wai Lau, Hong Kong, China;
Paolo Perfetti, Department of Mathematics, Tor Vergata, Rome, Italy; Ángel
Plaza, University of Las Palmas de Gran Canaria, Spain; Albert Stadler,
Herrliberg, Switzerland, and the proposer.

Mea Culpa
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The solution to 5340 of Paolo Perfetti of the Mathematics Department at Tor
Verga University in Rome, Italy, was inadvertently omitted by the editor from the list of
those who had solved the problem. But on the other hand, Paolo also solved 5322, but he
inadvertently forgot to send it to the editor on time. Paolo Perfetti should be credited with
having solved both 5322 and 5340.
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